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Statistics of heat exchange between two resistors
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We study energy flow between two resistors coupled by an arbitrary linear and lossless electric circuit. We show
that the fluctuations of energy transferred between the resistors are determined by random scattering of photons
on an effective barrier with frequency dependent transmission probability τ (ω). We express the latter in terms
of the circuit parameters. Our results are valid in both quantum and classical regimes and for nonequilibrium
electron distribution functions in the resistors. Our theory is in good agreement with recent experiment performed
in the classical regime.

DOI: 10.1103/PhysRevB.92.085412 PACS number(s): 72.70.+m, 72.10.Bg, 72.15.Jf, 84.30.Bv

I. INTRODUCTION

The problem of energy exchange between two resistors has
been analyzed by Nyquist [1] on the way towards his famous
formula for the current noise of a resistor,

SI = 4kBT /R. (1)

Here SI is the spectral density of noise at low frequencies
|ω| � kBT /�, kB is the Boltzmann constant, T is the temper-
ature, and R is the resistance. Equation (1) has been confirmed
by Johnson [2] and by numerous subsequent experiments. For
a long time afterwards transport of heat in electric circuits
has been considered well understood. Recently, however, it
has attracted renewed attention due to advances both in theory
and in technology. On the theoretical side, the discovery of
the fluctuation theorem [3–6] has triggered interest in the
statistics of heat transport. Statistics of effective electron
temperature fluctuations in small metallic grains is also under
discussion [7,8]. The experiments have recently advanced in
two directions. First, quantum transport of heat between two
resistors coupled by superconducting wires and separated by
up to 50 μm distance has been demonstrated at sub-Kelvin
temperatures [9,10]. Second, utilizing low noise amplifiers
Ciliberto et al. have recently measured the full statistical
distribution of heat transferred between two resistors kept at
temperatures 88 and 296 K, respectively [11,12]. They have
verified the validity of the fluctuation theorem and worked out
a theoretical model based on Nyquist’s formula (1).

Motivated by these developments, in this paper we propose
a theory of full counting statistics of photon mediated heat
exchange between two metallic resistors valid both at high and
at low temperatures, where the classical formula for the noise
(1) can no longer be used. We consider two resistors R1 and
R2 shunted by impedances Z1(ω) and Z2(ω), and coupled by a
linear element (e.g., transmission line, capacitor, etc.) having
the impedance Z0(ω) [see Fig. 1(a)]. The impedances Zj (ω)
(j = 0,1,2) are purely reactive and do not generate noise.
The average photonic heat current flowing from resistor 1 to
resistor 2 reads

JQ =
∫ ∞

0

dω

2π
ωτ (ω)[n1(ω) − n2(ω)], (2)

where τ (ω) is the effective transmission, which we will
specify later, and nj (ω) are photon distribution functions

(here and below we put kB = � = 1). Typically τ (ω) drops at
certain cutoff frequency ωc. Assuming that n1(ω),n2(ω) have
equilibrium Bose form with the temperatures T1 and T2, one
finds that at high temperatures, T1,T2 � ωc [Fig. 1(b)], JQ ≈
τ (0)ωc(T1 − T2) in agreement with experimental findings of
Refs. [11,12]. In this classical regime Nyquist’s formula (1)
may be used to derive the heat current. In this paper we
will be mostly interested in the opposite, quantum, limit
T1,T2 � ωc [Fig. 1(c)], which is relevant for typical low
temperature experiments [9,10]. Indeed, the cutoff frequency
may be estimated as ωc ∼ min{1/RjCj ,Rj/Lj }, where Cj ∼
εε0l are stray capacitances, Lj ∼ μ0l are inductances of
the wires [Fig. 1(d)], ε0 and μ0 are vacuum permittivity
and permeability, ε is the dielectric constant, and l is the
characteristic size of the sample. For the parameters of the
low temperature experiments [9,10], namely T ∼ 100 mK,
R ∼ 1 k�, and l ∼ 10 μm, one finds T/ωc ∼ 10−3 � 1.
Thus the circuit is in the quantum regime. In contrast, for
the experiments by Ciliberto et al. [11,12] with T ∼ 100 K,
R = 10 M�, and l ∼ 1 cm one finds T/ωc ∼ 1010 � 1, which
corresponds to a strongly classical regime.

II. MODEL

Our goal is to find the distribution of the energy Q

transferred from resistor 1 to resistor 2 during the time t ,
which we denote as P (t,Q). It is more convenient to work
with the cumulant generating function (CGF) F (t,λ), which
depends on the counting field λ and defined as

eF (t,λ) =
∫

dQeiλQP (t,Q). (3)

We describe the system by a Hamiltonian

Ĥ = Ĥ0 + Ĥem + Ĥint, (4)

where Ĥ0 =∑kσ εkâ
†
kσ âkσ is the Hamiltonian of noninter-

acting electrons moving in the combined potential of ion
lattice and impurities, âkσ is an annihilation operator of an
electron in the eigenstate |ψkσ 〉 (σ is the spin index), and εk is

the corresponding eigenenergy; Ĥem = ∫ d3r(Ê
2 + Ĥ

2
)/8π

is the Hamiltonian of electromagnetic field; Ê and Ĥ are
the operators of the electric and magnetic fields, respectively;
Ĥint = −∑kn,σ eV̂knâ

†
kσ ânσ is the interaction Hamiltonian;

1098-0121/2015/92(8)/085412(7) 085412-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.085412


D. S. GOLUBEV AND J. P. PEKOLA PHYSICAL REVIEW B 92, 085412 (2015)

R1 R2

Z ( )0 ω

Z ( )2 ωZ ( )1 ω

R1 R2R1 R2C1 C2

L1
L2

(a)

(e)(d)

(c)

ω

τ (ω)(b)

ω

τ (ω)

k T/B hk T/B h

quantumclassical

ωC ωC

FIG. 1. (Color online) Two resistors connected in a linear circuit:
(a) general case—resistors are connected by an arbitrary reactive
element with the impedance Z0(ω) and shunted by the reactive
impedances Z1(ω),Z2(ω); (b) classical regime T1,T2 � ωc; (c) quan-
tum regime T1,T2 � ωc; (d) realistic model, with stray capacitances
C1,C2 and wire inductances L1,L2; and (e) resistors directly coupled
by two ideal zero resistance wires.

and V̂kn = 〈ψk|V̂ (r)|ψn〉 are the matrix elements of the
electric potential operator between two eigenfunctions of the
noninteracting electron Hamiltonian Ĥ0. The Hamiltonian Ĥ0

describes the two resistors, the wires connecting them, and the
leads attached to them if they are present.

An important point is the definition of the transferred
energy Q. Here we have in mind the detection scheme based
on normal metal-superconductor tunnel junctions attached to
the resistors [9,10]. Such a junction allows one to measure
the effective temperature of a resistor or, more generally, the
distribution function f (E,r) of electrons in it [13]. The latter
can be converted into the total electron energy of the resistor j

(j = 1,2) as Ej = 2
∫
�j

d3r
∫

dE Eνj (E)f (E,r) [here �j in
the volume of the resistor j and νj (E) is the density of states].
Within this approach it is natural to define the transferred
energy as the drop in the electronic energy of resistor 1 during
the time t , Q = −E1(t) + E1(0). The corresponding quantum
expression for the CGF reads [6]

eF (t,λ) = tr [e−iλĤ1e−iĤ t eiλĤ1 ρ̂0e
iĤ t ], (5)

where ρ̂0 is the initial density matrix and Ĥ1 is the free
electron part of the Hamiltonian of resistor 1.

The trace in Eq. (5) can be expressed as a path integral over
the fluctuating potentials V F ,V B,AF ,AB defined on the for-
ward (F ) and backward (B) branches of the Keldysh contour,
and over the Grassman fields aF

kσ ,aF∗
kσ ,aB

kσ ,aB∗
kσ describing elec-

trons. Performing the Gaussian integral over the latter, we get

eF =
∫

DV F,BDAF,B eiSλ[V F,B ,AF,B ], (6)

where the effective action iSλ[V F,B,AF,B] is the sum of the
electronic and electromagnetic contributions,

iSλ = iSλ
el + iSem, (7)

iSλ
el = 2 ln{det(Ǧ−1[V F ,V B])}, (8)

iSem = i

∫ t

0
dt ′
∫

d3r
E2

F − E2
B − H 2

F + H 2
B

8π
. (9)

Here we introduced the inverse Keldysh Green function of
electrons Ǧ−1

kn = Ǧ−1
0,kn + δǦ−1

kn , where

Ǧ−1
0,kn = δkn

(
i∂t − εk 0

0 −i∂t + εk

)
,

(10)

δǦ−1
kn =

(
eV F

kne
−iλkεk+iλnεn 0

0 −eV B
kn

)
.

At this stage we retain the information about occupation
numbers of all energy levels keeping the dependence of the
counting field λk on the level index k. Below we will only
consider linear circuits free of highly resistive junctions or
quantum dots in the Coulomb blockade regime. Then one can
expand the action (8) to the second order in V F ,V B ,

iSλ
el → 2 ln

[
det Ǧ−1

0

]+ tr[2Ǧ0δǦ
−1 − (Ǧ0δǦ

−1)2]. (11)

This expression contains the Green function of noninteracting
electrons Ǧ0. It is defined as

Ǧ0,kn(t1,t2) = −iδkne
−iεk (t1−t2)

×
(

θ12(1 − fk) − θ21fk −fk

1 − fk −θ12fk + θ21(1 − fk)

)
,

where θij = θ (ti − tj ) are Heaviside functions and
fk = 〈â†

kσ âkσ 〉 are the occupation numbers of the energy
levels. The first term in the expansion (11) does not depend
on λk and may be omitted. The second term tr[2Ǧ0δǦ

−1] is
canceled by a similar contribution coming from a positively
charged ion background. Thus, only the last term of Eq. (11)
matters. We transform it to the form

iSλ
el = e2

∫ t

0
dt ′dt ′′

∑
kn

∑
α,β=±

e−i(εk−εn)(t ′−t ′′)χ
αβ

kn V
β

nk(t ′)V α
kn(t ′′).

(12)

Here we have introduced the potentials V + = (V F + V B)/2
and V − = V F − V B , as well as dimensionless combinations
χ

αβ

kn containing electronic distribution functions fk and
counting fields λk:

χ++
kn = fk(1 − fn)(e−iλkεk+iλnεn − 1)

+ (1 − fk)fn(eiλkεk−iλnεn − 1),

χ+−
kn = (θ12 − θ21)(fk − fn) + fk(1 − fn)e−iλkεk+iλnεn

− (1 − fk)fne
iλkεk−iλnεn , (13)

χ−+
kn = 0,

χ−−
kn = −fk(1 − fn)(e−iλkεk+iλnεn + 1)/4

− (1 − fk)fn(eiλkεk−iλnεn + 1)/4.
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Next we perform disorder averaging of the matrix elements
V α

kn in Eq. (12) inside the metallic parts of the system ignoring
weak localization and utilizing the rule of averaging for the
product of electronic wave functions [14]∑

kn

〈ψ∗
k (r2)ψn(r2)ψk(r1)ψ∗

n (r1)δ(E1 − εk)δ(E2 − εn)〉

= (ν/π ) ReD(E1 − E2,r1,r2). (14)

Here ν is the density of states and D(E,r1,r2) is the solution
of the diffusion equation [−iE − D(r)∇2]D = δ(r1 − r2),
where D(r) is the diffusion constant. In good metals with local
current-field relation j = σ (r)E, where σ (r) = 2e2ν0(r)D(r)
is the conductivity, one can approximate ReD(E,r1,r2) →
−D(r)∇2/E2, and the action (12) acquires the form

iSλ
el = −

∫ t

0
dt ′dt ′′

∫
d3rσ (r)

∫
dω

2π

e−iω(t ′−t ′′)

ω

×
∑

α,β=±
ηαβ

ω,r∇V β(t ′,r)∇V α(t ′′,r). (15)

Here

η++
ω,r = −nω,r (eiλrω − 1) − (nω,r + 1)(e−iλr ω − 1),

η+−
ω,r = 1 − nω,r (eiλrω − 1) + (nω,r + 1)(e−iλrω − 1),

(16)
η−+

ω,r = 0,

η−−
ω,r = nω,r (eiλrω + 1) + (nω,r + 1)(e−iλrω + 1)

4
,

and nω,r is the effective photon distribution function,

nω,r = 1

ω

∫
dEf

(
E + ω

2
,r
)[

1 − f
(
E − ω

2
,r
)]

. (17)

It satisfies n−ω,r = −1 − nω,r and in local equilibrium, i.e., for
momentum isotropic electron distribution function of the form
f (E,r) = 1/(eE/T (r) + 1), where T (r) is the local electron
temperature, it reduces to Bose function 1/(eω/T (r) − 1).
However, nω,r may deviate from simple Bose form if the
electron distribution function is driven out of equilibrium by,
for example, bias voltage applied to a resistor [13]. In Eq. (15)
we have also assumed that the counting field λr is the same for
all energy levels with wave functions localized in the vicinity of
point r and that it slowly varies in space at distances exceeding
the spatial extension of these wave functions.

We are now in position to write down the action of two
coupled resistors depicted in Fig. 1(a). We put λ(r) = λj ,
σ (r) = σj (j = 1,2) inside each resistor. Considering low
frequency modes, we also put ∇V (r) = Vj/Lj , where Vj is
the instantaneous voltage drop across the j th resistor, and Lj

is its length. We also define the resistances Rj = Lj/σjAj ,
where Aj are the cross-sectional areas of the resistors. With
these approximations we get

iSλ
el = −

∑
j=1,2

∫ t

0
dt ′dt ′′

∫
dω

2π

e−iω(t ′−t ′′)

ωRj

× [η++
j (ω)V +

j (t ′)V +
j (t ′′) + η+−

j (ω)V −
j (t ′)V +

j (t ′′)

+ η−−
j (ω)V −

j (t ′)V −
j (t ′′)], (18)

where the functions η
αβ

j (ω) are given by Eqs. (16) with
photon distribution functions averaged over the volume of the
resistors nj (ω) = ∫

�j
d3rnω,r/�j , and with λr replaced by

λj . The fields E and H in 3D space around the resistors and
other circuit elements can be expressed via the voltages Vj

by solving linear Maxwell equations with proper boundary
conditions. In this way one finds

EF,B(t,r) =
∫ t

−∞
dt ′
[
e1(t − t ′,r)V F,B

1 (t ′)

+ e2(t − t ′,r)V F,B
2 (t ′)

]
, (19)

HF,B(t,r) =
∫ t

−∞
dt ′
[
h1(t − t ′,r)V F,B

1 (t ′)

+ h2(t − t ′,r)V F,B
2 (t ′)

]
, (20)

where ej (t,r) and hj (t,r) are the fundamental solutions for
electric and magnetic fields, which depend on the sample
geometry. The solutions (19) and (20) should be substituted
into the electromagnetic part of the action (9). After the
integration over coordinates, this action becomes quadratic in
the potentials Vj . Moreover, since E2

F − E2
B − H 2

F + H 2
B =

2E−E+ − 2H−H+ only the combinations V −
i V +

j appear in it.
The coefficients in front of these combinations are expressed
in terms of the functions ej (t,r), hj (t,r) and determine the
impedances Zj (ω), shown in Fig. 1(a), for a given sample.
Finally the electromagnetic part of the action acquires the
form

iSem = −
∫ t

0
dt ′dt ′′

∫
dω

2π

e−iω(t ′−t ′′)

ω

×
⎡
⎣∑

j=1,2

V −
j (t ′)V +

j (t ′′)

Zj (ω)
+ V −

12(t ′)V +
12(t ′′)

Z0(ω)

⎤
⎦, (21)

where V ±
12 = V ±

1 − V ±
2 . According to our assumptions the

impedances Zj (ω) are purely imaginary, i.e., Re (1/Zj ) = 0.
That is why the terms ∝V −(t ′)V −(t ′′) do not appear in
iSem. In contrast, such terms are present in the action of the
resistors (18) even if one puts λ1 = λ2 = 0. These terms are
related to dissipation in the resistors and describe the current
noise associated with it.

At long observation time, t � 1/Tj ,1/ωc, the full action (7)
acquires the form

iSλ = it

2

∑
n

�V T (−ωn)
Mλ(ωn)

iωn

�V (ωn), (22)

where ωn = 2πn/t are discrete frequencies, �V T (ωn) =
[V +

1 (ωn),V −
1 (ωn),V +

2 (ωn),V −
2 (ωn)] is the vector of Fourier
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transformed voltages, and

Mλ(ωn) =

⎛
⎜⎜⎜⎜⎜⎝

− 2η++
1 (ωn)
R1

1
Z∗

1
+ 1

Z∗
0

− η+−
1 (−ωn)

R1
0 − 1

Z∗
0

− 1
Z1

− 1
Z0

− η+−
1 (ωn)

R1
− 2η−−

1 (ωn)
R1

1
Z0

0

0 − 1
Z∗

0
− 2η++

2 (ωn)
R2

1
Z∗

2
+ 1

Z∗
0

− η+−
2 (−ωn)

R2

1
Z0

0 − 1
Z2

− 1
Z0

− η+−
1 (ωn)

R2
− 2η−−

1 (ωn)
R2

⎞
⎟⎟⎟⎟⎟⎠. (23)

The Gaussian path integral (6) over �Vn is evaluated ex-
actly. Utilizing the property Mλ(ω) = −MT

λ (−ω) in the
long time limit we find CGF in the form F (t,λ) =
−t
∫∞

0
dω
2π

ln [det M(ω)/det Mλ=0(ω)]. Evaluating the deter-
minants, and keeping in mind that Z∗

j = −Zj for reactive
elements, we find

F (t,λ) = −t

∫ ∞

0

dω

2π
ln[1 − τ (ω){n1(ω)[1+n2(ω)](eiλω−1)

+ [1 + n1(ω)]n2(ω)(e−iλω − 1)}]. (24)

Here λ = λ1 − λ2,

τ (ω) = 4

R1R2|G1 + G2 + Z0G1G2|2
(25)

is the effective transmission probability, and Gj = 1/Rj +
1/Zj (ω).

Equation (24) is the main result of our paper. It is the CGF of
photons which are scattered by a barrier with the transparency
τ (ω) and carry the energy ω each. It is consistent with standard
results of quantum optics [15] and closely resembles the CGF
of scattered electrons [16], which are fermions. In the context
of photon scattering by a cavity similar expression has been
derived by Beenakker [17], and in the context of phonon heat
conductance—by Saito and Dhar [18]. If both n1(ω) and n2(ω)
have the equilibrium Bose form, CGF (24) acquires the prop-
erty F (λ) = F [−λ + i(T −1

1 − T −1
2 )], which translates into

the fluctuation theorem P (Q) = P (−Q) exp[Q(T −1
1 − T −1

2 )].
We remind that Eq. (24) has been derived assuming Gaussian
fluctuations of currents and voltages in the electric circuit.
That implies, in particular, that the resistors R1 and R2 are
linear elements, which do not exhibit Coulomb blockade or
other types of nonlinearities. Besides that we have assumed
that the real parts of the impedances Zj (ω) are equal to zero
and they correspond to purely reactive elements like inductors,
capacitors, or their arbitrary combinations.

III. RESULTS AND DISCUSSION

Let us now consider some limiting cases. First we assume
that the transmission probability τ is constant and the pho-
ton distribution functions have equilibrium Bose form. In
this case the heat current acquires the familiar form JQ =
−(i/t)dF/dλ|λ=0 = πτ (T 2

1 − T 2
2 )/12. The simplest example

of such a system is given by two directly connected resistors
[Fig. 1(e)], in which case τ = 4R1R2/(R1 + R2)2. In Fig. 2(a)
we show the distribution P (t,Q) for three different values
of τ . The distribution becomes Gaussian at sufficiently long
observation time such that JQt � T1. The low frequency noise

of the heat current is given by the expression

SQ = −1

t

d2F

dλ2

∣∣∣∣
λ=0

=
(

ζ (3)

π
τ (1 − τ ) + π

6
τ 2

)(
T 3

1 + T 3
2

)

+ 2τ (1 − τ )
∫ ∞

0

dω

2π

ω2

(eω/T1 − 1)(eω/T2 − 1)
. (26)

Another interesting limit is transmission within a narrow
Lorentzian with τ (ω) = τmax�

2/[(ω − ω0)2 + �2] and � �
ω0,T1,T2. In this case

F = −�t(
√

1 − τmaxf (ω0) − 1), (27)

where f (ω0) = n1(ω0)[1 + n2(ω0)](eiλω0 − 1) + [1 +
n1(ω0)]n2(ω0)(e − iλω0 − 1). Since F (λ) becomes a periodic
function of λ in this approximation, we get P (t,Q) =∑

n pnδ(Q − nω0) with pn = ω0
2π

∫ π/ω0

−π/ω0
dλ einλω0eF (λ) being

the probability to transmit n photons with one frequency ω0.
The distributions pn for three different values of τmax are shown
in Fig. 2(b). Due to the suppression of the average heat current

0 10 20 30 40 50 60
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p n
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FIG. 2. (Color online) Distribution of energy transmitted be-
tween the resistors during time t for different transmission prob-
abilities τ (ω). (a) τ (ω) = const, T1 = 300 mK, T2 = 100 mK, the
observation time is t = 10 ns. (b) τ (ω) has the Lorentzian shape,
T1 = 300 mK, T2 = 100 mK, t = 1 ms, CGF is given by Eq. (27).
Discrete number of transferred photons n is shown on the horizontal
axis.
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FIG. 3. (Color online) (a) Bias current I is applied to resistor 1 in
order to drive it out of equilibrium. Two capacitors C, which shield the
detector resistor 2 at low frequencies, are big enough to become fully
transparent at frequencies ω ∼ max{T1,T2,eV }, where V = IR1. In
this case the barrier transmission τ may be approximately treated
as a frequency independent constant. (b) Distribution of transmitted
energy during the observation time t = 100/eV for three different
values of τ . Q and P (Q) are scaled with the characteristic photon
energy eV .

between the resistors the distributions pn significantly deviate
from the Gaussian form even though the observation time is
long, t = 1 ms. It is obvious from Eq. (27) that the distribution
pn becomes Poissonian in the limit T1 � T2 and τmax � 1.
At higher transparencies it deviates from the Poissonian form
similarly to what has been predicted in Ref. [19], where the
statistics of photons emitted by a coherent conductor has been
studied and the rectangular shape of the transmission line
has been assumed. The average heat current and the noise
corresponding to CGF (27) are [here nj ≡ nj (ω0)]

JQ = τmax

2
�ω0[n1 − n2], SQ = τmax

2
�ω2

0(n1[1 + n2]

+ [1 + n1]n2 + τmax[n1 − n2]2/2). (28)

Next we assume that leads are attached to resistor 1 and bias
current I is applied to it [see Fig. 3(a)]. The electron distribu-
tion function inside it acquires a nonequilibrium double step
form [20], f (E,x) = (x/L1)f (E − eV ) + (1 − x/L1)f (E),
where V = IR1 is the voltage drop. We also assume that the
temperatures of resistor 2 and of the outer leads are much
lower than eV . In this case one can put n2(ω) = 0 and from
Eq. (17) we find n1(ω) = (eV − ω)θ (eV − ω)/6ω. Thus the
CGF (24) takes the form

F = −t

∫ eV

0

dω

2π
ln

[
1 − τ

6

eV − ω

ω
(eiλω − 1)

]
. (29)

The corresponding distribution P (Q) is shown in Fig. 3(b). It is
strongly asymmetric with P (Q) = 0 for Q < 0, i.e., over long
intervals of time, eV t � 1, the energy flows from the biased
resistor to the unbiased one, but never in the opposite direction.
A somewhat similar system, namely a biased resistor coupled

R1 R2

C0

C1 C2

(a)

(b)
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k B
T 1

)
Q,t(
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Q/kBT1

FIG. 4. (Color online) (a) Setup of the experiment [11,12]. The
circuit parameters are R1 = R2 = 10 M�, C0 = 100 pF, C1 =
680 pF, and C2 = 420 pF. The parameters defined in the text
take the values α = 2.134, β = 0.0506, and t0 = 6.29 ms. (b)
Distribution of energy transmitted during the time t = 0.1 s and for
resistor temperatures T1 = 296 K, T2 = 88 K. Circles: experimental
points [11,12]; blue line: Eq. (34); and red dashed line: Gaussian
approximation P (t,Q) = exp[−(Q − JQt)2/2SQt]/

√
2πSQt , where

JQ and SQ are defined by Eqs. (35).

to an open transmission line, has been earlier considered in
Ref. [21], where the average value of the heat current and
its noise have been derived. From CGF (29) we find these
parameters in our model

JQ = τ (eV )2

24π
, SQ =

(
1 + τ

3

)τ (eV )3

72π
. (30)

In the classical limit Tj � ωc CGF (24) reduces to [22]

F = −t

∫ ∞

0

dω

2π
ln[1 − τ (ω)(iλ�T12 − λ2T1T2)], (31)

where �T12 = T1 − T2. It is interesting to compare this result
with the experiment [11,12]. In that experiment capacitors have
been used, which implies Zj (ω) = 1/(−iωCj ) [see Fig. 4(a)].
Accordingly, τ (ω) (25) takes the form

τ (ω) = 2β(ωt0)2

1 + 2(α − 1)(ωt0)2 + (ωt0)4
, (32)

with t0 = √
R1R2(C1C2 + C0C1 + C0C2),

α = 1 + [R2
1(C0 + C1)2 + R2

2(C0 + C2)2 + 2R1R2C
2
0

]/
2t2

0 ,

and β = 2C2
0/(C1C2 + C0C1 + C0C2). For this model one can

exactly evaluate CGF (31),

F = t

t0

(√
α

2
−
√

α

2
− β(iλ�T12 − λ2T1T2)

2

)
, (33)
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and the distribution of the transferred heat P (t,Q) =∫
dλ
2π

e−iλQ+F (t,λ), which reads

P (t,Q) = t

π

√
2a

βT1T2t2 + 2Q2t2
0

e
t
t0

√
α
2 + T1−T2

2T1T2
Q

K1

[√
a

(
t2

t2
0

+ 2Q2

βT1T2

)]
. (34)

Here K1(x) is the modified Bessel function of the second kind,
and a = α/2 + β(T1 − T2)2/8T1T2. One should bear in mind
that the expression (34) is valid in the long time limit t � t0.
The average heat current from resistor 1 to resistor 2 and the
corresponding noise in this model have the form

JQ = β(T1 − T2)

2
√

2αt0
, SQ = βT1T2√

2α t0
+ β2(T1 − T2)2

4
√

2α3/2t0
. (35)

We compare the distribution (34) with the experimental one
[11,12] in Fig. 4(b). The agreement between the two is quite
good. In particular, one can see the deviations from the Gaus-
sian form at the tails of the distribution. The subtle point of
the measurements [11,12] was the difference between the heat
Q1, i.e., the change of the energy of resistor 1, and the work
W1, which also includes the change of the electrostatic energy
of the capacitor C1. We have verified that in the long time limit
both Q1 and W1 should have the same distribution (34). On
the qualitative level this can be understood from the relation
W1 = Q1 + C1[V 2

1 (t) − V 2
1 (0)]/2. Indeed, the average value

of the last term, i.e., of the change in the energy of the capacitor
C1 during the observation time t , equals zero because 〈V 2

1 (t)〉 is
finite and does not grow in time. Since both Q1 and W1 grow
in time linearly, one can put W1 ≈ Q1 at sufficiently long t

even without averaging. Experimentally, however, the work
distribution has approached the long time limit form faster
than the heat distribution. That is why in Fig. 4(b) we plot
the experimental work distribution P (W1). Further analysis is
required in order to understand the origin of this behavior.

We propose the distribution of heat in the low temperature
quantum regime to be measured in the setup similar to the
one used in the experiments [9,10]. Namely, one would
monitor the temperature of the detector resistor 2 in real time
with the time resolution of the order of t0 ≈ 12�/πτkBT1,
that is the time interval during which an average energy
kBT1 is transferred from resistor 1 to resistor 2. Assuming
T1 = 100 mK and τ = 3 × 10−4 one finds t0 ≈ 1 μs, which
is within the reach of current technology [23]. The expected
magnitude of temperature fluctuations in the second resistor
caused by fluctuations of heat flow may be estimated as
δT 2

2 ≈ 3τT2t/π
3
�kBν2�2

2, where t is the observation time.
For a resistor with the volume �2 = 0.001 μm3 made of
copper (density of states ν ≈ 1029 J−1 μm−3) and for T2 =
50 mK and t = 100t0 one finds δT2 ∼ 15 mK, which is
measurable with currently available thermometers based on
normal metal-superconductor tunnel junctions [23,24]. One
can further optimize the system by, for example, designing
the coupling circuit with narrow line transmission spectrum,
or by using other types of temperature sensors like, e.g.,
recently proposed sensor based on an SNS Josephson junction
[25,26].

In summary, we have developed a theory of full counting
statistics of heat exchange between two metallic resistors,
which is valid both at high and at low temperatures, where
the classical formula for the noise (1) can no longer be
used. Fluctuations of the heat current in this system can be
interpreted as scattering of photons by an effective potential
barrier. In high temperature limit our results are in good
agreement with recent experiment [11,12].
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