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Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
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Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways
of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands.
However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like
the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters
with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB
models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions
with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are
parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained.
Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with
the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically
extended devices in nonequilibrium that cannot be tackled with ab initio methods.
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I. INTRODUCTION

Modern semiconductor nanodevices have reached critical
device dimensions in the sub-10-nm range. These devices
comprise complicated two- or three-dimensional geometries
and are composed of multiple materials. Confined geometries
such as ultrathin bodies (UTBs) [1], Fin-Shaped Field Effect
Transistor (FinFETs), [2] and nanowires [3] are usually
adopted in nanometer-scale device designs to obtain de-
sired performance characteristics. Most of the electrically
conducting devices are not arranged in infinite periodic
arrays but are of finite extent with contacts controlling the
current injections and potential modulation. Typically, there
are about 10 000 to 10 × 106 atoms in the active device region
with contacts controlling the current injection. These finite-
sized structures suggest an atomistic, local, and orbital-based
electronic structure representation for device-level simulation.
Quantitative device design requires reliable prediction of the
materials’ band gaps and band offsets within a few meV
and important effective masses within a few percent in the
geometrically confined active device regions. The empirical
tight-binding (ETB) model is usually fitted to bulk dispersions
without any definition of the spatial wave-function details.
However, a recent ab initio study on UTBs [4] showed
that the surface carrier distribution in confined systems is
strongly geometry and material dependent. This suggests that
the charge distribution for realistic predictions of nanodevice
performances should be resolved with subatomic resolution.

Ab initio methods offer atomistic representations with
subatomic resolution for a variety of materials. However,
accurate ab initio methods, such as hybrid functionals [5] and
GW [6] and Bethe–Salpeter Equation (BSE) approximations
[7] are, in general, computationally too expensive to be applied
to systems containing millions of atoms. Furthermore, those
methods assume equilibrium and cannot truly model out-of-
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equilibrium device conditions where, e.g., a large voltage
might have been applied to drive carriers. The ETB methods
are numerically much more efficient than ab initio methods.
For group IV and III–V semiconductors, an sp3d5s∗ ETB
model with nearest-neighbor interactions is sufficient to model
important valence and conduction valleys correctly. In the
sp3d5s∗ ETB model, the basis set incorporates only ten orbitals
(i.e. one s, three p, and five d orbitals and one excited s∗
orbital) per atom. ETB has been established as the standard
state-of-the-art basis for realistic device simulations [8]. It has
been successfully applied to electronic structures of millions
of atoms [9] as well as on nonequilibrium transport problems
that even involve inelastic scattering [10]. The accuracy of the
ETB methods depends critically on the careful calibration of
the empirical parameters. The traditional way to determine the
ETB parameters is to fit ETB band structures to experimental
data of bulk materials [11,12].

The ETB basis functions remain implicitly defined during
traditional fitting processes. The lack of explicit basis functions
makes it difficult to predict wave-function-dependent quanti-
ties like optical matrix elements with high precision. More
importantly, ETB models parameterized by traditional fitting
processes suffer from potential ambiguity when applied to
ultrasmall structures such as UTBs, nanowires, and more com-
plicated geometries. For instance, the existing ETB parameters
of GaAs [12] applied to an As-terminated GaAs UTB with an
implicit hydrogen passivation model [13] results in unphysical
top valence-band states as shown in Fig. 1: the real-space
probability amplitudes of ab initio topmost valence bands
correspond to confined states with the probability amplitude
peaking in the center of the UTB rather than the surface
of the UTB as in ETB. In Fig. 1, the hybrid functional
calculations include hydrogen atoms explicitly, whereas the
ETB calculations include only their impact implicitly [13].
The mismatch between the envelopes of ETB and ab initio
wave functions suggests a calibration of wave functions in
the ETB parametrization process is necessary. It is also
found that the method of passivation (i.e., implicit or explicit
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FIG. 1. (Color online) In As-terminated GaAs UTBs, (a) hybrid
functional probability amplitudes of the top valence bands are
confined states with probability amplitude peaking in the center of
the UTB, while (b) the ETB valence states are surface states.

inclusion of hydrogen atoms) has an effect on the nature of the
valence-band states.

The ETB interaction range is an important concern when
developing a transferable ETB model. Previous ETB studies
on group III–V and IV materials [11,12] show that ETB models
with first-nearest-neighbor interactions are adequate to model
bulk group III–V and IV materials. In order to assess whether
the ETB model with first-nearest-neighbor interactions can
be transferred to nanostructures like UTBs, ab initio local
potentials are studied. Here the ab initio calculations are based
on projector-augmented-wave method (PAW) [14] formalism.
The ab initio local potentials of Si and GaAs UTBs averaged
over the transverse plane are shown in Fig. 2. It turns out
that the envelopes of ab initio local potential are flat inside
the UTBs. Obvious variation of the local potential can be
observed only at the surface atoms. Local potential profiles
similar to those in Fig. 2 have also been obtained by ab initio
studies of transition-metal oxides [15] and graphene-metal
interfaces [16]. This character in local potential suggests that
hydrogen atoms mainly affect their first nearest neighbors,
while the atoms inside the UTBs are weakly affected by
hydrogen atoms. Therefore, longer-range interactions beyond
first nearest neighbors are negligible, and the ETB models
including only the first nearest neighbors are capable of
modeling the UTB systems correctly.

Therefore, a more fundamental fitting process that relates
both the band structure and the wave functions of ETB models
with ab initio calculations is desirable to generate transferable
ETB models. Existing approaches to construct localized
basis functions and tight-binding-like Hamiltonians from ab
initio results include maximally localized Wannier functions
(MLWF) [17,18], quasiatomic orbitals [19,20], and density
functional theory-tight binding (DFT-TB) analysis [21]. The
MLWFs are constructed using Bloch states of either isolated
bands [17] or entangled bands [18]. These methods typically
include interatomic interactions beyond first nearest neighbors.
However, these methods do not eliminate the above-discussed
ambiguity of the commonly used orthogonal sp3d5s∗ ETB
models with first-nearest-neighbor interactions. Furthermore,
these approaches usually disregard excited orbitals (i.e., s∗
and d orbitals for diamond and zinc-blende semiconductors),
which are often needed to correctly parametrize conduction
bands of semiconductors. Previous work already suggested
how to generate ETB parameters that are compatible with
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FIG. 2. (Color online) Planar averaged local potentials of

hydrogen-terminated (a) Si and (b) GaAs UTBs. The dashed lines
correspond to the envelopes of the local potentials; the dots on dashed
lines correspond to centers of atoms. The envelopes of the potentials
are flat inside the UTBs. Obvious deviation can be seen at the surface
atoms.

typical ETB models and still reproduce ab initio results [22].
This previous method was already applied to several materials
such as GaAs, MgO [22], and SmSe [23] and yielded good
agreement between bulk ETB and ab initio band structures.
However, the resulting wave functions did not satisfactorily
agree with the ab initio wave functions.

In this paper, a parametrization algorithm is presented that
“maps” ab initio results (i.e., eigenenergies and eigenfunc-
tions) to tight-binding models. Compared with the previous
work [22], the presented method allows much better agreement
of the ETB and ab initio wave functions. In this present
mapping algorithm, wave-function-derived ETB parameters
for the Hamiltonian, for highly localized basis functions, and
for explicit surface passivation are obtained. It is important
to mention that the ETB Hamiltonian of this method can
be limited to first-nearest-neighbor interactions. The mapping
process is applied to both bulk Si and GaAs to generate ETB
parameters and explicit basis functions from corresponding
hybrid functional calculations. It is demonstrated in this work
that the wave-function-derived ETB Hamiltonian does not
yield the ambiguity discussed in relation to Fig. 1. In the same
way, the transferability of the ETB model to nanostructures is
improved. This is demonstrated by a comparison of ETB and
hybrid functional results in GaAs and Si UTBs.

This paper is organized as follows. In Sec. II, the al-
gorithm of parameter mapping from ab initio calculations
to tight-binding models is described. Section III shows the
application of the mapping algorithm to bulk and UTB
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systems. Section III A presents the application of the present
algorithm to bulk Si and GaAs. Bulk band structures and
real-space basis functions are shown and discussed there as
well. Section III B shows the application of the algorithm to
UTB systems and compares ETB band structures and wave
functions with corresponding ab initio results. The algorithm
and its results are summarized in Sec. IV.

II. METHOD: PARAMETER-MAPPING ALGORITHM

The algorithm of the parameter mapping from ab initio
results to ETB models is shown in Fig. 3. As will be shown
in the following, the ETB parameters and basis functions are
obtained in an iterative fitting procedure that spans over five
steps (with steps 3 and 4 being iterated). The resulting first-
nearest-neighbor Hamiltonian Ĥ T B(k) is of the Slater-Koster
table type [24,25]. The resulting basis Bfinal is composed of
orthonormal real-space functions Bfinal = {�final

n,l,m(r)} which
have the shape (vectors are given in bold type)

�a,n,l,m(r) = Ȳl,m(θ,φ)R̄a,n,l(r)

+
∑
l′,m′

(l′,m′) �= (l,m)

Ȳl′,m′(θ,φ)R̃a,n,l,l′,m′(r). (1)

Here a labels the atom type, whereas n, l, and m are prin-
ciple, angular, and magnetic quantum numbers, respectively.
All materials considered in this work contain no magnetic
polarization. Therefore, the basis functions are spin indepen-
dent. The tesseral spherical harmonics Ȳl,m(θ,φ) describe the
dependence of the basis functions on the angular coordinates
θ and φ. The functions R̄a,n,l(r) and R̃a,n,l,l′,m′ (r) define the
radial r dependence of the basis functions. The contribution
of R̃a,n,l,l′,m′ to the basis functions is much smaller than
the contribution of R̄a,n,l . The detailed shapes of the radial
functions R̄a,n,l(r) and R̃a,n,l,l′,m′ (r) are subject to the fitting
algorithm.

Step 1. First, electronic band structures εAb
j (k) and wave

functions ψAb
j,k are solved which serve as fitting targets to the

Step 1: Ab-initio calculations,  
     ab-initio eigen states and energies are obtained

Step 3: Project ab-initio wave functions on TB 
basis functions

Step 5: Get the exact TB basis functions    
         

Step 2: Initial guess of TB basis functions 
and Slater Koster type TB parameters

Step 4:  calculate TB band structures and wave 
functions;  compares targets a) TB band structures, 
b) TB effective masses  and c) TB wave functions 

with ab-initio  results.     

updated basis 
functions and 

TB parameters 

FIG. 3. The process of mapping from ab initio calculations to
tight binding by which the ETB parameters and ETB basis functions
are extracted iteratively.

overall mapping algorithm

ĤAb(k)
∣∣ψAb

j,k

〉 = εAb
j (k)

∣∣ψAb
j,k

〉
. (2)

The index j corresponds to the band index, and k represents
a momentum vector in the first Brillouin zone. In principle,
any method that is capable of solving band diagrams and
explicit basis functions can provide these fitting targets.
Throughout this work, however, hybrid functional calculations
are performed for step 1 [26].

Step 2. In the second step, initial guesses for the ETB basis
functions and ETB parameters are defined. During the fitting
process, the ETB basis Binitial is spanned by nonorthogonal
functions {�a,n,l,m(r)} given by

�a,n,l,m(r) = Ȳl,m(θ,φ)Ra,n,l(r). (3)

Ra,n,l(r) in Eq. (3) differ from R̄a,n,l(r) of the final basis
functions in Eq. (1). The ETB parameters and the parameters of
the radial ETB basis functions Ra,n,l(r) are adjusted iteratively
in steps 3 and 4.

The details of the initial guesses for the diagonal and off-
diagonal elements of the Hamiltonian Ĥ T B(k) are not essential
for the overall algorithm. Nevertheless, initial guesses that
follow the framework of existing ETB parameter sets improve
the overall fitting convergence. Urban et al. and Lu et al.
discuss that interactions up to third nearest neighbors might
be needed to exactly reproduce ab initio results [20,21]. In
contrast, we find that the interatomic interaction elements of
Ĥ T B(k) can be limited to first-nearest-neighbor interactions
throughout this work while still reproducing ab initio results
very well.

Step 3. The nonorthogonal basis functions �a,n,l,m(r) in
position space are transformed into the Bloch representation
[27] �a,n,l,m,k(r),

|�α,k〉 ≡ �a,n,l,m,k(r)

=
∑

R

exp[ik·(R + τ a)]�a,n,l,m(r − R − τ a), (4)

where τa is the position of atom type a in the unit cell and the
sum runs over all unit cells of the system with R, the position
of the respective cell. To improve readability of all formulas
in the Dirac notation, the indices of atom type and quantum
numbers are merged into Greek indices α = (a,n,l,m). For
the remaining steps, an orthogonal basis Bortho = {|�α,k〉} is
created out of the basis Binitial with Löwdin’s symmetrical
orthogonalization algorithm [28]. Since steps 4 and 5 are
formulated in the basis Bortho, the wave functions |ψAb

j,k〉 of
step 1 must be transformed into this basis,∣∣ψAb

j,k

〉 ≈ P̂ (k)
∣∣ψAb

j,k

〉 =
∑

α

cj,α(k)|�α,k〉, (5)

where

cj,α(k) = 〈
�α,k

∣∣ψAb
j,k

〉
, (6)

cj,α(k) = 〈�α,k|ψAb
j,k〉, with the projection operator

P̂ (k) =
∑

α

|�α,k〉〈�α,k|. (7)

Equation (5) contains an approximation of the ab initio wave
functions in so far as the sum over α extends only over those
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orbitals that are included in the tight-binding basis Bortho. This
basis and Bortho from similar ETB models have many fewer
basis vectors than the input ab initio calculation. This rank
reduction is a typical outcome of rectangular transformations
such as P̂ and is well known in the field of low-rank
approximations [29].

Step 4. Here the quality of the ETB fitting is assessed. In this
step, the band structures of the current ETB model εT B

j (k) and
the ab initio input εAb

j (k) are compared. If these sufficiently
agree, the phases of the ETB wave functions are modulated
to agree with the ab initio ones, and both wave functions are
compared after that. The ETB Hamiltonian from step 2 is
diagonalized in the basis Bortho from step 3 to obtain ETB
band structures εT B

j (k) and eigenvectors |ψT B
j,k 〉,

Ĥ T B(k)
∣∣ψT B

j,k

〉 = εT B
j (k)

∣∣ψT B
j,k

〉
, (8)

with ∣∣ψT B
j,k

〉 =
∑

α

dj,α(k)|�α,k〉. (9)

To assess the quality of the ETB results, different fitness
functions Fε, Fm, and Fψ are defined for energies, masses, and
wave functions, respectively. Fε and Fm are given by

Fε =
∑
j,k

wε
j (k)

∣∣εT B
j (k) − εAb

j (k)
∣∣2

, (10)

Fm =
∑
m

wm

∣∣∣∣mAb − mT B

mAb

∣∣∣∣
2

, (11)

where wε
j (k) and wm are weights defined for each target.

As a convention for wave-function phases, another set of
ETB wave functions |ψ̃T B

j,k 〉 is introduced,∣∣ψ̃T B
j,k

〉 =
∑

i

Vj,i(k)
∣∣ψT B

i,k

〉
. (12)

The unitary transformation V̂ (k) is defined by

Vj,i(k) =
〈
ψT B

j,k

∣∣ψAb
i,k

〉
λ(k)

, (13)

with

λ(k) =
√

1

N

∑
q,p

∣∣〈ψAb
q,k

∣∣ψT B
p,k

〉∣∣2
. (14)

Here the sum over p and q runs over all N ETB states |ψT B
p,k〉

and Nab initio states 〈ψAb
q,k| with equivalent energies εT B

p (k) ≈
εAb
q (k). With this transformation, the equation〈

ψAb
i,k

∣∣ψ̃T B
j,k

〉 = λ(k) (15)

holds for equivalent states. This phase adaption can only work
if the ETB band structure is close enough to the ab initio result.
The ETB wave-function fitness is given by

Fψ =
∑
j,k

w
ψ

j (k)
∥∥∣∣ψAb

j,k

〉 − ∣∣ψ̃T B
j,k

〉∥∥2
. (16)

The weights w
ψ

j (k) vary depending on the respective fitting
focuses. Deviations of |ψ̃T B

ν,k 〉 from |ψAb
ν,k〉 have, in general, two

causes: inadequate basis functions and/or eigenfunctions of a

poorly approximated ETB Hamiltonian. Therefore, Fψ can be
estimated as∥∥∣∣ψAb

j,k

〉 − ∣∣ψ̃T B
j,k

〉∥∥2 � 2
∥∥[Î − P̂ (k)]

∣∣ψAb
j,k

〉∥∥2

+ 2
∥∥P̂ (k)

∣∣ψAb
j,k

〉 − ∣∣ψ̃T B
j,k

〉∥∥2
. (17)

The first term on the right-hand side of the last equation
describes the deviation of the low-rank approximated ab initio
wave functions. This becomes obvious with the projector
property P̂ 2(k) = P̂ (k),∥∥[Î − P̂ (k)]

∣∣ψAb
j,k

〉∥∥2 = 〈
ψAb

j,k

∣∣[Î − P̂ (k)]
∣∣ψAb

j,k

〉
. (18)

The second term on the right-hand side of Eq. (17) contains
information about the quality of the eigenfunctions of the ap-
proximate ETB Hamiltonian Ĥ T B(k). This is understandable
when Eqs. (5) and (12) are inserted into this term,∥∥P̂ (k)

∣∣ψAb
j,k

〉 − ∣∣ψ̃T B
j,k

〉∥∥2

= 2 − 2 Re

[∑
α,i

c
†
j,α(k)Vj,i(k)di,α(k)

]
. (19)

The fitness function Fψ represents a major improvement over
the traditional ETB eigenvalue fitting (e.g., typically limited
to energies and effective masses). All fitness functions are
minimized by iterating over steps 3 and 4: the Slater-Koster-
type parameters for the ETB Hamiltonian Ĥ T B(k) and the
parameters of the radial ETB basis functions Ra,n,l(r) are
adjusted for every iteration of step 3.

Step 5. Once the fitness functions are small enough to end
the iterations, it is assumed that those eigenfunctions of the
ETB Hamiltonian Ĥ T B(k) that were subject to the fitting are
identical to the eigenfunctions of the ab initio Hamiltonian
ĤAb(k) after a transformation Â(k),∣∣ψT B

j,k

〉 ≈
∑

i

Aj,i(k)
∣∣ψAb

i,k

〉
. (20)

This transformation Â is determined by a singular-value
decomposition of the rectangular overlap matrix of ab initio
eigenstates with ETB eigenstates,〈

ψAb
i,k

∣∣ψT B
j,k

〉 =
∑

p

Ui,p(k)�p,p(k)Wp,j (k). (21)

The row index i runs over all ab initio eigenstates, exceeding
those that served as fitting targets, whereas the column index
j covers all the ETB eigenfunctions. � and W are square
matrices, and U is a rectangular matrix. The transformation Â

is then defined as

Aj,i(k) =
∑

p

Wj,p(k)U †
p,i(k). (22)

Â is constructed from relevant columns of a unitary transfor-
mation. Combining Eqs. (20) and (9) allows us to determine
the Bloch periodic final basis functions,∣∣�final

α,k

〉 =
∑
i,j

d
†
α,j (k)Aj,i(k)

∣∣ψAb
i,k

〉
. (23)

The real-space counterpart of |�final
α,k 〉 is given by

�final
α (r − R − τ ) = V

(2π )3

∫
BZ

dke−ik·(R+τ )�final
α,k (r). (24)

085301-4



TIGHT-BINDING ANALYSIS OF Si AND GaAs . . . PHYSICAL REVIEW B 92, 085301 (2015)

III. RESULTS

In this work, ab initio level calculations of Si and GaAs
systems were performed with VASP [30]. The screened hy-
brid functional of Heyd, Scuseria, and Ernzerhof (HSE06)
[31] is used to produce band gaps [26] comparable with
experiments in both the bulk and the UTB cases. In the
HSE06 hybrid functional method, the total exchange energy
incorporates 25% short-range Hartree-Fock (HF) exchange
and 75% Perdew-Burke-Ernzerhof (PBE) exchange [32]. The
screening parameter μ which defines the range separation is
empirically set to 0.2 Å for both the HF and PBE parts. The
correlation energy is described by the PBE functional. In all
presented HSE06 calculations, a cutoff energy of 350 eV is
used. �-point centered Monkhorst-Pack k-space grids are used
for both bulk and UTB systems. The size of the k-space grid
for bulk calculations is 6 × 6 × 6, while the one for UTB is
6 × 6 × 1. k points with integration weights equal to zero are
added to the original 6 × 6 × 6 or 6 × 6 × 1 grid in order to
generate energy bands with higher k-space resolution. PAW
[14] pseudopotentials are used in all HSE06 calculations.
The pseudopotentials for Si, Ga, and As atoms include the
outermost occupied s and p atomic states as valence states.
The low-lying 3d states of Ga are treated as core states since
the incorporation of 3d states as valence states leads to less
than 1% changes to fitting targets shown in Tables I and II
for bulk materials. The spin-orbit coupling is included in band
structure calculations. Small hydrostatic strains up to 0.3%
are introduced to adjust the bulk band gaps in order to match
experimental results. The lattice constant used in this work is
given by Table III.

A. Application to bulk materials

For bulk Si and GaAs, fitting targets include the band
structures of the lowest 16 bands (with spin degeneracy) along

TABLE I. Comparison of targets’ bulk Si. Critical band edges
and effective masses at �, X, and L points from ETB and HSE06
calculations are compared. Eg and �SO are in eV; effective masses
are scaled by free-electron mass m0. The error column summarizes
the discrepancies between the HSE06 and TB results.

Si

Targets TB Ref HSE06 TB Error (%)

Eg(�) 3.399 3.302 3.244 1.8
Eg(X) 1.131 1.142 1.139 0.2
Eg(L) 2.383 2.247 2.188 2.6
�SO 0.047 0.051 0.052 0.8
mhh100 0.299 0.281 0.282 0.097
mhh110 0.633 0.566 0.572 0.977
mhh111 0.796 0.704 0.714 1.433
mlh100 0.232 0.206 0.204 1.001
mlh110 0.165 0.151 0.149 0.937
mlh111 0.156 0.143 0.142 0.927
mso100 0.266 0.244 0.242 0.809
mso110 0.266 0.244 0.242 0.795
mso111 0.267 0.244 0.242 0.770
mcXl 0.887 0.928 0.857 7.615
mcXt 0.225 0.207 0.215 3.544

TABLE II. Comparison of targets’ bulk GaAs. Critical band
edges and effective masses at �, X, and L from TB and HSE06
calculations are compared. Eg and �SO are in eV; effective masses
are scaled by free-electron mass m0. The error column summarizes
the discrepancies between HSE06 and TB results.

GaAs

Targets TB Ref HSE06 TB Error (%)

Eg(�) 1.424 1.418 1.416 0.2
Eg(X) 1.900 1.919 1.910 0.5
Eg(L) 1.707 1.702 1.708 0.3
�SO 0.326 0.368 0.367 0.1
mhh100 0.383 0.310 0.337 8.510
mhh110 0.667 0.573 0.619 7.879
mhh111 0.853 0.750 0.813 8.507
mlh100 0.085 0.082 0.083 0.744
mlh110 0.078 0.073 0.074 1.614
mlh111 0.076 0.071 0.072 1.715
mso100 0.166 0.164 0.160 1.998
mso110 0.166 0.164 0.160 2.037
mso111 0.166 0.164 0.160 2.041
mc100 0.068 0.065 0.067 2.787
mc110 0.068 0.066 0.067 2.790
mc111 0.068 0.065 0.067 2.781
mcXl 1.526 1.577 1.480 6.142
mcXt 0.177 0.215 0.204 5.083
mcLl 1.743 1.626 1.446 11.055
mcLt 0.099 0.111 0.136 22.614

high-symmetry directions, important effective masses, and
wave functions at high-symmetry points such as �, L, and
X points. ETB basis functions in real space are reconstructed
on the 6 × 6 × 6 � center k-space grid using Eq. (24).

The band structures and density of states (DOS) of bulk
Si and GaAs (HSE06 vs ETB) are shown in Figs. 4 and 5,
respectively. The band structures using existing Si and GaAs
ETB parameters [12,33] are also shown in corresponding
figures. The ETB band structures and DOS using parameters
generated from this work show better agreement with the corre-
sponding hybrid functional results compared with the existing
parameterizations. For bulk Si, the existing parametrization
shows an unexpected low s∗ band around 5 eV above the
topmost valence bands. In the traditional fitting process, the s∗
band shows a strong preference for moving downward [33].
Due to the large number of parameters to be determined,
traditional (energy-gap and effective-mass) fitting procedures
can find local minima in their fitness functions corresponding
to wave functions significantly different from those predicted
by ab initio methods. The present method has the important
advantage that optimization involves not only masses and gaps
but also wave functions. Thus, the ETB wave functions can
be kept close to their ab initio counterparts. For GaAs, the
existing parameterization shows 2 eV higher s-type low-lying
valence bands. The ETB parameters of bulk Si and GaAs
are listed in Table III. It can be seen from Tables I and II
that the anisotropic hole masses from ETB show remarkable
agreement with HSE06 results. The principal authors of the
previous works [12,33] explicitly pointed out that fitting hole
masses had been very difficult with the previous methods.
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TABLE III. Slater-Koster-type ETB parameters of bulk Si and
GaAs and passivation parameters of UTBs. All presented parameters
except for the lattice constants are eV. The lattice constants are
in angstroms. The hydrogen atoms which passivate As and Ga at
surfaces are denoted by Ha and Hc, respectively. On-site energies of
As and Ga at surfaces are shifted by δa and δc, respectively.

Si GaAs

a0 5.43 Å a0 5.6307 Å
Es − 2.803316 Esa − 8.063758 Esc − 1.603222
Ep 4.096984 Epa

3.126841 Epc
4.745896

Es∗ 25.163115 Es∗
a

21.930865 Es∗
c

23.630466
Ed 12.568228 Eda

13.140998 Edc
14.807586

� 0.021926 �a 0.194174 �c 0.036594
Vssσ − 2.066560 Vsascσ − 1.798514
Vs∗s∗σ − 4.733506 Vs∗

a s∗
c σ − 4.112848

Vss∗σ − 1.703630 Vsas∗
c σ − 1.258382 Vscs

∗
a σ − 1.688128

Vspσ 3.144266 Vsapcσ 3.116745 Vscpaσ 2.776805
Vs∗pσ 2.928749 Vs∗

a pcσ 1.635158 Vs∗
c paσ 3.381868

Vsdσ − 2.131451 Vsadcσ − 0.396407 Vscdaσ − 2.151852
Vs∗dσ − 0.176671 Vs∗

a dcσ − 0.145161 Vs∗
c daσ − 0.810997

Vppσ 4.122363 Vpapcσ 4.034685
Vppπ − 1.522175 Vpapcπ − 1.275446
Vpdσ − 1.127068 Vpadcσ − 1.478036 Vpcdaσ − 0.064809
Vpdπ 2.383978 Vpadcπ 1.830852 Vpcdaπ 2.829426
Vddσ − 1.408578 Vdadcσ − 1.216390
Vddπ 2.284472 Vdadcπ 2.042009
Vddδ − 1.541821 Vdadcδ − 1.829113

HSi Ha(passivate As) and Hc(passivate Ga)

EsH − 3.056510 EsHa
2.758428 EsHc

− 0.308397
VsH sSiσ − 4.859509 VsHa saσ − 2.960420 VsHc scσ − 3.151427
VsH pSiσ 3.776178 VsHa paσ 5.490764 VsHc pcσ 3.539284
VsH s∗

Si
σ 0.0 VsHa s∗

a σ 0.0 VsHc s∗
c σ − 0.129904

VsH dSiσ − 0.007703 VsHa daσ − 1.727690 VsHc dcσ − 0.252733
δSi − 0.276789 δa − 0.266815 δc − 0.586952

The orthogonal ETB basis functions Bfinal of Si, Ga, and
As atoms are shown in Fig. 6. The ETB basis functions are
slightly environment dependent because they are orthogonal.

Thus, the ETB basis functions are not invariant under arbitrary
rotations but invariant under symmetry operations within the
Td group, as pointed out by Slater and Koster [24]. It can be
seen from Figs. 6(a) to 6(f) that the s and p orbitals show
s and p features near the atom. More complicated patterns
in the area farther away from the atom can be observed.
These complicated patterns correspond to components with
high angular momenta. The feature of an orthogonal ETB
basis function resembles the augmented basis functions used in
ab initio level calculations such as APWs and muffin-tin
orbitals (MTOs). The orthogonal ETB basis functions have
multiple angular parts in each orbital, as shown by Figs. 6(g)–
6(i). The s-, p-, and d-type ETB basis functions are dominated
by components with l = 0,1, and 2, respectively. More than
90% of the s, p, and d orbitals are comprised of their l = 0,
1, and 2 components, respectively. The excited s∗-type ETB
basis functions have higher angular momentum, and the l = 0
components have contributions of 60% to 70%. The second
largest contribution in s∗ orbitals is the f component with
l = 3. The f component attached to the s∗ orbitals has an
angular part equivalent to real-space function xyz. This is a
result of the existence of an xyz-like crystal field near each
atom in zinc-blende and diamond structures.

B. Application to UTBs

To validate the transferability of the ETB model, band
structures and eigenfunctions of [001] UTBs passivated by
hydrogen atoms are calculated by both HSE06 and ETB
models. The current calculations assume no strain in the
UTBs. In the HSE06 calculations, charged hydrogen atoms
are used to passivate the dangling bonds of the surface atoms
in GaAs UTBs. The surface As and Ga atoms are passivated
by charged hydrogen atoms with a 3/4 (denoted by HAs)
and 5/4 (denoted by HGa) electron, respectively. The charged
hydrogen atoms neutralize most of the surface-induced electric
field in the UTBs. As a result, the charge distribution and
local potential shows almost flat envelopes inside the UTBs.
A small deviation in the potential can be observed only at
the surface Si/Ga/As atoms. The nearly flat potential envelope
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FIG. 4. (Color online) Band structure and density of states of bulk Si. ETB band structure agrees with (a) the HSE06 band structure,
especially for (b) bottom conduction bands and (c) top valence bands.
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FIG. 5. (Color online) Band structure and density of states of bulk GaAs. ETB band structure agree with (a) the HSE06 band structure,
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suggests geometry-dependent built-in potentials are needed
only for surface atoms. Thus, the comparisons between self-
consistent hybrid functional calculations and single-shot ETB
calculations are fair.

The HSE06 calculations show that the hydrogen orbitals
contribute to the deep valence bands; thus, hydrogen atoms
are considered explicitly into the ETB Hamiltonian of UTBs
in this work. The 1s orbital is used as the ETB basis function

 

 

 

 

 

 

−1 0 1
−1

0

1

 

 

−1 0 1
−1

0

1

 

 

−1 0 1
−1

0

1

 

 

−1 0 1
−1

0

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

 
−1 0 1

−1

  
−1 0 1

−1

0

1

0

1Si - s 

Si - py 

Ga - s 

Ga - py As- py 

As - s 

Angular quantum number l

W
ei

g
h

t 
o

f l
 in

 o
rb

it
al

s Si - orbitals As - orbitals Ga - orbitals 

(a) (b) (c) 

(i) 

(f) 

(h) 

(e) 

(g) 

(d) 

0 2 4
0

0.2

0.4

0.6

0.8

1

 

 
s
s*
p
d

 

 
s
s*
p
d

 

 
s
s*
p
d

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 2 4 0 2 4

(g) (h) (i) 
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for hydrogen atoms. The explicit-passivation model includes
extra Slater-Koster-type ETB parameters for hydrogen and
hydrogen bonds EsH s , VsH sσ , VsH pσ , VsH s∗σ , and VsH dσ . For
the rest of the UTBs, the bulk Si/GaAs parameters listed in
Table III are used. Furthermore, a geometry- and element-
dependent potential δ is included for surface atoms. The
on-site energies of the surface atoms are shifted by δ. The
on-site energies of the surface Ga and As atoms thus become
Eαc

+ δc and Eαa
+ δa , respectively. Here α stands for s, p,

d, and s∗ orbitals. ETB parameters of Si/GaAs in Si/GaAs
UTBs are identical to the parameters of unstrained bulk
materials provided in Sec. III A. To determine the passivation
parameters, an extra fitting process is needed: the band
structure and wave functions of UTBs with 17 Si/GaAs atomic
layers are considered. Targets considered in the fitting process
include the direct and indirect band gaps of the UTBs and top
valence and lowest conduction states and band structures from
0.5 eV below the top valence bands to 0.5 eV above the lowest
conduction band.

To determine the ETB parameters of H passivation, band
structures and real-space wave functions of selected bands
near the Fermi level of the UTBs are considered as fitting
targets. The inclusion of wave functions as targets serves the
purpose of correcting possible problematic states. The target
Si/GaAs UTBs contain 17 Si/GaAs atomic layers. Parameters
for hydrogen atoms are also shown in Table III. In GaAs
UTBs, As and Ga are passivated by hydrogen atoms with
different charges; thus, the hydrogen atoms have different
on-site energies when different types of atoms are passivated.
The hydrogen atoms bonding with As atoms are charged
positively, while the ones bonding with Ga atoms are charged
negatively. Consequently, the Hc which forms a bond with As
has a higher on-site energy than the Ha which forms a bond
with Ga.

Band structures of Si/GaAs UTBs are shown in Fig. 7. The
ETB band structures match the HSE06 band structures well
for energies ranging from 1 eV below the topmost valence
bands to 1 eV above the lowest conduction bands. Using
the explicit ETB basis functions, ETB wave functions of
UTBs with subatomic resolution are obtained and can be
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terminated GaAs UTBs by ETB agree with HSE06 band structures,
demonstrating the bulk Si and GaAs ETB parameters are transferable
to UTB cases. All UTBs contain 17 Si/GaAs atomic layers (with
thickness 4a0).
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FIG. 8. (Color online) Planar averaged real-space probability
amplitudes of the lowest conduction and topmost valance states of
001 (a) Si and (b) As-terminated GaAs UTBs by HSE06 and ETB
calculations. With the real-space TB basis functions, the real-space
probability amplitudes of TB calculations show reasonable agreement
with the HSE06 probability amplitudes. UTBs contain 17 Si/GaAs
atomic layers (with thickness 4a0).

compared with corresponding HSE06 wave functions. Planar
averaged probability amplitudes of wave functions of the
lowest conduction band and topmost valence bands in Si/GaAs
UTBs are shown in Fig. 8. It can be seen that not only the
envelope but also details of the subatomic resolution of the
ETB planar averaged |ψ |2 show agreement with corresponding
HSE06 results. On the other hand, Fig. 9 compares the
ETB atom-site-resolved probability amplitudes among ETB
models in the present and previous works (Refs. [12,33]). The
cations and anions in GaAs UTBs form different envelopes
for all of the presented states. The lowest conduction and
highest valence states turn out to be well-confined states in
Si UTBs in all of the calculations. However, in GaAs UTBs,
the lowest conduction states have a significant contribution
from the surface atoms. In Si ETB probability amplitudes
by parametrizations from Ref. [33] show similar envelopes
compared to the ETB and HSE06 probability amplitudes in
this work. Figure 9(d) shows the problematic valence states
in As-terminated GaAs UTB from parameters from Ref. [12].
The corresponding valence states from this work turn out to
be well-confined ones. To investigate this issue in more detail,
in Fig. 10, ETB atom-site-resolved probability amplitudes for
the topmost valence states of the four possible As-terminated
GaAs UTBs are plotted: parameters from Ref. [12] and implicit
passivation [13] [Fig. 10(a)], parameters from Ref. [12] and
explicit passivation [Fig. 10(b)], parameters from this work
and implicit passivation, and [Fig. 10(c)], and parameters
from this and explicit passivation [Fig. 10(d)]. It is clear that,
for a given set of bulk parameters, the implicit-passivation
model leads to wave functions that are less confined than
those of the explicit-passivation model. On the other hand,
with the same passivation model, the ETB parameters from
this work show more confined top valence states than the
existing ETB parameters. Thus, the unconfined ETB state
using the existing parameter set and the implicit-passivation
model appears to be due to both the bulk GaAs parameters
and the passivation model. The implicit model [13] replaces
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ETB atom site probability using different parameters is qualitatively
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is, the valence states with parameters and passivation model from
previous work are not confined. UTBs contain 17 atomic layers
(thickness is 4a0).

the s and p orbitals of the surface atoms with sp3 hybrids
and raises the energy of the dangling hybrids by δsp3 = 30 eV.
The d and s∗ orbitals are left completely unpassivated, and
the unconfined states of Fig. 10(a) are only slightly affected
by changing the value of δsp3. The impact of changing the
implicit-passivation model to the explicit-passivation model
is obvious by comparing Fig. 10(a) to Fig. 10(b), as well as
Fig. 10(c) to Fig. 10(d). To better understand the impact of
bulk parameters on this behavior, the contribution of orbitals
to the bulk bands by different parameter sets is compared.
Obvious differences are found at the d-orbital contributions
of the topmost bulk valence states at the � point. The bulk
valence states from parameters from Ref. [12] have about a
16% contribution from the d orbital of Ga, while the ones from
parameters from this work have only 8.5%. This discrepancy
suggests either d-orbital on-site energies are excessively low or
coupling of pa and dc is excessively strong in the parameter set
from Ref. [12]. It turns out that the couplings of pa and dc are
the major problematic parameters in the previous parameter
set: by reducing the magnitude of the nearest-neighbor pa-dc

coupling parameters in both sets as Vpadcσ → Vpadcσ + 0.3 eV,
Vpadcπ → Vpadcπ − 0.3 eV, remarkably, in both cases the
topmost valence-band state became much more confined.
Bulk valence-band (VB) wave functions in the modified and
original parameter sets tell the story: The general trend is that
bulk sets which generate more p-like top-of-the-VB states
give better confinement under passivation (especially implicit
passivation) than those with higher d content. The reduction
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FIG. 10. (Color online) Comparison of ETB wave functions us-
ing different ETB parameters and passivation models. (a) and (b)
use ETB parameters in Ref. [12]. (c) and (d) use ETB parameters
in this work. (a) and (c) correspond to the implicit-passivation
model [13]; (b) and (d) correspond to the explicit-passivation model.
The ETB parameters with the explicit-passivation model show the
most confined states, while the previous parameters and implicit-
passivation model lead to less confined states.

of |Vpadcσ | and |Vpadcπ | leads to more p-like top-of-the-VB
states. The Ga-terminated case has fewer passivation problems
because its top-of-the-VB bulk states have a larger contribution
from the As atoms than from the Ga atoms.

Figure 11 shows the band gaps of the Si and GaAs [001]
UTBs as functions of UTB thickness. With the ETB parameters
from this work, the ETB band gaps of Si and GaAs UTBs with
thicknesses from 0.5 to 4 nm agree well with the gaps from
HSE06 calculations. The ETB band gaps of Si UTBs using
parameters from previous work also show good agreement
with the HSE06 results. However, the ETB band gaps of
GaAs UTBs using parameters from previous work and the
implicit-passivation model are around 20% lower than the
hybrid functional results. The gaps of GaAs UTBs terminated
with Ga and As atoms are very close in value for both hybrid
functional and ETB results in this work; however, the gaps of
GaAs UTBs terminated with Ga and As atoms from previous
parametrizations and the implicit-passivation model show 0.1
to 0.2 eV discrepancies. The band gap change in Si UTBs
thicker than 3 nm can be model by the effective-mass model
(assuming a parabolic E-k relation). However, in the GaAs
UTBs, the discrepancies between effective-mass calculations
and HSE06 or TB calculations are obvious for all GaAs
UTBs presented, suggesting the nonparabolic feature of the
GaAs valleys has a significant impact on GaAs nanostructures.
The gaps from previous parameterization with the implicit-
passivation model of As-terminated GaAs UTBs have lower
confined energies due to the unconfined valence states.
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FIG. 11. (Color online) Band gaps of (a) Si UTBs and (b) As-terminated UTBs) by HSE06 and ETB calculations. For the presented UTBs
with thickness ranging from 1 to 4.5 nm, the ETB band gaps have discrepancies of less than 10 meV compared with HSE06 ones. The band gap
changes by the effective-mass calculation show agreement with HSE06 for Si UTBs thicker than 3 nm, while the effective-mass calculations
have obvious discrepancies for all GaAs UTBs. The HSE06 and ETB calculations using parameters from this work consider hydrogen atoms
explicitly, while the ETB calculations using parameters from previous work are based on the implicit-passivation model [13].

IV. CONCLUSION

It has been shown that the existing ETB parametrization
together with the implicit-passivation model gives unphysical
states in As-terminated GaAs UTB calculations. A more
reliable technique of ab initio mapping which generates
ETB parameters and basis functions ab initio is developed.
The ab initio mapping process is applied to both bulk Si
and GaAs. Slater-Koster-type ETB parameters within first-
nearest-neighbor approximation and highly localized ETB
basis functions are obtained. The ETB parameters and basis
functions of Si and GaAs are validated in corresponding
UTB systems with passivation models that consider hydrogen
atoms explicitly. Band gaps in Si and GaAs UTBs with
different thicknesses are also calculated by HSE06, ETB, and
the effective-mass model. Compared with the existing ETB
parametrizations and implicit-passivation model, the ETB
calculations in this work show good agreement with HSE06
calculations in both band structures and wave functions. This

work shows that the ETB parameters from ab initio mapping
have good transferability. The mapping method developed
here significantly reduces the uncertainty in both bulk and
passivation models.
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