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Supercurrent reversal in Josephson junctions based on bilayer graphene flakes

Babak Zare Rameshti, Malek Zareyan,* and Ali G. Moghaddam
Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

(Received 17 March 2015; revised manuscript received 25 May 2015; published 5 August 2015)

We investigate the Josephson effect in a bilayer graphene flake contacted by two monolayer sheets deposited by
superconducting electrodes. It is found that when the electrodes are attached to the different layers of the bilayer,
the Josephson current is in a π state, if the bilayer region is undoped and there is no vertical bias. Applying
doping or bias to the junction reveals π − 0 transitions which can be controlled by varying the temperature and
the junction length. The supercurrent reversal here is very different from the ferromagnetic Josephson junctions
where the spin degree of freedom plays the key role. We argue that the scattering processes accompanied by
layer and sublattice index change give rise to the scattering phases, the effect of which varies with doping and
bias. Such scattering phases are responsible for the π − 0 transitions. On the other hand, if both of the electrodes
are coupled to the same layer of the flake or the flake has AA stacking instead of common AB, the junction will
be always in 0 state since the layer or sublattice index is not changed.
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I. INTRODUCTION

Starting from a decade ago, two-dimensional (2D) atomic
layers were synthesized and received a huge amount of
interest [1]. Graphene, the leading 2D material, has been
studied a lot, mostly because of promising applications in
electronics, chemistry, optics, etc., aside from the unexpected,
relativisticlike electronic dispersion sparking interest from a
fundamental point of view [2]. It has been shown that although
the low-energy quasiparticles in single-layer graphene are
massless Dirac fermions, however, the situation for bilayer
graphene (BG) is fundamentally different, revealing chiral
gapless excitations with quadratic dispersion rather than linear
[3–5]. Subsequently, the electronic properties of mono- and
bilayer graphene differ significantly from each other, the most
famous example being, due to the so-called Klein tunneling, in
monolayer graphene (MG) the backscattering is absent, while
in the case of bilayer, the forward scattering is impossible [6].
Very intriguingly one can simply use a perpendicular electric
field to generate a controllable gap in graphene bilayers [7–12].

Recently, it has been experimentally revealed that in
epitaxial graphene, it is very probable to have steplike
monolayer/bilayer (ML/BL) interfaces as well as bilayer flakes
connected to monolayer regions [13–15]. A natural question
arises immediately about the interplay of massless and massive
dispersions in the junctions containing both mono- and bilayer
graphene regions. Earlier theoretical investigations had proven
that in the ML/BL interfaces the transmission probabilities
can show a valley-dependent asymmetry, which suggests
their usage in the generation of valley-polarized electron
beams [16–18]. Moreover, in the presence of perpendicular
magnetic fields the emergence of Landau levels with peculiar
transport properties has been studied [19–22]. In particular,
a rich Landau spectrum has been predicted [19] and an
asymmetry in the dependence of transport features to the sign
of magnetic field and charge carriers has been experimentally
observed [20]. Other theoretical works have focused on the
edge-state properties and quantum transport via channels
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introduced by the interface [23–29]. On the other hand,
theoretical investigations of the transport through a bilayer
flake sandwiched between two monolayer nanoribbons have
revealed that the conductance oscillates between maximum
and zero as a function of bilayer flake length [30].

The pioneering work of Beenakker [31,32] and successive
experimental realization of the superconducting proximity
effect and supercurrent passing through graphene [33] proved
that graphene-based superconducting heterostructures can
have very interesting properties [34–42], some of which are
experimentally realized [43–48]. Among the variety of theo-
retical predictions, the so-called specular Andreev reflection,
despite several proposals, still waits to be detected [49–52]. In
addition, when the normal graphene region is replaced with a
magnetic region, the well-known 0 − π transitions have been
predicted to take place with some features different from con-
ventional superconductor-ferromagnet-superconductor (SFS)
junctions [53–55]. Intriguingly, it has been suggested that one
can see the transitions by varying the doping of the magnetic
region sandwiched between superconductors [56,57].

In this paper we investigate the Josephson effect through a
BG flake embedded between two monolayer sheets, as can be
seen in Fig. 1. We find that the first setup, in which the two ML
leads are coupled to the lower and upper layers of the flake,
is in the Josephson π state when the doping μ and vertical
bias V0 are zero. By applying gate voltages, which results in
doping, and bias to the flake the device can undergo a π to
0 transition. Moreover, at the presence of finite μ or V0, the
0 − π transitions occur with temperature and junction length
as well. It must be noted that the reason for such transitions are
in contrast with those taking place in the Josephson devices
with ferromagnetic weak links. Here the origin of the π state is
the phase factors of transmission coefficients through the flake
which influence the superconducting phase dependence of
the current carrying Andreev bound states. The appearance
of phases is somehow related to the fact that quasiparticles
passing through the flake in setup (a) need to change their
layer and sublattice index, while in setup (b) for all the modes
the scattering phases are zero. Varying the bias voltage and
doping of the flake changes the scattering properties of the
flake and at certain points the overall effects of the scattering

1098-0121/2015/92(8)/085403(8) 085403-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.085403


RAMESHTI, ZAREYAN, AND MOGHADDAM PHYSICAL REVIEW B 92, 085403 (2015)

(a)

(b)

FIG. 1. (Color online) Josephson couplings. Supercurrent
streams through the biased BG flakes embedded between two
Josephson coupled superconducting MG leads, SL and SR . The
length and width of the junction is indicated by d and W , respectively.
A voltage difference V0 is applied perpendicularly between the BG
layers. The two superconductors are either (a) attached to the top and
bottom layer of the BG flake, respectively, or (b) connected to only
one particular layer of the bilayer. A qualitative description in the
top of each setup demonstrates the transmission of the quasiparticles
through the BG flakes by the red and blue curved arrows.

phases are diminished, leading to the 0 state Josephson
effect.

This article is organized as follows. In Sec. II we introduce
our model and explain the method we use to calculate the
supercurrent that streams between two Josephson coupled
superconducting leads. In Sec. III we present and discuss our
numerical results that show the effect due to the bilayer step
junction, as well as the effect of bias voltage on supercurrent.
Finally, in Sec. IV we conclude and summarize our main
findings.

II. MODEL AND BASIC FORMALISM

We investigate the supercurrent flowing between two
superconducting reservoirs on top of MG regions which are
connected through a weak link containing a biased BG flake.
In fact, there are two different configurations for the setup
depending on how the BG flake is connected to the MG
regions in the left and right [58]. The left and right reservoirs
can be attached to the top and bottom layers of the bilayer,
respectively, as Fig. 1(a), or both of the monolayer reservoirs
are connected to the same layer of the flake as Fig. 1(b). To be
precise, we will assume the MG regions are fully covered by
superconductors and only the middle BG flake is in the normal
state.

We assume that the monolayer graphene regions which
are underneath the superconducting leads become supercon-
ducting due to the fact that they are heavily doped. As
a result, the Fermi wavelength λFS inside them is much
smaller than the superconducting coherence length ξ and

also the Fermi wavelength of the normal region λFN . By
this condition the mean-field theory of superconductivity
will be justified, and in addition, we can neglect the spatial
variation of the superconducting order parameter �(r) inside
the superconductors close to the normal superconducting (NS)
interfaces [31]. Thus the superconducting order parameter
has the constant values �(r) = �0e

iφL,R in the left and right
superconductor, respectively, and vanishes identically in N ,
where �0 is the amplitude of an isotropic s-wave pairing.

Similar to any other weak link, the supercurrent across
the junction is mainly carried by the discrete bound states
which are the result of closed loop motion of the quasiparticles
with subgap energies between two superconductors, known
as the Andreev bound states (ABS). One can see that it is
usually sufficient to find ABS energies in order to calculate
the supercurrent carried by them. In the short junction limit,
where the length of the junction (d) is much smaller than
the coherence length of the superconductor (ξ ), the current
established due to the phase dependence of ABS energies and
the continuous spectrum does not contribute since its density
of states is almost phase independent. The relation between
the Josephson current I passing through the junction with the
transverse width W and subgap quasiparticles (εn) at finite
temperature T is given by

I = −2eW

�

∫
dky

∑
n

tanh

[
εn(ky)

2kBT

]
dεn(ky)

dφ
. (1)

The sum is over all ABS energies, which are positive
corresponding to the different transverse momenta ky .

The ABS energies can be calculated in the framework of
Bogoliubov–de Gennes (BdG) equations which describe the
superconducting correlations between particles and their time-
reversed counterparts (holes). For this excitation, it reads [31]

(
HMG �(r)
�∗(r) −�HMG�−1

)(
ψe

ψh

)
= ε

(
ψe

ψh

)
, (2)

where HMG is the single-particle Dirac Hamiltonian of the
MG, which will be provided in the following section, and �

is the time-reversal operator. The coherence factor of the BCS
theory ψe, which consists of two components corresponding to
the two sublattices, characterizes the particle part of the total
wave function while the spinor ψh = �ψe describes the hole
part of it.

Exploiting the BdG equations, the ABS energies will be
obtained as the roots of a characteristic equation containing
the whole scattering matrix of the junction. This method
is based on the fact that the ABS can be assumed, as the
states scattered completely to themselves inside the junction.
The whole scattering matrix consists of two parts: SB , which
describes the normal scatterings of electrons and holes within
the bilayer flake, and SA, responsible for the scattering away
from the normal-superconducting (NS) interfaces. Since for
subgap energies ε < �0 there are no propagating modes in the
superconducting regions L and R, then the scattering matrix
SA can be defined with relation aB = SAbB , which relates the
outgoing to incoming quasiparticles. This matrix consists of
four blocks in electron-hole (Nambu) space corresponding to
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different processes as

SA =
(

Šee Šeh

Šhe Šhh

)
. (3)

In general, each block of the scattering matrix in Nambu space
denoted by Š has the following form:

Š =
(

r̂LL t̂LR

t̂RL r̂RR

)
, (4)

consisting of reflection r̂ and transmission t̂ matrices which
here are 2 × 2 matrices in the space of two layers. The scat-
tering matrix of the NS interfaces involves only the reflection
processes, and subsequently the corresponding normal and
Andreev reflection parts are block diagonal as follows:

Šee =
(

ŜL
ee 0
0 ŜR

ee

)
, Šeh =

(
ŜL

eh 0
0 ŜR

eh

)
. (5)

Remember that at the left and right NS interfaces, depending
on the configuration, either different layers [setup (a) in Fig. 1]
or only one of the layers [setup (b) in Fig. 1] are involved in
the reflection processes. As a result, the matrices for the two
setups are respectively obtained as

(a) :

ŜL
ee = −α(ε)τ̂u , ŜL

eh = β(ε)eiφ/2τ̂u,

ŜR
ee = α(ε)τ̂d , ŜR

eh = β(ε)e−iφ/2τ̂d , (6)

(b) :

ŜL
ee = −α(ε)τ̂u , ŜL

eh = β(ε)eiφ/2τ̂u,

ŜR
ee = α(ε)τ̂u , ŜR

eh = β(ε)e−iφ/2τ̂u, (7)

with τ̂u,d = (τ̂0 ± τ̂z)/2, in which τ̂i are the Pauli matrices
in the layer space and Šhh = −Šee, ŜL

he = exp(−iφ)ŜL
eh, ŜR

he =
exp(iφ)ŜR

eh. The normal and Andreev reflection amplitudes are
obtained for the MG-based NS interfaces from matching the
states in the N and S regions, by demanding continuity at the
boundaries (see Ref. [31]), as α(ε) = iζ sin θ/[(ε/�0) cos θ +
ζ ] and β(ε) = cos θ/[(ε/�0) cos θ + ζ ], in which ζ =√

(ε/�0)2 − 1 and θ is the incidence angle.
The scattering matrix of the normal BG region SB relates

two coefficient vectors, transmitted and reflected, as bB =
SBaB . Owing to the fact that matrix SB does not couple the
electrons and holes together, it has a block-diagonal form given
by

SB =
(

Ŝ(ε) 0
0 Ŝ∗(−ε)

)
. (8)

Here S(ε) and S∗(−ε) are the unitary and symmetric scattering
matrices governing the scattering properties of the electrons
and holes. The reflection and transmission matrices r̂ and t̂ for
the BG flake embedded between two MG are given by

(a) :

r̂LL = r11τ̂u , r̂RR = r
′
22τ̂d

t̂LR = t
′
12τ̂+ , t̂RL = t21τ̂− (9)

(b) :

r̂LL = r11τ̂u , r̂RR = r
′
11τ̂u

t̂LR = t
′
11τ̂u , t̂RL = t11τ̂u (10)

for the two different setups, respectively, with τ̂± =
(τ̂x ± iτ̂y)/2. The labels 1 and 2 denote the two layers of
the BG flake. Therefore it is clear from above relations that in
setup (b) the layer index is conserved, however, in the setup
(a), since the only way to pass through the scattering region
is via the interlayer hopping between the two layers where it
is not conserved anymore. Transmission tij and reflection rij

amplitudes can be obtained by matching the wave functions at
the ML/BL boundaries. In order to complete the construction
of the layer-resolved scattering matrix, the excitation spectrum
of BG as well as MG and their wave functions as the scattering
basis are needed.

The low-energy Hamiltonian of the BG flake in the
presence of layer asymmetry due to the bias voltage applied
perpendicularly and in the vicinity of nonequivalent corners
of Brillouin zone K and K ′ is given by

HBG =

⎛
⎜⎜⎝

−μ + V
2 vF p− t⊥ 0

vF p+ −μ + V
2 0 0

t⊥ 0 −μ − V
2 vF p+

0 0 vF p− −μ − V
2

⎞
⎟⎟⎠,

(11)

in the layer and sublattice spaces, with eigenfunctions of
the form �

†
p = (cA1,p,cB1,p,cB2,p,cA2,p). Here p± = px ± ipy

and p = (px,py) is the two-dimensional momentum measured
relative to the K point, vF ≈ 106m/s is the Fermi velocity
within a monolayer, and μ is the chemical potential. The
nearest-neighbor atoms in two layers A1 and B2 are connected
by an interlayer hopping term t⊥ � 0.3ev, which tends to
equalize the charge densities in the two layers. The potential
difference between the two layers is involved by the parameter
V , which opens a gap in the spectrum, in contrast to the case of
a gapless spectrum with V = 0. The vertical bias through the
BG also works against the interlayer hopping since it generates
charge imbalance between the two layers. Taking a plane-wave
basis, for the excitation spectrum of the Hamiltonian we end
up with four energy bands given by

(εBG + μ)2 = (vF p)2 + (V 2/4) + (t2
⊥/2)

±
√

(t2
⊥/2)2 + (vF p)2(V 2 + t2

⊥), (12)

and the corresponding eigenvector reads

�†
p = A

(
γ− vF p+ η

η

γ+
vF p−

)
, (13)

where η = [γ 2
− − (vF p)2]/t⊥ with γ± = εBG +

μ ± V/2 and the normalization factor is A =
[4vF px(γ− − (εBG + μ)V η/γ+)]−1/2.

In order to find the scattering matrix SB we need the
eigenfunctions inside the left and right MG regions which
are immediately coupled to the superconductors. The wave
functions are represented in the space of two sublattices as
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�
†
k = (cA1,k,cB1,k), and the two-dimensional Dirac Hamilto-

nian around K and K ′ points reads

HMG =
(

μ′ vF (kx − iky)
vF (kx + iky) μ′

)
. (14)

Here the two-dimensional momentum is k = (kx,ky) and μ′
is the chemical potential in the MG so that the excitation
energy given by εMG = μ′ ± vF k is measured with respect to
the Fermi energy in MG. The corresponding eigenvectors are

�
†
k,ξ = (2 cos θ )−1/2(1 eiθ ), (15)

with ξ = L,R and θ = arctan(ky/kx). Since the eigenvectors
will be utilized as the scattering basis, they need to be
normalized in such a way that each state carries the same
amount of quasiparticle current density.

We are now in a position to write down the wave functions
in the left, middle, and right region as a linear superposition
of constructed scattering basis equations (13) and (15):

�L = �+
k,Lei(kxx+kyy) + r�−

k,Lei(−kxx+kyy),

�B = a�+
p,1e

i(p1xx+kyy) + b�+
p,2e

i(p2xx+kyy)

+ c�−
p,1e

i(−p1xx+kyy) + d�−
p,2e

i(−p2xx+kyy), (16)

�R = t�+
k,Rei(kx (x−d)+kyy),

where +(−) denotes the right (left) moving quasiparticles
with r and t being the reflection and transmission amplitudes,
respectively. Scattering coefficients can be computed by
solving the linear system constructed from the matching
boundary conditions at the interfaces and subsequently will be
used to find the transport properties across the junction. Thus
we need to provide the appropriate boundary conditions at the
boundaries x = 0 and x = d. The MGs can be attached either
to the same layer of BG or to the different layers. We assume
the zigzag boundary conditions at the ML/BL interfaces. The
boundary conditions at the left interface x = 0 are

�L(x = 0)
∣∣
A1 = �B(x = 0)

∣∣
A1

,

�L(x = 0)
∣∣
B1 = �B(x = 0)

∣∣
B1

, (17)

�B(x = 0)|A2
= 0,

and for the setup (b) they will be similar at the right
interface as well. However, considering the top layer as the
connecting layer between the right lead and the scattering
region [setup (a)], at the right interface x = d we must have

�R(x = d)
∣∣
A2 = �B(x = d)

∣∣
A2

,

�R(x = d)
∣∣
B2 = �B(x = d)

∣∣
B2

, (18)

�B(x = d)|B1
= 0.

Having both scattering matrices SA and SB, the general
condition for bound states aB = SASBaB implies that det
(1 − SASB) = 0. Subsequently, from Eqs. (3) and (8) we find
the following characteristic equation for the ABS energies:

det{1 − Šee[Ŝ(ε) − Ŝ∗(−ε)] − ŠeeŜ(ε)ŠeeŜ∗(−ε)

−[1 − ŠeeŜ(ε)]ŠheŜ(ε)[1 − ŠeeŜ(ε)]−1ŠehŜ∗(−ε)} = 0,

(19)
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FIG. 2. (Color online) The current-phase relation I (φ)/I0(T ) in
the short junctions made of undoped BG flakes are shown at zero
temperature (T = 0), varying the scaled bias voltage V0/�0 for the
first setup in (a) and for the second one in (b). The length of the
junction is fixed at d/l⊥ = 4.

which can be used to find the Josephson current across the
junction given by Eq. (1).

III. RESULTS AND DISCUSSION

Here the numerical results for the Josephson current
passing through BG flakes between ML regions contacted by
superconductors are presented. First we assume the undoped
BG with μ = 0 and study the current phase relation (CPR) by
varying the vertical bias. We denote the Fermi wave vector
inside the monolayer regions which are connected to the
superconductors with kF and define l⊥ = �vF /t⊥, which is
a length scale over which the excitations traveling in the two
layers of the BG are coupled. Figure 2 shows the supercurrent
variations I (φ) scaled by I0(T ) = 4e�(T )WkF /� for the two
different setups when the junction length is d/l⊥ = 4 and at
the zero temperature T = 0. We see that in the absence of
vertical bias V0 the setup (a) is in the so-called π state with
I (φ)/I0 ∼ sin(π + φ) while the other is in a 0 state, revealing
a CPR of the form I (φ)/I0 ∼ sin φ. Very intriguingly, when
the vertical bias is applied the first setup can pass a 0 − π

transition when V0 ∼ 1.5�0, as we see in Fig. 2(a). How-
ever, the second setup remains always in the 0 state, and
increasing the vertical bias only suppresses the current.
Moreover, we note that the amplitude of current in two cases
is very different, and for the considered parameters, setup (b)
has almost 3 orders of magnitude larger supercurrent.

It is worth noting that the main difference between two
setups is the role of interlayer hopping t⊥ in their transport
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FIG. 3. (Color online) Critical current Ic/I0 as a function of
normalized temperature T/Tc depicted versus different values of
scaled bias voltage V0/t⊥, shifted on the z axis, for setup (a). The
dimensionless length of the junction is fixed at d/l⊥ = 4. The cusp in
the curves represents the π − 0 transition where the critical current
vanishes.

properties even in a normal (nonsuperconducting) state. In
setup (a) t⊥ plays a significant and constructive role by
facilitating the pathway through the flake, and one expects that
if we could switch it off the current would vanish and transport
through the BG regions is not possible. This could explain why
the supercurrent in device (a) is much smaller than device (b),
since the electrons must change the layer and enter another
transport channel. However, in setup (b) the interlayer hopping
acts only as a barrier for the movement of quasiparticles, and
it somehow provides a resistance against transmission through
the scattering region. In fact, in this case only the bottom
ML is responsible for the transport, and consequently, varying
none of the parameters, such as vertical bias, temperature,
and doping, leads to a qualitative change in the supercurrent
behavior and 0 − π transitions cannot take place. In other
words, the upper layer of the flake only introduces an extra
channel for scattering off the bottom layer, which slightly
suppresses the electron transport through the system. When V0

is absent, device (b) shows large transmission probabilities and
as a result, the CPR is strongly nonsinusoidal, while increasing
the vertical bias, which opens a gap in the band structure, leads
to a decline in the supercurrent and CPR becomes closer to
sinusoidal behavior.

In the remainder we will concentrate on the first device
to understand the underlying physics of supercurrent reversal
and 0 − π transitions which can occur by varying V0 and
μ of the BG flake, as well as temperature and the junction
length when either V0 or μ have a finite value. We present the
dependence of the critical current Ic/I0 on the temperature,
varying the vertical bias scaled by the superconducting gap
V0/�0 in Fig. 3. When no vertical bias voltage is applied, the
junction remains always in π state for all temperatures below
the critical temperature T < Tc. Nevertheless, applying V0 the
supercurrent as a function of T/Tc shows one cusp, indicating

a π -to-0 transition. Moreover, the position of the cusps varies
with V0, and after V0 ∼ 1.5�0 the junction will be completely
in 0 state, irrespective of the temperature variations. As one
can see from Fig. 3, while at small values of vertical bias
the critical current shows an overall decline, when it enters
the 0 state for a wide range of temperatures, Ic can even
increase with T .

In order to understand above-mentioned features, especially
the mechanism of supercurrent reversal, we use the intuition
based on the scattering matrix for the normal transport
governed by SB , which contains the properties of the BG flake
contacted by MG regions. We have already discussed that
the transmission through junction (a) is very small, and subse-
quently, the Andreev bound states are formed from single scat-
terings from the junction and the multiple scattering processes
are strongly suppressed. Upon the electron-hole conversion or
vice versa, at the NS interfaces the quasiparticles acquire an
energy-dependent Andreev phase beside the superconducting
phase ±φ/2. Moreover, the excitations passing between two
interfaces may find an extra phase shift γsc, corresponding
to the phase factors of the transmission coefficients t ′12 and t21

defined by t = |t | exp(γsc). Therefore one can convince oneself
that the phase accumulated in the excitations during scattering
γsc is added to the superconducting phase difference, which
leads to a shift in the φ dependence of the ABS energies. The
occurrence of a π state for the device (a) when μ = V0 = 0
signals that there must be some phase shift of amount π

originating from γsc, while in the other setup there is no phase
shift. The phase γsc in setup (a), in fact, originates from the
transmission between lower and upper layers of the BG flake
accompanied with the change of sublattice index A1 → B2. To
understand its root, let us have a look at the Hamiltonian (11)
in which the two Dirac blocks, corresponding to the two MLs
constructing the bilayer, differ with each other. The difference
comes from the fact that we have AB stacking and the upper
layer is π/3 rotated with respect to the lower. Subsequently,
the wave-function spinor structures in two layers are not the
same, which leads to the emergence of an extra phase γsc

when the electrons need to pass from the lower to the upper
layer. At this point one may wonder how the two setups
become different, since in both of them the excitations undergo
transitions between the layers several times depending on the
length d. But as one can immediately see from Fig. 1 in the se-
cond setup, since at the end quasiparticles again leave the flake
to the lower ML and we have the same number of passings
from lower to the upper and vice versa, there will be no net
phase accumulated in the transmission coefficients. On the
other hand, in setup (a) there is always one more transition
from the lower to the upper layer and the scattered excitations
from the junction will have a net phase factor. It must be
mentioned that γsc generally depends on the angle of incidence
of the particles, as well as the doping μ and bias V0. Thus in
the absence of the bias and doping, the two setups are in π and
0 states, respectively, as the overall effect of scattering phases
γsc. Note that if we had an AA stacked bilayer flake even in
the first setup no phase factor appears due to the transition
between the layers and subsequently the junction will be in
the 0 state.

We have already seen that when a vertical bias is applied,
the junction undergoes a π -to-0 transition, which is clear
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FIG. 4. (Color online) Critical current Ic/I0 versus normalized
temperature T/Tc and the normalized length of the junction d/l⊥ are
plotted for scaled bias values [0.6, 0.9, 1.2]. Two different states are
labeled by π and 0.

from both Figs. 2 and 3. Until now we have considered a
junction with fixed length d/l⊥ ∼ 4, but if we increase the
length as shown in Fig. 4, the Josephson current changes to a
0 state in a certain length which depends on the strength of the
vertical bias and the temperature. Moreover, at the higher V0

the domain of the π junction versus T/Tc and d/l⊥ shrinks
and becomes smaller. The bias-induced transition originates
from the dependence of the scattering phase γsc to V0. In
fact, application of the bias between the layers leads to an
asymmetry which influences the scattering processes and the
phase of the different modes’ transmission coefficients such
that after a certain value of the vertical bias, depending on the
length, the junction becomes 0 type. It must be noted that when
the vertical bias voltage goes beyond the superconducting gap,
the excitations carrying the supercurrent become evanescent
due to the gap formation in the spectrum of the BG flake.

The effect of doping is somehow similar to the application
of V0 and leads to the π − 0 transitions, as indicated in
Fig. 5. For small values of bias and doping in comparison
with the superconducting gap, the junction remains in the π

state, while when either μ or V0 proceed well above �0, the
supercurrent shows a 0 behavior. In this state the critical current
becomes larger upon increasing any of them. We can relate the
transition with μ to the fact that by increasing the doping, more
modes with different incidence angles participate effectively in
transport and therefore their scattering phases γsc are washed
out. This causes the junction to enter a 0 state but due to a
mechanism different from the bias-induced 0 state.

We now comment on the possible experimental realization
of the device under consideration and the predicted results. As
mentioned in the Introduction, the steplike ML/BL interfaces
and bilayer flakes connected to monolayer regions have already
been observed and some transport experiments have been
done based on them. On the other hand, there are many
experiments on the superconducting proximity effect and
Josephson junctions based on graphene. So it seems that
the device we propose here is completely reliable in the
current experimental setups and the supercurrent reversal can

FIG. 5. (Color online) Critical current Ic/I0 as a function of
scaled doping of the BG flake μ/�0 is demonstrated versus different
values of scaled bias voltage V0/t⊥, shifted on the z axis, for setup
(a) at zero temperature T = 0. The dimensionless length of the
junction is d/l⊥ = 4. The cusp in the curves indicates the π − 0
transition.

be investigated in them by applying the vertical bias voltage,
changing the doping and even the temperature.

Another point we should discuss is regarding the validity
of the present model beyond the approximation schemes that
are used here. As discussed by Brey and Fertig, the continuum
model based on the Dirac Hamiltonian for the nanoribbons of
graphene has very good agreement with those obtained from
the full tight-binding model, provided by the proper boundary
conditions imposed to the continuous model [59]. Prior works
on the BG flakes have proven the validity of continuum models,
even for very short flakes of the order of a few nanometers
[17–19]. Moreover, it must be noted that here we are consider-
ing flakes which are very wide, and their typical length is large
in comparison with the effective length scale l⊥ ∼ 1 nm. On
the other hand, one may wonder about the effect of additional
hopping terms in Eq. (11), like the interlayer coupling between
the nondimer B and A sites, denoted by γ3, on the results. It
is known that such additional hoppings influence only the
very-low-energy excitations and therefore do not affect the
eigenstates and the corresponding pseudospins at sufficiently
large energies [60,61]. As a result, when either the gap induced
by the vertical bias or the doping is finite, the effect of
γ3 that leads to the trigonal warping is ignorable [62,63].
Although it may cause a small variation in the results, the
qualitative behavior of the 0 − π transition which originates
from the scattering phase γsc will be robust against the
inclusion of higher-order hopping terms. Finally, we should
emphasize that even without a self-consistent solution for
the superconducting gap, the calculated Josephson currents
are correct both qualitatively and quantitatively, whereas the
superconducting gap is not affected by the low-doped normal
region via an inverse proximity effect, which become even
weaker in the short junction limit.

We close this discussion by comparing the 0 − π transition
in our model and the conventional SFS type of junctions. The
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predicted transition between 0 and π phases of the junction is
always a single oscillation, as indicated in Fig. 5, in contrast
to the conventional 0 − π transitions in ferromagnetic-based
junctions in which the critical current undergoes a series of
oscillations as the signature of transitions. More importantly,
the supercurrent reversal here has an entirely different origin
compared to the conventional ferromagnetic Josephson junc-
tions, where the spin degree of freedom plays the key role
in several aspects. We argue that the scattering processes,
accompanied by layer and sublattice index change, give rise to
the phase γsc which is responsible for the supercurrent reversal,
while in the SFS junctions the underlying mechanism is related
to the spin splitting of Andreev bound states. Thus the origin
of transitions in the two cases are very different, without any
correlation between them.

IV. CONCLUSION

In this paper we employ scattering theory to study the
supercurrent flowing through a weak link containing a biased
BG flake embedded between two MG-based superconducting
reservoirs. We investigate two possible configurations for the
setup regarding how the BG flake is attached to the MG regions
in the left and right. The reservoirs are connected either to
different layers of the BG flake or to the same layer of the

BG. The supercurrent passing through the undoped BG flake
in the first situation is in the π state while the other shows a
0 behavior in the absence of the bias voltage (V0 = 0). Both
states are robust against varying the length of the junction
d as well as the temperature T as long as μ = V0 = 0. We
argue that the underlying mechanism of supercurrent reversal,
characterized by the cusp in the critical current curves in the
first setup, is related to the scattering phases accumulated in
excitations upon transmission through the junction. We reveal
that the biased BG flake in the second setup remains always
in 0 state and increasing the vertical bias only suppresses the
current. Nevertheless, the biased junction in the first setup
undergoes a π − 0 transition at zero doping, provided by a
finite value of V0 depending on the length. Increasing the
doping causes π − 0 transitions as well, so that the junction is
in π state as long as μ and V0 are small.
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