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Confinement of spin-orbit induced Dirac states in quantum point contacts
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The quantum transmission problem for a particle moving in a quantum point contact in the presence of a
Rashba spin-orbit interaction and applied magnetic field is solved semiclassically. A strong Rashba interaction
and parallel magnetic field form emergent Dirac states at the center of the constriction, leading to the appearance
of resonances which carry spin current and become bound at high magnetic fields. These states can be controlled
in situ by modulation of external electric and magnetic fields, and can be used to turn the channel into a spin
pump which operates at zero bias. It is shown that this effect is currently experimentally accessible in p-type
quantum point contacts.
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One-dimensional (1D) spin-orbit coupled systems have
recently attracted significant interest in the context of quantum
information and spintronics, playing a key role in the search for
emergent Majorana fermions [1–3] and the generation of spin-
polarized current [4–9]. Interest in these systems has sparked
several theoretical studies of their modified conductance
properties [10–18]. In this work I present a semiclassical
solution to the scattering problem for a quantum point contact
(QPC) in the presence of the Rashba spin-orbit interaction and
a parallel magnetic field. The quantum states near the center of
the constriction are described by a one-dimensional massive
Dirac equation, with the Rashba constant and magnetic field
playing the roles of the speed of light and Dirac mass,
respectively. The emergent fermion and antifermion states
behave differently in the channel, with the latter falling into
the center of the constriction, forming resonant states. This
process may be considered a manifestation of Schwinger pair
production, an effect which is well known in high-energy
physics [19–21] and has recently been investigated in the
context of emergent two-dimensional Dirac systems [22,23].
When the applied magnetic field is strong, the resonances
become bound and generate a concentration of spin current in
the channel. The properties of these states are highly sensitive
to the strength of the spin-orbit interaction and the applied
magnetic field, implying that they can be controlled in situ
by modulation of external fields. These results suggest an
experiment in which repeated capture and release of particles
inside the channel leads to a net spin polarization in the
leads, transforming the channel into a spin pump and an
injector of spin current which operates in the absence of a
source-drain bias. While this effect exists in principle for both
n and p type systems, consideration of experimental param-
eters for existing systems suggests that hole quantum point
contacts provide an ideal candidate for the realization of this
effect.

I consider a QPC defined by lateral patterning in a
semiconductor heterostructure, which is described by the
two-dimensional Hamiltonian

H2D = p2
x + p2

y

2m
+ φ(x,y) + Hso + HZ,

φ(x,y) = mω2
yy

2

2
− mω2

xx
2

2
, (1)

where m is the effective mass and the electrostatic potential in
the heterostructure plane φ(x,y) is modeled as a saddle point
parametrized by frequencies ωx,ωy in directions parallel (x)
and perpendicular (y) to the QPC [24]. I assume the presence
of both spin-orbit coupling Hso and Zeeman interaction HZ . To
leading order the Hamiltonian (1) generates one-dimensional
scattering states (in the x direction) which are harmonically
confined in the y direction. The wave function takes the form

ψ(x,y) = ψ1D(x)ϕn(y),[
p2

y

2m
+ mω2

yy
2

2

]
ϕn(y) = �ωy

(
n + 1

2

)
ϕn(y). (2)

I consider the Rashba interaction, which is known to be
strong in narrow-gap n-type systems [25–27]; the spin-orbit
interaction in this case has the form Hso = α(pxσy − pyσx)
[28], where α is the Rashba constant. Our starting point
for determining the effect of the spin-dependent terms on
transmission through the contact is the 1D Hamiltonian which
acts on the scattering wave function ψ1D(x). Projecting the
Hamiltonian onto transverse states, we obtain

Hn = p2
x

2m
− αpxσy − βσx + Un(x),

Un(x) = �ωy

(
n + 1

2

)
− mω2

xx
2

2
, (3)

where β = 1
2gμBBx and g is the g factor. Note that in

the Rashba interaction we replace py with its expectation
value 〈φn|py |φn〉 = 0, since the operator only couples differ-
ent transverse levels. Coupling between different transverse
channels may be accounted for in perturbation theory; one
then finds to all orders that the spin-dependent terms in the
Hamiltonian (3) are unchanged except for a renormalization of
coefficients, although additional spin-independent terms will
appear at higher order in px .

In the case of p-type systems, the Rashba interaction is
strong even in larger gap materials (such as GaAs) due to
valence band mixing [29,30]. The spin-dependent terms take
the form [31]

Hso = iα′

2
(p3

+σ− − p3
−σ+),

HZ = −κμB(B+p2
+σ− + B−p2

−σ+), (4)
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where p+ = px + ipy , etc. Taking the projection onto har-
monic oscillator levels gives the same Hamiltonian (3) with
α = 3α′〈ϕn|p2

y |ϕn〉, β = −κ〈ϕn|p2
y |ϕn〉, with the exception of

additional terms quadratic and cubic in the momentum,

δH1D = −2κμBBxp
2
xσx + α′p3

xσy. (5)

As in the case of the n-type Rashba interaction, accounting
for coupling between different oscillator levels ϕn(y) in
perturbation theory does not alter the Hamiltonian (3) to
quadratic order in momentum, except for a renormalization
of parameters. Hereafter I consider scattering within a single
transverse channel and refer to the 1D barrier as Un(x) = U (x)
and its maximum as U (x = 0) = U0.

The scattering wave function is formed in a region inside
the constriction where the kinetic energy is heavily suppressed
by the barrier potential U (x). At the semiclassical turning
points, px → 0, terms of higher order in momentum become
irrelevant, and we may therefore consider the terms (3) which
are common to both electron and hole systems. The dispersion
corresponding to the momentum-dependent terms in Eq. (3)
consists of spin-split bands ε±

k given by

ε±
k = �

2k2

2m
±

√
α2�2k2 + β2. (6)

For magnetic fields below a critical value β < βc = mα2, the
lower band has a “Mexican hat” shape, with a local maximum
at k = 0; the dispersion in this case is shown in Fig. 1(a). Note
that the shape of the upper and lower branches near k = 0
is governed by an anticrossing created by the combination of
the Rashba interaction and a Zeeman interaction 0 < β < βc.
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FIG. 1. (Color online) Confinement of a Dirac fermion in a
QPC, which occurs when the parallel magnetic field is below the
critical value β = 1

2 gμBBx < βc. (a) The 1D dispersion near the
anticrossing, with the bold lines showing the region in which Dirac
fermion behavior is expected to appear. The two spin branches
ε+
k ,ε−

k are identified as the positive and negative energy Dirac
states, respectively. Arrows indicate the direction of spin polarization.
(b) The potential barrier U (x) (lower curve), and the situation in
momentum space (three upper figures). There are three regions which
form the scattering wave function. In the asymptotic region |x| > b,
the kinetic energy lies in the upper (positive energy) branch. Inside the
barrier, |x| < a, the kinetic energy lies in the lower (negative energy)
branch. Quantization of motion in the region bounded by vertical
lines gives rise to a subbarrier resonance. The energy is indicated
by the horizontal line. The tunneling regions are shown with dashed
lines.

For incident energies tuned close to the top of the barrier,
dynamics in the scattering region are dominated by the linear-
in-momentum term in Eq. (3); to leading order in px we obtain
the Dirac equation

[−αpxσy − βσx + U (x)]ψ(x) = Eψ(x). (7)

We may identify the upper and lower branches of the dispersion
ε+
k ,ε−

k near the anticrossing with the positive energy and
negative energy Dirac states, respectively. Note that the parallel
magnetic field creates a tunable Dirac gap of energy 2β.

Transmission through the constriction differs qualitatively
in the situations β > βc and β < βc. In the former, the
transmission probability in each band simply drops to zero
as the Fermi energy successively crosses the bottom of
each spin-split band, leading to the appearance of plateaus
at G = (n + 1

2 ) 2e2

h
in the channel conductance which is

the experimental signature of Zeeman-split subbands [32].
The second situation, β < βc, is highly non-trivial due to
the possibility of tunneling from a positive to a negative
energy state when the barrier is sufficiently high, U0 > E + β.
Tunneling occurs at the sides of the potential barrier [indicated
by dashed lines in Fig. 1(b)] in the regions where the kinetic
energy lies within the Dirac gap. The result is the appearance
of a particle in a negative energy state at the top of the
barrier, which is characterized by a negative effective mass,

1
m∗ = 1

m
(1 − mα2

β
) < 0 (or equivalently, positive effective mass

but opposite electric charge) and therefore sees the repulsive
potential as a quantum well. This shows that there exist
two types of charge carriers in the channel, which exhibit
qualitatively different behavior in the electrostatic potential
U (x): the positive energy states in the branch ε+

k fall away
from the barrier, while the states in the antifermion branch ε−

k

fall towards the barrier. This process is illustrated in Fig. 1(b).
The lower curve shows the potential U (x), with the tunneling
region shown with dashed lines. The scattering wave function
is formed by two pairs of turning points x = ±b (assuming a
symmetric barrier) and x = ±a. The situation in momentum
space is shown in the three figures in the upper part of the
same panel. In the regions |x| > b, the kinetic energy (shown
with a horizontal line) lies in the upper branch, and the particle
accelerates away from the barrier. In the region |x| < a, the
kinetic energy lies in the lower branch. In this region the
particle behaves as an antifermion; it falls into the barrier
and becomes confined. Quantization of motion between the
turning points x = ±a gives rise to a resonant state; the energy
of the resonant state is shown by the horizontal line intersecting
the lower curve in Fig. 1(b). Note that the kinetic energy
of the “antifermion” must remain above the bottom of the
lower branch Emin in order for free motion to persist in the
confinement region; the particle is expected to behave as a
Dirac fermion when E − U (x) > Emin. The range of energies
in which resonances are expected to exist is given by

E + |Emin| > U0 > E + β, Emin = −mα2

2
− β2

2mα2
; (8)

this condition also implies that resonances will appear on
conductance plateaus on which only one spin band is fully
transmitted.
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The existence of two species of carriers which accelerate
in opposite directions in the same electric field may be
regarded as a manifestation of Schwinger’s mechanism for
the spontaneous generation of fermion-antifermion pairs in
strong electric fields [19]. While ubiquitous in quantum
electrodynamics [20,21], direct observation of pair production
requires electric fields eE > m2c3

�
� 1016 V cm−1 which to

date have only been accessible in high-energy collisions [33].
In the condensed matter context, this effect has been studied
theoretically in graphene [22,23] and is closely related to
the phenomenon of atomic collapse recently observed in
the material [34]. In our case, the Schwinger mechanism
distinguishes the localized “Dirac” state from quasibound
states arising from double barriers, edge or multichannel
effects as previously studied [14,16–18], and as we shall see
later, gives them properties which will enable them to facilitate
pumping of spin across the channel.

The transmission probability for a state incident in the upper
branch ε+

k may be derived by consideration of the explicit
structure of the scattering wave function. The wave function
consists of an asymptotic wave with positive energy which
undergoes reflection at the sides of the barrier, x = ±b, and
a negative energy part corresponding to free motion inside
the barrier, |x| < a. The positive energy and negative energy
components of the wave function are coupled by tunneling
in the regions a < |x| < b, leading to a finite lifetime which
is proportional to the inverse tunneling rate. Approximating
the barrier by a linear function, U ′(x) = λ, the resonant width
is given by τ−1 ∝ e−2πγ , where the exponent γ is given by
Schwinger’s formula [19] upon identification of β with the rest
energy and α with the effective speed of light:

γ = β2

2αλ�
. (9)

Accounting for periodic motion in the confinement region
|x| < a and tunneling, we obtain explicitly for the transmission
probability

T =
∣∣∣∣ 1

e2πγ + (e2πγ − 1)ei
∮

kdx+iδϕ

∣∣∣∣
2

, (10)

where
∮

kdx is the semiclassical phase acquired by the
“antifermion” over one period of semiclassical motion. In the
tunneling regions, the solution of the Dirac equation (7) may
be expressed analytically in terms of the parabolic cylinder
functions, which leads to a phase shift δϕ = 2Arg�(iγ ) −
4γ [ln 2

√
γ − 1] + π

2 . This phase shift appears in the WKB
quantization condition for the existence of a standing wave,∮

kdx = 2π (n + 1
2 − δϕ) at energies corresponding to the

location of the Breit-Wigner resonances. We may regard (10)
as the general semiclassical expression for the transmission
probability of a one-dimensional massive Dirac fermion in a
smooth potential barrier. In the limit of strong magnetic fields
β 	 √

α�λ, the resonant states become bound. In the opposite
limit γ → 0, resonant tunneling occurs over a broad range of
energies, reflecting the Klein paradox for ultrarelativistic Dirac
fermions [35,36]. Note that we have considered a state with
asymptotic energy in the upper branch, ε+

k ; in the semiclassical
approximation a particle incident from the lower branch ε−

k
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FIG. 2. (Color online) Predicted number of quasibound states for
parameters η,ζ , given by Eq. (12).

does not undergo reflection at energies within the Dirac gap
and the corresponding transmission probability is nonresonant.

Approximating the QPC potential as a parabolic barrier,

U (x) ≈ U0 − mω2
xx

2

2 , the resonant spectrum is equivalent (upon
reversing the sign of the energy) to that of a harmonic oscillator
with mass |m∗| and oscillator frequency ω∗ = √| m

m∗ |ωx ,

En = U0 − β − ω∗(n + 1
2

)
. (11)

The n = 0 mode possesses the highest energy, with higher
modes forming an inverted tower of oscillator states extending
downward in energy. In deriving the spectrum (11) I assume
that the lower band may be approximated by a quadratic
dispersion ε−

k ≈ −β + �
2k2

2m∗ , so that in the semiclassical picture
the resonant states correspond to simple harmonic motion
confined between two turning points x = ±a. (In this limit
we also have δϕ → 0.) The spectrum terminates at finite n

due to the condition (8). This condition may be expressed in
terms of parameters ζ = ω

mα2 , η = β

mα2 as

ζ <
1

2n + 1
(1 − η)

3
2 η

1
2 . (12)

The number of quasibound states predicted by (12) in different
regions of the space of parameters (η,ζ ) is shown in Fig. 2.
In order to observe resonances we require the variation of
the potential inside the channel to be smooth compared to
the energy scale of the spin-orbit interaction, ζ � 1. The
optimal regime, in which a large number of particles is
trapped in the constriction, occurs when η ≈ 1

4 . Note that the
number of quasibound states is much less sensitive to the
size of the magnetic field than to the shape of the confining
potential.

Let us now address the possibility of observing resonant
Dirac states in the typical experimental situation. Near pinch-
off, the barrier height is tuned to the Fermi energy, U0 ≈ EF .
We may parametrize the barrier in terms of the QPC length,
U0 = 1

2mω2( l
2 )2, to obtain

ζ = 2

kF l

(
�kF

mα

)2

. (13)

The value of l is limited by the ballistic mean free path,
which is approximately 1 μm in 2D GaAs. Taking l = 1 μm,
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FIG. 3. (Color online) The QPC conductance in units of e2

h
for a

Gaussian barrier U (x) = U0e
− x2

w2 with parameters w = 50 nm, EF =
0.6 meV, mα

�kF
= 0.6, and values of magnetic field gBx = 3 T (solid,

red), 2 T (dashed, blue), 1 T (dotted, green). (a) The conductance
obtained from the analytical formula for the resonant transmission
probability (10). (b) The conductance obtained by brute-force
numerical integration of the Schrödinger equation corresponding to
the Hamiltonian (3).

at typical experimental density n = 1011 cm−2 in the 2D
regions, we have kF l ≈ 102; in the strongly spin-orbit coupled
materials InSb and InAs, the conduction band effective mass
(m ≈ 10−2me) is prohibitively small despite the strong Rashba
effect, since �kF

mα
≈ 102 at typical electric fields α ∝ Ez =

106 V m−1. While in principle the 1D band mass may be
renormalized by inter-subband coupling, the initial value
ζ ∼ 102 would require a renormalization by more than two
orders of magnitude. In p-type point contacts, the larger
value of m leads to a stronger spin-orbit interaction as a
proportion of the Fermi energy. The coefficient of the 1D
Rashba interaction α may be determined by magnetotransport
studies in 2D hole systems; we obtain 0.6 � mα

�kF
� 1 from

such studies in GaAs-AlGaAs heterojunctions [29,30]. Taking
typical values [37] for the hole density n = 1011 cm−2 and
m = 0.4me, we obtain η = 1

5 , ζ = 1
18 at gBx = 3 T for the

lower value mα = 0.6�kF . In this regime (12) predicts N = 3.
The QPC conductance corresponding to the classical

transmission probability (10) is shown in Fig. 3(a) for a

Gaussian barrier U (x) = U0e
− x2

w2 with parameters mα
�kF

= 0.6,

w = 0.5 μm and magnetic field gBx = 1 T, 2 T, 3 T (for
hole QPCs the typical value is g = 0.5 [38]). The conductance
is shown on the plateau E − β < U0 < E − Emin, and for
simplicity I assume that the conductance in the nonresonant

channel is trivially equal to e2

h
. For particles injected in the

upper branch, the transmission is zero except near resonances
corresponding to quasibound Dirac states. These resonances
appear in the right region of the plateau, E + β < U0 < Emin,
where the barrier is sufficiently high to produce negative
energy states. For comparison, the QPC conductance calcu-
lated by explicit numerical integration of the Schrödinger
equation corresponding to the Hamiltonian (3) is shown in
Fig. 3(b). The analytical and numerical results are practically
indistinguishable, except on the edges of the plateau. Note
that, while I have taken a Gaussian barrier which smoothly
decreases to zero in the asymptotic region, only the region
near the top of the barrier, where it may be approximated
by a harmonic potential U (x) ≈ U0 − mωxx

2

2 , is relevant to
scattering. Numerics also indicated that different choices of
barrier with the same curvature did not influence the result.

The lifetime of the rightmost resonance on the solid trace
in Fig. 3 was calculated to be τ = 7.4 × 10−10 s. The lifetime,
according to (10) and (9), displays an exponential dependence
on both α and β, which may be used to provide a highly
sensitive and robust measurement of the Rashba coefficient.
Upon increasing the magnetic field from 1 T to 3 T, the
resonances become significantly narrower (Fig. 3). At 5 T, the
lifetime is ∼10−8 s, and at 10 T, the lifetime is ∼10−1 s. In this
limit an additional broadening of the resonance is expected at
finite temperature due to inelastic electron-electron collisions
in the channel; nevertheless our analysis shows that at high
magnetic fields, the resonance is effectively bound. Note that
while varying the magnetic field from 1 T to 3 T significantly
narrows the resonant peaks, it does not change the number of
resonances. This distinguishing behavior, which was derived
earlier [see Eq. (12)] from the inverted harmonic oscillator
spectrum (11), permits a straightforward identification of the
effect in experiment.

Let us consider the spin structure of the bound state. At
low values of η (i.e., β � mα2), the wave function inside the
barrier is proportional to ψ(x) ∝ ei

∫
kdx |+〉y + e−i

∫
kdx |−〉y ,

where |±〉y are spinors with polarization along the ±y axis.
In such a state, both the current and magnetization are zero.
Instead of a total spin, the state carries a total spin current
Jxμ(x) = 1

2 {vx,sμ} which is concentrated at the top of the
barrier. The existence of a localized region of spin current is a
consequence of the fact that, in the presence of a Zeeman gap,
only states of one chirality participate in the tunneling process
which leads to localization. In this sense the bound states
considered here bear a strong similarity to chiral subgap (edge
and surface) states in topological insulators [39], although
they are supported by a smoothly varying potential rather than
an edge. The current densities of the spin-up and spin-down
components of the wave function are shown in Fig. 4(a) for
the resonance corresponding to the n = 1 oscillator level at
gBx = 4 T.

It is straightforward to show that the localized spin current
in our situation may be used to pump spin across the channel.
Let us consider the spin states in the positive and negative
energy bands ε±

k near the anticrossing. In the positive energy
branch, states with positive momenta have spin tilted towards
the −y axis, while states with negative momenta have spin
tilted towards the +y axis. In the negative energy branch,
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FIG. 4. (Color online) Spin current and spin pumping via the
bound state. (a) The current densities (arb. units) in the spin-up and
spin-down components of the wave function at resonance, Jx+ =
ψ∗

+Jxψ+ (red, positive curve) and Jx− = ψ∗
−Jxψ− (blue, negative

curve), where ψ = ψ+|+〉y + ψ−|−〉y . The barrier is shown by the
dashed line. Since the state is localized, the total current everywhere
is zero; however the state possesses a spin current Jxy = Jx+−Jx−

2 .
(b) Upon adiabatically switching on the magnetic field, a particle is
captured inside the barrier from the left lead, initially in a spin-down
state. (c) When the magnetic field is switched off instantaneously, the
resonance decays, either returning the particle to the left lead in a
spin-up state, or transferring it to the right lead in a spin-down state.
The mirror process occurs for a particle injected from the right lead.
This process increases the number of spin-up carriers in the left lead
and the number of spin-down carriers in the right lead; i.e., it pumps
spin across the channel in the absence of dc current.

the situation is opposite [see Fig. 1(a)]. Let us consider the
component of spin current Jxy which is given by

Jxy = 1

4

{
px

m
− ασy,σy

}
= px

2m
σy − α

2
. (14)

When α > 0 the first term is negative for a positive energy state
and positive for a negative energy state. Thus during the capture
of a particle from the leads, the spin current of the particle is
increased. In general, the bound state may be controlled by
modulation of the parameters α,β which implies that the QPC
can function as a spin transistor. We may perform, for example,
a gedanken experiment in which the external magnetic field is
first switched on slowly, resulting in the capture of a particle
into the channel (assuming that the system is tuned so that
the Fermi energy coincides with a resonance). During this
process a positive energy state in the reservoirs is converted
into a negative energy state in the constriction, and the spin
current of the system is increased. Let us now instantaneously
switch off the external magnetic field. Since the external field
is required for trapping, the bound state decays and the particle
is transferred into either the left or right reservoir. However,
in the absence of the external magnetic field, the operator of
spin current (14) commutes with the Hamiltonian (3). Thus the
initial spin current generated by adiabatically switching on the
magnetic field persists even in the absence of a localized state.
It is straightforward to show that this process either transfers

a particle from one reservoir to the other without changing its
spin, or returns a particle to its original reservoir with a spin
flip, as shown in Figs. 4(b) and 4(c). Cycling the applied field
in this manner pumps spin from one reservoir to the other,
generating a nonequilibrium polarization in the leads.

The level structure in the resonant regime is expected to be
modified due to electron-electron interactions, which are most
significant when only a few transverse channels are populated.
Even in the lowest conductance ( e2

h
) plateau, however, the

Coulomb interaction remains strongly screened by carriers
in the lower spin band (ε−

k ) which are freely transmitted
above the barrier. Numerical calculations show that, in the
Hartree approximation, the electron-electron interaction is
well approximated by a contact interaction, and taking the
random phase approximation the interaction takes the form

V (x − x ′) = 2πε−1
r e2(

1 − 2πe2ε−1
r �q→0,ω=0

)δ(x − x ′), (15)

where εr is the permittivity, and in the first approximation
we may take the static polarization operator for a uniform
1D channel, �q→0,ω=0 = − 1

2πvF
, where vF = √

2mEF is the

Fermi velocity. The charging energy is ≈ 2πvF

2a
where 2a is

the size of the bound states. In the harmonic approximation,
we have a =√

2mω∗(n+ 1
2 ) for the nth oscillator level, which is

typically of the order of the barrier width for the lowest bound

state, a ≈ l =
√

8U0
mω2

x
; this shows that it is possible to tune

the charging energy to a low fraction of the Fermi energy
by making the barrier sufficiently smooth. Taking typical
parameters for a GaAs hole QPC, the charging energy for
the lowest occupied (n = 3) state is ≈0.1 meV.

The presence of one or more bound states in the channel
may be accounted for by an effective potential, Ueff = U (x) +
UH (x), where the Hartree potential is

UH (x) =
∫

V (x − x ′)|ψ(x ′)|2dx. (16)

-1 0 1-1 0 10

0.2

0.4

0.6

x μ(  m)

E (meV) n = 3n = 3
μ

U(x) U  (x)eff

(a) (b)

FIG. 5. (Color online) The resonant spectrum calculated in the
Hartree approximation with N = 0 (a) and N = 1 (b) particles
captured in the channel. The barrier U (x) and effective potential
Ueff (x) which account for the Hartree potential are shown in the
background. The resonant energies are indicated by solid horizontal
lines, and the chemical potential μ is shown by dashed horizontal
lines.
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The Hartree potential alters both the height Ueff(0) and the
shape of the barrier. The increased barrier height yields a
positive shift in the energy of multiparticle bound states;
however since the number of bound states (11) depends only
on the level spacing and not on the barrier height, this does not
reduce the number of states. At the same time, the number of
states may be affected by a change in the shape of the barrier.
In the typical situation, the lowest occupied state in the channel
is an oscillator state with index n > 0; the corresponding
probability density |ψ(x)|2 and Hartree potential UH (x) are
oscillating at the top of the barrier, rather than sharply peaked.
Numerical calculations show that the level spacing is not
significantly affected, although it may be slightly reduced due
to the flattening of the barrier due to the Hartree contribution,
increasing the number of resonances. The effective potential
and spectrum in the presence of a single occupied state are
shown in Fig. 5 for the same parameters used in Fig. 3.

These results illustrate that the transmission problem is
highly nontrivial in a 1D system with Rashba interaction
even in the absence of interactions or multichannel effects.
The conductance on the Zeeman plateaus, G = (n + 1

2 ) 2e2

h
, is

characterized by resonances associated with confinement in a

single spin channel, and this effect generally occurs in systems
with smoothly varying repulsive potential and a magnetic
field applied in a particular orientation. Furthermore, these
results illustrate a surprising manifestation of Dirac physics
in ballistic 1D channels, which is clearly indicated by the
presence of Schwinger pair production, yielding antifermion
states which exhibit properties highly suitable for applications
in spintronics. In contrast to the situation in both high-energy
physics and other emergent Dirac systems such as graphene
and the topological insulators, the parameters controlling the
Dirac equation are tunable in our situation: the magnetic field
is analogous to the Dirac mass, the spin-orbit interaction to
the speed of light, and the electric field is provided by the
smooth 1D potential inside the constriction. The similarity
and tunability of these energy scales allows for remarkable
control over the properties of the Dirac states and enhances
the versatility of the system for applications to spintronics.
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