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Temperature-tunable semiconductor metamaterial
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We propose a class of temperature-tunable semiconductor metamaterials for terahertz applications. These
metamaterials are based on doped semiconductor superlattices with ultrathin barriers of about 1 nm thickness. Due
to the tunnel transparency of the barriers, layers of the superlattice cannot be considered as isolated and, therefore,
the classical homogenization approach is inapplicable. We develop a theory of quantum homogenization which is
based on the Kubo formula for conductivity. The proposed approach takes into account the wave functions of the
carriers, their distribution function, and energy spectrum. We show that the components of the dielectric tensor
of the semiconductor metamaterial can be efficiently manipulated by external temperature and a topological
transition from the dielectric to hyperbolic regime of metamaterial can be observed at room temperature. Using
a GaAs/Al0.3Ga0.7As superlattice slab as an example, we provide a numerical simulation of an experiment which
shows that the topological transition can be observed in the reflectance spectrum from the slab.
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I. INTRODUCTION

Hyperbolic metamaterials (HMMs) are one of the fastest
developing branches of modern optics [1–6]. The dielectric
function of HMMs is described by a tensor with two different
components corresponding to the directions along (ε‖) and
across (ε⊥) the optical axis:

ε =
⎛
⎝ε⊥ 0 0

0 ε⊥ 0
0 0 ε‖

⎞
⎠. (1)

Depending on the sign of these components, the crystal
represents a dielectric medium (ε⊥ > 0, ε‖ > 0), a metal
(ε⊥ < 0, ε‖ < 0), or a hyperbolic metamaterial (ε⊥ε‖ < 0).
For HMMs the shape of equal-frequency surface in k space
represents a one- or two-sheet hyperboloid depending on the
signature of permittivity tensor [5]. This results in a singularity
of the photon density of states and explains the unique optical
properties of HMMs [7].

In tunable metamaterials, the dielectric and magnetic
responses and, therefore, the shape of equal-frequency surface
can be manipulated by various external influences [8], for
example, by temperature [9–11] or gate voltage [12]. In
highly tunable metamaterials, the signature of the permit-
tivity tensor can be switched, changing the equal-frequency
surface topology. This phenomenon is called topological
transition [9,13,14]. It has been experimentally observed in
some systems [9,15].

Fabrication of tunable THz metamaterials is an impor-
tant problem because of numerous potential applications in
far-field subwavelength imaging [16], enhanced nonlineari-
ties [17], nanoscale wave guiding, and strong light confine-
ment [18]. Some realizations of tunable THz metamaterials
were presented, for example, in Refs. [19,20]. The majority of

*ki.koshelev@gmail.com
†bogdanov@ioffe.mail.ru

them represent an array of resonators whose capacity and/or
inductivity is changed by external influences [19].

Here we propose a new concept of an ultrahomogeneous
temperature tunable metamaterial based on a semiconductor
superlattice for THz applications. Here, the term ultrahomoge-
neous implies that the superlattice consists of coupled quantum
wells separated by thin (∼1 nm) tunnel-transparent barriers.
Superlattices with layers of such a thickness are possible to
fabricate with various semiconductor materials, for example,
GaInAs/AlInAs [21], GaAs/AlGaAs [22], GaSb/AlGaSb [23],
and Si/GeSi [24]. Particularly, such structures are used in
quantum cascade lasers [21].

In the case of a superlattice with thin barriers, in contrast
to thick ones considered, e.g., in Refs. [25,26], electron wave
functions are spread over many periods of the structure because
of the tunnel transparency of the barriers. Hence, quantum
effects are particularly relevant and, therefore, it is incorrect
to describe the dielectric function of each layer separately and
then apply the homogenization procedure. Therefore, another
approach, which takes into account the wave functions of the
carriers, their energy spectrum modified by the superlattice
potential and the carrier distribution function, should be
used. The proper approximation (quantum homogenization)
is discussed in the next section.

It has been shown that highly doped semiconductor su-
perlattices can exhibit properties of a hyperbolic medium at
infrared frequencies [26–29]. The frequency range of the hy-
perbolic regime is defined by plasma frequency, which depends
on the free carrier concentration. Free carrier concentration in
semiconductors is extremely sensitive to the temperature, in
contrast to dielectrics and metals. For example, in the vicinity
of the donor activation temperature, it can change by several
orders [30]. We have shown that high temperature sensitivity
of plasma frequency in a semiconductor metamaterial can be
exploited for the efficient tuning of the metamaterial’s optical
properties in the THz region and stimulation of the topological
transition from the dielectric to hyperbolic regime.

The paper is organized as follows. In Sec. II we develop a
quantum homogenization theory and derive the main equations
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for the effective permittivity tensor. In Secs. III and IV, we
analyze the band structure and effective dielectric function
of a Te-doped GaAs/Al0.3Ga0.7As superlattice depending on
the temperature and frequency of the electromagnetic field.
In Sec. V, numerical simulation of an experiment on the
measurement of the reflectance spectrum from the superlattice
slab is performed. In Sec. VI we discuss a figure of merit and
tunability of semiconductor metamaterials. Finally, in Sec. VII
we summarize our major results.

II. MODEL

A. Quantum homogenization

The homogenization problem has a long history [31,32] but
it is still being discussed today [33–36]. Here we extend the
classical homogenization theory of multilayer structures to the
case of tunnel transparent layers.

Within the effective medium approximation, a multilayered
structure with layer permittivities εi and layer thicknesses di

can be considered as a uniaxial optical crystal with permittivity
tensor (1) whose principle components are determined as

1

ε‖
= 1

d

∑
i

di

εi

, ε⊥ = 1

d

∑
i

diεi, d =
∑

i

di . (2)

As we have mentioned in the Introduction, these formulas are
inapplicable when the thickness of the layers is comparable
with electron wavelength and, therefore, quantum mechanics
laws become relevant. We consider a more accurate approach
based on the Kubo formula [37]. It takes into account the
distribution function of the carriers, their wave functions, and
spectrum modified by the superlattice potential:

εα(ω) = ε∞
α

(
1 − �2

α

ω(ω + iγ )

)
+ 4πi

ω
σα(ω). (3)

Here and in what follows, the index α = ‖,⊥ corresponds
to the directions along and across the optical axis of the
metamaterial. Parameter ε∞

α is a permittivity of the lattice

without free carriers, and γ is the inverse momentum relaxation
time of the carriers which is supposed to be isotropic for
simplicity.

The first term interprets the classical Drude-Lorentz for-
mula. One can see that implementation of a superlattice in
a semiconductor makes its plasma frequency anisotropic and
we can distinguish plasma frequencies along (�‖) and across
(�⊥) the optical axis:

�2
α = 4πe2

ε∞
2

(2π�)3

∑
i

∫∫∫
f (E,μ,T )

∂2Ei

∂p2
α

d3p. (4)

Here Ei is the carrier energy in the ith miniband which
depends on the momentum p, f (E,μ,T ) is the Fermi-Dirac
distribution function, μ is the chemical potential, and T is
the temperature. The sum is over all the minibands. Here we
neglect hole contribution into the plasma frequency because we
will consider n-doped semiconductor structures. Equation (4)
is similar to the classical definition of plasma frequency:

�2 = 4πne2

ε∞m∗ . (5)

Indeed, the difference between Eq. (4) and Eq. (5) is that in
Eq. (4) we just average the inverse effective anisotropic mass
1/m∗

⊥,‖ = ∂2E/∂p2
⊥,‖ with distribution function f (E,μ,T ).

The second term in Eq. (3) describes interband transitions:

σα = 2i

(2π�)3

∑
i,j

∫∫∫
f (Ei) − f (Ej )

ωij − ω + iγ

∣∣Ĵ ij
α

∣∣2

�ωji

d3p. (6)

Here Ĵ
ij
α = 〈i,p| Ĵα |j,p〉 is the matrix element of the

current operator Ĵα between the unperturbed eigenstates of
the superlattice and �ωij = Ei − Ej .

In order to calculate �⊥ and �‖ we need to determine the
energy spectrum Ei(p) and the chemical potential μ.
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FIG. 1. (Color online) (a) Conduction band profile of the n-doped superlattice. Blue shaded areas represent the energy of the minibands.
The green shaded area corresponds to the donor band. Thicknesses of the well and the barrier are denoted as d1 and d2, respectively; V is the
height of the barrier; and g(E) is a donor distribution function with standard deviation 
 and a maximum at Ed. (b) Electron energy dispersion
in the GaAs/Al0.3Ga0.7As superlattice with the following parameters: d1 = 10 nm, d2 = 1 nm, V = 0.26 eV.
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B. Energy spectrum of carriers

Let us consider a periodic semiconductor superlattice with
period d consisting of a quantum well with thickness d1 and
a barrier with thickness d2 and height V [Fig. 1(a)]. Effective
masses in the well and barrier we put equal to m1 and m2,
respectively.

The total energy of an electron in a superlattice can be
represented as the sum of two terms which correspond to
electron motion across and along the optical axis:

Ei(p) = p2
⊥

2m∗
⊥

+ Ei(p‖). (7)

Here m∗
⊥ is the effective mass of electrons in the direction

across the optical axis. We take it equal to the effective electron
mass in a bulk material. The second term of the right-hand side
describes energy dispersion of electrons in the ith miniband.
It can be found from the dispersion equation

cos(p‖d/�) = cos(p1d1/�) cos(p2d2/�) − 1

2
sin(p1d1/�)

× sin(p2d2/�)

(
p1m2

p2m1
+ p2m1

p1m2

)
, (8)

where p1 = √
2m1E(p‖), p2 = √

2m2[E(p‖) − V ]. This dis-
persion equation can be obtained from the Schrödinger
equation using Floquet’s theorem.

C. Chemical potential

Efficient temperature manipulation of free carrier con-
centration can be realized in narrow-gap or in doped semi-
conductor structures. Temperature tuning in metamaterials
based on narrow-gap semiconductors was partially analyzed in
Ref. [38]. Here we consider the case of doped semiconductor
structures on the example of a superlattice with quantum wells
uniformly doped with shallow donors.

In highly doped structures, wave functions of neighbor
donors can overlap. This results in a shift of donor levels
and formation of a donor band. In the case of a considerable
shift, the donor band can overlap with the conduction band.
This phenomenon is called the Mott transition and will be
discussed further.

The chemical potential μ can be calculated from the
electroneutrality condition [30]. It states that free carrier
concentration is equal to the concentration of ionized donors:

∑
i

∫
f (p,μ,T )

2d3p

(2π�)3
= nd

∫
g(E)dE

2e(μ−E)/(kT ) + 1
. (9)

Here nd is the full donor concentration, and g(E) is a
donor distribution function which can be approximated by
a Gaussian [39] with standard deviation 
 and maximum at
Ed [40].

III. BAND STRUCTURE OF THE SUPERLATTICE

The model described above is applicable for superlattices
of various compounds and designs. As an example, let us
consider a superlattice that consists of GaAs quantum wells
and Al0.3Ga0.7As barriers. Thickness of the quantum well d1

and the barrier d2 we put equal to 10 and 1 nm, respectively.

We consider the high frequency permittivity in Eq. (3) to be
isotropic (ε∞

‖ = ε∞
⊥ ) and put it equal to 11 [41]. In-plane

electron effective mass m∗
⊥ we put equal to 0.067 times the

free-electron mass. The calculated band structure and electron
dispersion are shown in Fig. 1(b). We consider that quantum
wells are uniformly doped with Te donors with concentration
nd = 1 × 1018 cm−3. The energies of Te donors in bulk GaAs
and in the superlattice are slightly different due to quantum
confinement that arises from the superlattice potential. We
neglect this difference and put Ed = 0.03 eV as in a bulk
material [30]. The standard deviation of the donor distribution
function 
 for such a doping level is about several hundredths
of an electron volt. In the structure under consideration we put

 = 0.03 eV, which is in accordance with Refs. [40,42].

The width of the first miniband is about several hundredths
of an electron volt, which is comparable with the gap between
the minibands. So, both weak-coupling and tight-binding
approximations are poorly applicable for the structure under
consideration.

For the chosen parameters, the overlap of donor miniband
and first miniband is approximately equal to 0.01 eV. This
means that even at zero temperature there are free carriers in
the conduction band and their Fermi energy is about 0.01 eV.
This corresponds to a concentration of about 1016 cm−3. A
simple estimation of plasma frequency using Eq. (5) yields
�/(2π ) ∼ 1 THz.

IV. EFFECTIVE DIELECTRIC FUNCTION OF THE
SUPERLATTICE

We calculate the frequency and temperature dependencies
of the permittivity tensor components using the quantum ho-
mogenization approach [Eq. (4)]. The frequency dependence
of ε⊥ and ε‖ at room temperature is shown in Fig. 2(a). The
average energy between minibands and, therefore, frequencies
of interband transitions are about 0.05 eV [Fig. 1(a)], which
corresponds to a frequency of 10 THz. So, the contribution
of interband transition into the dielectric function [second
term in Eq. (3)] can be neglected at frequencies of 1 THz
without any considerable precision losses. Thus, quantum
homogenization predicts that, beyond the interband transition,
the tensor components of a superlattice with thin layers can
be described within the classical Drude-Lorentz formula with
plasma frequency described by Eq. (4).

These results qualitatively differ from effective parameters
obtained within the classical homogenization procedure which
predicts a resonance behavior of ε‖ at a nonzero frequency.
There is no contradiction here. Classical homogenization
implies that all layers are isolated from each other and that the
carriers do not move from one layer into a neighboring one.
Qualitatively it is equivalent to the restoring force that obstructs
the carrier transport. This force results in an appearance of the
resonance in ε‖. Quantum homogenization implies that the
barriers are tunnel transparent and charges can move freely
throughout the whole volume of the sample. Therefore, the
dielectric function ε‖ is similar to that of a metal but takes into
account interband transitions.

Homogenization theory developed here is applicable when
the barriers are tunnel transparent. Condition of tunnel
transparency and, therefore, application limit can be roughly
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FIG. 2. (Color online) (a) Frequency dependence of the real part of the dielectric function along (blue line) and across (black line) the
optical axis. Temperature T = 300 K. (b) Temperature dependence of the real part of the dielectric function along (blue line) and across (black
line) the optical axis. Permittivity of the media without free carriers ε∞ is shown by the dashed line. Frequency ω/2π = 3 THz.

estimated as

d2 <

(
�

2

2m∗
⊥V

)1/2

. (10)

This condition means that barrier thickness d2 should be less
than the penetration depth of the electron wave function into
the barrier. For the structure under consideration, Eq. (10)
yields d2 � 2 nm. For narrow-band semiconductors (e.g., InAs
or InSb) with barrier height V ∼ 0.1 eV Eq. (10) yields d2 � 5
nm.

One can see from Fig. 2(a) that there are three frequency
regions which correspond to different forms of the equal-
frequency surfaces in k space: (i) at frequencies ω/2π > 4.1
THz the material behaves like a dielectric; (ii) at frequencies
2.2 THz < ω/2π < 4.1 THz the form of the equal-frequency
surface is a hyperboloid and the material exhibits optical
properties of HMM; (iii) at ω/2π < 2.2 THz electromagnetic
waves decay exponentially into the medium, similar to the
behavior in a metal.

The temperature dependence of ε⊥ and ε‖ at a frequency
of 3 THz is shown in Fig. 2(b). One can see that the
material behaves as a dielectric, HMM, or a metal depending
on the temperature. Dielectric dispersion can be realized at
the temperature of liquid nitrogen; the hyperbolic regime is
achieved at room temperature. Thus, a topological transition
for THz radiation can be realized at temperatures reasonable
for an experiment.

The temperature dependence of the permittivity tensor
components is weak at low temperatures. This is explained by
the fact that the main parts of the donor levels are noticeably
separated from the conduction band bottom, thus the activation
of electrons on such levels occurs at temperature kT ∼ Ed. At
higher temperatures when all donors are ionized, the dielectric
functions ε⊥ and ε‖ tend to constant values. In our case it
occurs at temperatures much higher than the melting point of
GaAs which is 1511 K [41].

Figure 3 represents a topological phase state diagram. Solid
lines show the temperature dependence of the longitudinal �‖
and transversal �⊥ plasma frequencies. These lines divide the
plane of the figure into three regions. It follows from Eq. (3)
that every region corresponds to one of the possible regimes:

dielectric, metal, or hyperbolic. The shapes of equal-frequency
surfaces corresponding to each regime are shown in the insets
of Fig. 3.

One can see that plasma frequencies �‖ and �⊥ are not
equal to zero at low temperatures. This is explained by the
overlapping of the donor and first minibands, the so-called
Mott transition [43]. A part of the carriers does not freeze-out
at low temperatures and makes a contribution into the plasma
frequencies.

V. SIMULATION OF EXPERIMENT

The efficiency of temperature tuning and the presence
of a topological transition in a metamaterial based on a
semiconductor superlattice can be confirmed experimentally
by the measurement of a reflectance spectrum from the
metamaterial. Here we provide a numerical simulation of a
possible experiment. Calculations of the reflectance spectrum
were performed by using a transfer matrix technique and
the Fresnel equations for the interface between uniaxial and
isotropic materials.

ε
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ε
ε

εε

ω
/2

π 
(T

Hz
)

Temperature (K)

λ 
( μ

m
)

FIG. 3. (Color online) Temperature dependence of plasma fre-
quency along the optical axis (blue line) and across the optical axis
(black line). Insets show the shape of equal-frequency surfaces in the
dielectric and hyperbolic regimes.
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FIG. 4. (Color online) Frequency dependence of reflectance at
three different temperatures. The inset shows the relative orientation
of the dielectric function (ε⊥ and ε‖), the electric-field vector
(transverse magnetic), the layered structure, and a spherical prism
with permittivity εp = 16. Angle of incidence is β = 60 ◦.

The scheme of the experiment is shown in the inset of Fig. 4.
A plane electromagnetic wave of TM polarization is supposed
to be incident at the angle β on the 10 μm GaAs/Al0.3Ga0.7As
superlattice grown on an undoped GaAs substrate. The inverse
momentum relaxation time of electrons in the superlattice
γ [see Eq. (3)] we put equal to 1 × 1012 s−1. For the sake
of simplicity, we neglect the temperature dependence of γ .
In order to get efficient excitation of the optical states with
high wave vectors we suppose that the wave incident on the
sample passes through an undoped Ge spherical prism with
permittivity εp = 16.

The frequency dependence of the reflectance for different
temperatures at fixed angle of incidence β = 60 ◦ is shown
in Fig. 4. Each curve has several minima corresponding
to excitation of eigenmodes of the slab. Minimum at low
frequency corresponds to excitation of surface plasmon po-
lariton (SPP) when the superlattice exhibits properties of a
metal. One can see that SPP excitation becomes weaker with
temperature and it is nearly lacking at 500 K. Such a behavior
is explained by the nonresonant nature of SPP excitation
in the proposed geometry (see inset in Fig. 4) in contrast
to the geometries analyzed in Ref. [44] where excitation is
resonant. Increasing of temperature results in increasing of
SPP resonance quality [45] and weakening of the coupling
between incident wave and SPP.

The minima at higher frequencies correspond to the excita-
tion of multiple Langmuir modes (bulk plasmons) intrinsic
to hyperbolic metamaterials [4,46,47]. One can see that
resonances corresponding to the Langmuir modes are highly
tunable with temperature. For example, main resonance shows
blueshift about 2 THz as temperature increases from 150 to
500 K. The same temperature increasing results in increasing
of the reflection coefficient from 0.4 to 0.9.

A more full and illustrative picture can be obtained by
measuring of the reflection coefficient map—its dependence
on both incident angle β and frequency ω (Fig. 5). A com-
parison of the reflection coefficient map with the numerically
calculated dispersion of eigenmodes (white lines in Fig. 5)
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FIG. 5. (Color online) Simulation of reflectance spectrum from a
10 μm GaAs/Al0.3Ga0.7As superlattice for different incident angles
β. Incident wave has TM polarization. Parameters of the superlattice
are mentioned in Sec. III. Temperature takes values equal to 150, 300,
and 500 K. Inverse momentum relaxation time is γ = 1 × 1012 s−1.
The green dashed line corresponds to the Brewster’s angle which
is determined by Eq. (11). White solid lines show the dispersion of
waveguide modes. The frequency interval between black dashed lines
corresponds to the hyperbolic regime of metamaterial.

confirms excitation of SPP in the metallic regime, Langmuir
modes in the hyperbolic, and waveguide mode in the dielectric.
The boundary of the hyperbolic regime can be determined
from the reflection coefficient map. The lower boundary
corresponds to the frequency cutoff of the Langmuir modes
and the upper boundary corresponds to the drastic change
of reflection coefficient at normal incidence. In the dielectric
regime, at angles less than the critical angle, weak excitation
of the waveguide mode is observed.

The boundaries are shown in Fig. 5 by black dashed lines.
Boundary positions are in a good agreement with results shown
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in Fig. 3. Increasing loss γ results in smearing of the hyperbolic
regime boundaries.

One can see that the frequency range of the hyperbolic
regime exhibits blueshift and becomes wider. So, increasing
the temperature from 150 to 300 K results in blueshift of the
lower and upper boundaries of the hyperbolic regime from
2.0 and 3 THz [Fig. 5(a)] to 3.2 and 5.8 THz [Fig. 5(c)]. If
the frequency range of the hyperbolic regime is wide enough,
several Langmuir modes can be distinguished in the reflectance
spectrum.

Another minimum in the reflectance spectrum appearing in
the hyperbolic and dielectric regimes is related to the Brewster
angle αB as we consider TM-polarized incident wave. For an
anisotropic uniaxial crystal αB can be determined as [48]

αB = Re

{
arcsin

(√
ε⊥ε‖ − ε‖εp

ε⊥ε‖ − ε2
p

)}
. (11)

The frequency dependence of αB is shown in Fig. 5 by a green
dashed line.

VI. LOSSES

One significant stumbling block of HMMs limiting their
functionality and preventing their applications is intrinsic loss.
The main loss mechanisms in semiconductors are free carrier
absorption, fundamental absorption, and absorption due to
optical phonons [30]. Fundamental absorption is dominant in
the optical range. Absorption due to optical phonons occurs
in polar semiconductors and has resonance behavior around
wavelengths 30–35 μm. Free carrier absorption increases with
wavelength as square of the wavelength [49,50], so this loss
makes the main contribution in the THz spectral range.

In the previous section we have shown that the superlattice
plays the role of a waveguide supporting SPP, waveguide, or
Langmuir modes depending on the regime of a metamaterial.
The figure of merit (FOM) of the metamaterial slab can be
introduced as

η(ω) = Re(kz)

Im(kz)
. (12)

Here kz is a frequency dependent propagation constant unique
for each eigenmode. However, it is possible to show from
the Maxwell’s equations that η has a weak dependence on the
mode number in the hyperbolic regime. For this reason, we
plotted η in Fig. 6 only for the dominant Langmuir mode. An
analytical expression for η can be derived with the perturbation
theory using γ /ω as a small parameter:

η = 2ω

γ ε∞
ε⊥ε‖

ε⊥ − ε‖
. (13)

A plot of this equation for different temperatures is shown in
Fig. 6 by circles. Equation (13) yields right position of FOM
maximum which is around

ω0 =
(

�2
‖ + �2

⊥
2

)1/2

. (14)

However, the maximum value of η obtained from Eq. (13) is
a little bit exaggerated.

300 K

500 K

ω/2π (THz)

150 K

50 4360 3875150300 100

14

λ (μm)

FIG. 6. (Color online) Frequency dependence of FOM [η =
Re(kz)/Im(kz)] for the main Langmuir mode at temperatures 150,
300, and 500 K. Analytical approximation given by Eq. (13) is shown
by circles.

As was shown in the previous section (see Fig. 5), the
reflectance spectrum is the most sensitive to the temperature
and, hence, can be efficiently tuned, in the hyperbolic regime
(at the frequencies of several THz in our case). Combination
of FOM’s maximum and high tunability make proposed
metamaterial very promising for THz applications.

A shift of the optimal operation frequency toward the
optical range is possible by increasing the doping level. For
example, a simple estimation using Eq. (5) yields the value
of plasma frequency �p/2π ∼ 1 × 1014 Hz for free carrier
concentration 1 × 1020 cm−3, effective mass m∗ ∼ 0.1me,
and permittivity ε∞ ∼ 10. It corresponds to the wavelength
λp ∼ 3 μm. However, screening and strong random potential
in highly doped semiconductors [30,43] embarrass tunability
characteristics of metamaterial.

VII. CONCLUSION

In this work we proposed a new concept of an ultra-
homogeneous temperature-tunable metamaterial based on a
doped semiconductor superlattice. We have shown that the
classical homogenization procedure is inapplicable for the
description of the metamaterial in terms of effective parameters
because of the tunnel transparency of the barriers separating
the quantum wells and that quantum homogenization should
be used. We developed the theory of quantum homogenization
applied to semiconductor nanostructured metamaterials. It
is based on the Kubo formula for conductivity and takes
into account wave functions of the carriers, their energy
spectrum, and distribution function. The main limitation of
quantum homogenization theory is associated with tunnel
transparency of barriers. The barrier thickness should be less
than the penetration depth of the electron wave function into
the barriers. Simple estimation shows that, for example, the
quantum homogenization theory is applicable for structures
with barrier height 0.2 eV if their thickness is less than 2
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nm (for wide-gap semiconductors) and 5 nm (for narrow-gap
semiconductors).

We have shown that the components of the dielectric
tensor of the semiconductor metamaterial can be efficiently
manipulated by external temperature. Efficient temperature
tunability is a distinctive feature of semiconductors which is
explained by the high sensitivity of free carrier concentration
to the temperature. On the example of a GaAs/Al0.3Ga0.7As
semiconductor superlattice with Te-doped quantum wells
(nd = 1 × 1018 cm−3) we have shown that the temperature
of the topological transition from the dielectric to hyperbolic
regime ∼300 K for the frequency ∼4 THz. Numerical
simulation shows that the topological transition can be detected
in an experiment on the measurement of reflectance spectrum
from the superlattice slab.

A significant advantage of semiconductor metamaterials
is the possibility of their direct integration into optolectronic
devices and optical integrated circuits. Moreover, semicon-
ductor materials combine two important features. On one
hand, the energy spectrum of the carriers in semiconductor

nanostructures can be precisely tailored with quantum engi-
neering technologies. On the other hand, there are many meth-
ods of dynamic control of the electron distribution function in
semiconductors, which are well developed and widely applied
in nano- and optoelectronics. These are, for example, electrical
injection, optical pumping, thermal excitation, electron heating
by electric field, etc. The advantages mentioned earlier and
the rich functionality of semiconductor metamaterials allow
one to consider them as an important element of future
optoelectronics.
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