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Importance of anisotropic Coulomb interaction in LaMnO3
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In low-temperature antiferromagnetic LaMnO3, strong and localized electronic interactions among Mn 3d

electrons prevent a satisfactory description from standard local density and generalized gradient approximations
in density functional theory calculations. Here, we show that the strong on-site electronic interactions are
described well only by using direct and exchange corrections to the intraorbital Coulomb potential. Only
DFT + U calculations with explicit exchange corrections produce a balanced picture of electronic, magnetic, and
structural observables in agreement with experiment. To understand the reason, a rewriting of the functional form
of the + U corrections is presented that leads to a more physical and transparent understanding of the effect of
these correction terms. The approach highlights the importance of Hund’s coupling (intraorbital exchange) in
providing anisotropy across the occupation and energy eigenvalues of the Mn d states. This intraorbital exchange
is the key to fully activating the Jahn-Teller distortion, reproducing the experimental band gap and stabilizing
the correct magnetic ground state in LaMnO3. The best parameter values for LaMnO3 within the DFT (PBEsol)
+ U framework are determined to be U = 8 eV and J = 1.9 eV.
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I. INTRODUCTION

LaMnO3 (LMO) is characteristic of the ABO3 family of
strongly correlated transition metal oxide perovskites, which
generally exhibit complex phase diagrams, as a result of
subtle coupling across several distinct mechanisms [1]: bulk,
thin film, and interfacial LaMnO3 are subject to a multitude
of symmetry breaking mechanisms, including crystal field
[1], octahedral distortion [2], orbital ordering and Jahn-
Teller distortion [3–6], Mott-type strong d-electron Coulomb
interactions (direct and exchange) [7,8], and charge transfer
ordered (Verwey) states [9–11]. All of these mechanisms are
believed to exist and compete in varying ways in this material.
As a result, LaMnO3 naturally exhibits a rich phase diagram
as a function of temperature and pressure [6] as well as dopant
concentration [12,13]. These properties make LaMnO3 the
single most examined metal oxide in the LaXO3 class (where
X is a transition metal atom) [14]. Doping on the ABO3 A site
provides a particularly rich field of experimentally observed
phenomena, with both Na and Ca doped La1−xAxMnO3

exhibiting colossal magnetoresistance (CMR) [15,16] and a
Seebeck coefficient that can exhibit positive or negative values,
which may lead to potential thermopower applications [17].
Pure bulk LaMnO3 is spin polarized and nonpolar, but recent
theoretical work shows that the magnetic state in Sr doped
La1−xSrxMnO3 may be controlled through variation in the
electric polarization state [13]. Recent multiferroic theory
predicts novel magnetic properties due to t2g ferromagnetic
superexchange in Ti doped LMO interfaces [18]. Finally, the
interface between La1−xSrxMnO3 and a ferroelectric shows
a polar state that also has a reversible orbital polarization
[19].

This interest in LMO from condensed matter and materials
scientists underscores the value of a reliable first-principles
description based on, for example, density functional theory
(DFT). In particular, the magnetic, electronic, and crystal struc-

ture should be accessible simultaneously within a low-cost
computational framework. Unfortunately, previous Hartree-
Fock, DFT and hybrid-functional examinations of bulk LMO
show that that obtaining a satisfactory description is not trivial
[1,20].

In this work, we show the limitations and successes of two
different DFT + U methods. The Dudarev et al. Coulomb
correction [21], here called Ueff, averages out exchange effects
of the Mn d shell, and we show that it cannot simultaneously
reproduce the bulk band gap, structure and magnetism. The
dedicated anisotropic exchange term in the Liechtenstein
et al. Coulomb correction [22], here called U |J , dramatically
improves the description of LMO. The U |J method answers
the specific call for a practical DFT-based methodology
capable of reproducing the gap, structure and magnetism
simultaneously in LMO [23]. This is useful as understanding
the coupling between electronic, magnetic, and lattice degrees
of freedom in LMO is a matter of persistent interest [2,23,24].

Using the U |J method, we show the importance of Hund’s
coupling in LMO. Intraorbital exchange can energetically
order the orbitals of the Mn t3

2ge
1
g ion, which in turn strongly

affects interorbital magnetism and the size of the LMO band
gap. The Mn e1

g occupancy polarization [19,25]

πegσ = fx2−y2σ − f3z2−r2σ

fx2−y2σ + f3z2−r2σ

, (1)

for the x2 − y2 and 3z2 − r2 occupancy eigenvalues (f ) where
σ labels spin, is highly sensitive to intraorbital exchange term
J in the U |J scheme. By modifying the sign and value of
πegσ , we correct the DFT description of Jahn-Teller (JT)
distortion, and the electronic and magnetic structures of LMO.
In addition, the U |J calculations provide insight into the origin
of magnetic, electronic, and structural ordering in LMO.
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II. METHODOLOGY

Periodic plane-wave density functional theory (DFT)
calculations are performed using the VASP software [26,27],
the local density approximation (LDA) functional of Perdew
and Zunger (PZ81) [28], and the generalized gradient approx-
imation (GGA) in the form of the Perdew-Burke-Erzenhof
solids-adapted exchange correlation functional (PBEsol)
[29,30]. Valence electrons are described using the projector
augmented wave (PAW) method [31,32] with core states (up
to 4d in La, 2p in Mn, and 2s in O) frozen at their atomic
reference states. Plane waves were cutoff above a kinetic
energy of 520 eV, and a 5×4×5 k-point mesh was employed
for the LaMnO3 unit cells. All relaxed structures fulfill a
convergence criterion of less than 0.01 eV/Å, for both ionic
forces and volume-normalized stresses (as standard in VASP).

DFT has known shortcomings in the prediction of the
electronic structure of materials with localized electronic states
[22,33,34]. A typical example are the bands derived from
Mn d orbitals in LaMnO3: the errors can be corrected to
various extents by employing Hubbard-U type corrections to
account for intraatomic Coulomb interactions in the DFT + U
approach [21,22,34]. The most popular and simplest Coulomb
correction is the “spherically averaged” scheme of Dudarev
et al. [21], here called DFT + Ueff, which has only a single
effective U parameter, Ueff. A more sophisticated approach is
the “rotationally invariant” scheme of Lichtenstein and Zaanen
[22], which we label here as DFT + U |J . Note the simpler
Dudarev Ueff approach was developed after the Liechtenstein
U |J approach, and both are fully rotationally invariant.

Both DFT + U methodologies add Hartree-Fock type cor-
rections to the DFT total energy that act on a local subspace of
atomiclike orbitals. The DFT + Ueff total energy is given by

EDFT+Ueff = EDFT + Ueff

2

∑
at

∑
i,σ

(
fiσ − f 2

iσ

)
, (2)

where EDFT refers to some chosen flavor of electron density-
based exchange-correlation approximation (LDA or GGA in

our work). The index at specifies the Mn sites where the
correction is performed. The eigenoccupations fiσ of the
electronic on-site density matrix are labeled by spin σ and
index i which represents a linear combination of angular
momentum quantum numbers (which in our case ranges
over the five magnetic quantum numbers m = −2, − 1,0,1,2
for the 3d Mn orbitals). Ueff = U − J is the Hubbard-type
energy parameter for this approach while U and J are the
separate direct and exchange Coulomb parameters [22] (see
also Appendix A).

For our work here, the DFT +U |J total energy is best
rewritten as an added correction to the DFT + Ueff approach
(as detailed in Appendix A) given by

EDFT+U |J = EDFT + Ecorr

= EDFT + Ueff

2

∑
at

∑
i,σ

(
fiσ − f 2

iσ

)

+ 1

2

∑
σσ ′,ij

C σσ ′
ij fiσ fjσ ′ − �X σ

ij fiσ fjσ δσσ ′ . (3)

The correction to the DFT band energy eigenvalue εiσ stems
from the occupancy derivative of the correction terms given
by

�εcorr
iσ = ∂Ecorr

∂fiσ

= Ueff

(
1

2
− fiσ

)

+
∑
j,σ ′

C σσ ′
ij fjσ ′ − �X σ

ij fjσ δσσ ′ ,

where the first term is the Ueff correction and the second and
third terms are the added contribution from the U |J scheme.
For compactness and for use below, it is useful to collect all
occupancies or energy eigenvalues for the same spin into a
vector fσ or εσ in order to write these corrections in matrix
notation. For atomic d shells, the Appendix A shows that

�εcorr
σ = Ueff

(
1
2 − fσ

) + JAσ fσ + JBσ fσ̄ , (4)

where σ̄ represents the opposite spin to σ . For canonical t2g

and eg orbitals, the dimensionless matrices Aσ and Bσ are

Aσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

3z2 − r2 x2 − y2 xy yz xz

3z2 − r2 0 −0.52 −0.52 0.52 0.52
x2 − y2 −0.52 0 0.86 −0.17 −0.17

xy −0.52 0.86 0 −0.17 −0.17
yz 0.52 −0.17 −0.17 0 −0.17
xz 0.52 −0.17 −0.17 −0.17 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Bσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

3z2 − r2 x2 − y2 xy yz xz

3z2 − r2 1.14 −0.63 −0.63 0.06 0.06
x2 − y2 −0.63 1.14 0.29 −0.40 −0.40

xy −0.63 0.29 1.14 −0.40 −0.40
yz 0.06 −0.40 −0.40 1.14 −0.40
xz 0.06 −0.40 −0.40 −0.40 1.14

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Both DFT + U methodologies permit the description of
electron localization phenomena, that stem from Hartree-Fock

physics and the related removal of self-interaction errors,
which enable essential long-range ordering (orbital, spin,
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charge and lattice degrees of freedom) [33]. For Mn in LMO,
delocalized s and p orbitals typify the weakly correlated
electronic states successfully described by DFT, while the
localized Mn d states require the + U correction. In the
DFT + Ueff approach, Ueff in Eq. (2) provides occupation-
dependent corrections to DFT, while the DFT + U |J approach
in Eq. (3) adds further degrees of explicit spatial/orbital
dependent corrections. Both corrections provide a basis for for
energy splitting of d orbitals (and related symmetry breaking
and orbital polarization) on top of splittings due to spin
exchange and/or crystalline geometrical distortions already
present at the LDA or GGA density functional level.

The U |J correction variety in Eq. (4) is most relevant to
materials with strongly interacting electrons with an explicit
orbital symmetry dependence [35], for example, Fe-based
superconductors [36], heavy fermion metals [37], noncollinear
magnetic materials [38,39], and orbitally ordered materials in
which Hund’s coupling is critical to establishing the correct
insulating or metallic character [40]. Although the anisotropic
exchange corrections to DFT have successfully been used to
describe manganese oxides in the past [39,41,42], we believe
our work is the first explicit calculation and analysis of the
U |J exchange matrix elements and anisotropic splitting for
LaMnO3.

In our work, our global coordinate system is chosen to
align the orthogonal x ′,y,′z′ axes along the LMO unit cell
(a,b,c) vectors. A local x,y,z basis for each Mn is defined
by aligning the local axes with the Mn-O bonds of each tilted
MnO6 octahedron (see Figs. 1 and 4): the local x axis is chosen
along the shortest Mn-O bond (strongly JT active), the local
y axis along the intermediate length Mn-O bond (here called
apical), and the local z axis is along the longest Mn-O bond
(strongly JT active). Use of this local basis is more convenient
for analysis of the electronic states and occupancies. The

FIG. 1. (Color online) (001) face of A-type antiferromagnetic
(A-AFM) LaMnO3: Mn in purple, La in green, and O in red. Arrows
indicate direction of spin polarization on Mn ions.

transformation from global to local coordinates is performed
for each relaxed geometry by employing a direct polynomial-
based transformation of orbitals (detailed in Appendix B).
Unless specifically noted, orbitals and occupancies refer to the
local basis.

III. RESULTS AND DISCUSSION

At 750 K, LaMnO3 (LMO) undergoes a structural phase
transition, transforming from cubic to orthorhombic symme-
try. Under ambient conditions the orthorhombic perovskite
has a paramagnetic spin structure. Below the Néel tem-
perature of TN ≈ 140 K [43], LMO is an insulator with
A-type antiferromagnetic (A-AFM) spin ordering. For the
low-temperature orthorhombic (Pnma) LMO structure shown
in Fig. 1, experimental reports of lattice parameters are a =
5.736 Å, b = 7.703 Å, and c = 5.540 Å by neutron powder
diffraction [44]. To support the A-AFM ordering in LaMnO3,
the Mn d4 electrons exchange anisotropically: ferromagnetic
(FM) coupling exists between Mn in {010} planes while AFM
coupling exists between successive planes along [010].

The reported experimental band gaps in LMO cover a
range of values, depending on whether the gap is determined
from measurements on conductivity (0.24 eV) [17], optical
absorption (1.1 eV) [45], photoemission (1.7 eV) [46], optical
conductivity (1.9 eV) [47], or resonant Raman spectroscopy
(2 eV) [48]. DFT is a single-particle theory, so even with the
exact exchange-correlation functional, it can only describe the
fundamental (quasiparticle) band gap and not the optical one.
We therefore consider the most appropriate reference value
to be the 1.7-eV photoemission gap measured by Saitoh et al.
[46]. We note that recent computational work by Lee et al. [49]
predicts a direct gap of 1.1 eV, in agreement with the optical
absorption gap of 1.1 eV measured by Arima et al. [45]. The
value of the optical gap is generally lower than the fundamental
gap due to electron-hole interactions (i.e., excitonic effects).
Such two-particle interactions are not included in standard
one-particle DFT, so we believe the most reliable comparisons
should be made between a benchmark indirect experimental
photoemission gap such as the 1.7-eV Saitoh gap [46] and the
indirect DFT gap.

One of our main practical considerations here is to repro-
duce the different facets of the above experimental description.
To do this, DFT calculations are performed screening through
different levels of Coulombic localisation.

A. Description of LaMnO3 using DFT + U

Previous work has applied the single term Ueff approach
to calculations on bulk LaMnO3 [1,13,23,50]. The failure
of this approach to simultaneously describe the energy gap,
structure and magnetism drives us to systematically examine
the Ueff method. These initial results also provide context for
the more sophisticated U |J method and analysis of its merits
and behavior below.

1. Experimental LaMnO3 structure vi a DFT + Ueff

Standard LDA (PZ81) and GGA (PBEsol) with Ueff = 0 eV
both successfully stabilize the low-temperature experimental
A-AFM ordering as shown in Table I. However, this is
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TABLE I. LDA + Ueff and GGA + Ueff results for the energy
gap EGap (in eV), for the A-AFM and FM phases, and the total
energy difference �E = EA-AFM − EFM (in meV) per formula unit
of LaMnO3. The crystal structure is held fixed at the experimental
geometry.

LDA (PZ81) GGA (PBEsol)

Ueff (eV) E
Gap
A-AFM �

Gap
FM �E E

Gap
A-AFM �

Gap
FM �E

0 0.0 0.0 − 22 0.2 0.0 − 13
2 0.5 0.0 − 5 0.6 0.0 1
4 1.0 0.0 4 1.0 0.0 8
6 1.3 0.1 10 1.3 0.1 14
8 1.4 0.2 14 1.4 0.2 17

essentially where the success ends. As noted previously, both
GGA and LDA are unable to produce significant orbital split-
ting (beyond some aspects due to spin exchange and structural
distortion) and also exaggerate electron delocalization due
to inexact exchange (or equivalently lack of self-interaction
correction). This inevitably results in a qualitatively incorrect
electronic structure with a seriously underestimated band gap:
both GGA and LDA with Ueff = 0 eV yield band gaps that are
far too small compared to experiment.

Increasing Ueff stabilizes the occupied (fiσ � 1
2 ) eigen-

states and drives orbital occupations toward binary polariza-
tion: filled states become more filled and empty states more
empty. For example, increasing Ueff from 0 to 8 eV in GGA
calculations results in the following change in occupancies in
the Mn d manifold:

(fσ |fσ̄ ) =

⎛
⎜⎜⎜⎝

0.65 0.22
0.73 0.26
0.93 0.11
0.93 0.10
0.93 0.09

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

1.00 0.10
0.57 0.17
0.98 0.04
0.97 0.03
0.97 0.04

⎞
⎟⎟⎟⎠, (5)

where the ordering of orbitals in the local basis is

⎛
⎜⎝

3z2 − r2

x2 − y2

xy

yz

xz

⎞
⎟⎠.

The Hubbard limit of very large Ueff typically favours
FM coupling in LaMnO3 [4], and Table I confirms this. The
primary reason is that increasing Ueff kills the superexchange
mechanism, which scales as ∼t2/Ueff, where t is the effective
Mn-Mn hopping, and this mechanism underlies the stability of
A-AFM ordering in LaMnO3. As a result, eg double-exchange

is relatively strengthened and we find FM ordering. Critically,
Table I shows that a large Ueff value is required to open a
satisfactory energy gap. Unfortunately, this situation results in
a trade-off between correct gap or correct magnetism.

2. Relaxed LaMnO3 structure vi a DFT + Ueff

When we permit the structure of LaMnO3 to fully relax
during the calculation, we obtain the results in Table II.
Having a nonzero Ueff improves the crystal geometry and
the electronic structure description for both GGA and LDA.
Particular improvements are for the large erroneous distortion
in a (insufficient orthorhombic character) and the opening
of the band gap. Figure 2 and Table II show that the band
gap increases roughly linearly with Ueff at first but then tails
off at higher Ueff. The ineffectiveness of Ueff at high values
is shown in Fig. 2, and can be understood in terms of the
partial x2 − y2 occupation shown in Eq. (5). The partial
x2 − y2 occupation damps the impact of Ueff on the energy
eigenvalue splittings since �εx2−y2σ = Ueff( 1

2 − fx2−y2σ ) ≈ 0
for fx2−y2σ ≈ 1

2 . (The reason partial eg occupation occurs is
that the d manifold is not isolated but connected to the rest of
the system via hybridization to the O 2p orbitals, or in other
words due to the partial covalency of the Mn-O bond.)

Although adding Ueff to GGA and LDA produces similar
band gaps as per Table II, the GGA + Ueff geometry is
preferable. Overall, a high value of Ueff ∼ 6 eV, correcting
the GGA formalism, provides on balance the best gap/structure
combination. Again, an evident failure of Ueff is its inability to
predict the correct magnetic ordering at the Ueff level required
to correct the structure and the band gap.

3. Experimental LaMnO3 structure vi a DFT + U|J

Following the failure of the Ueff scheme in both single-
point and relaxed geometry calculations, we turn to the
DFT + U |J methodology. The Ueff results conveniently sug-
gest a reasonable starting point: since Ueff = U − J , an U |J
correction with magnitude of approximately U − J ≈ 6 eV
is appropriate. Results in Table III are for bulk LaMnO3 at
the experimental structure, and sampling J from 0 to 3 eV in
conjunction with U from 6 to 8 eV. Increasing J for a fixed
value of U stabilizes A-AFM ordering and enhances orbital
splitting which further opens the band gap. Orbital splittings
due to the Ueff are generally “isotropic” in that they are based
solely on the occupation. The marked improvement by the U |J
method emphasizes the importance of explicit spatial exchange

TABLE II. Band gap EGap, total energy difference �E = EA-AFM − EFM per unit cell, and percent errors, with respect to experiment, for
lattice parameters and unit cell volume of fully relaxed A-AFM bulk LaMnO3.

LDA (PZ81) GGA (PBEsol)

Ueff (eV) EGap (eV) �a (%) �b (%) �c (%) �Vol. (%) �E(meV) EGap (eV) �a (%) �b (%) �c (%) �Vol. (%) �E(meV)

0 0.00 − 5.8 − 3.0 − 1.2 − 9.8 54 0.00 − 3.5 − 0.6 − 0.3 − 4.4 34
2 0.22 − 2.9 − 1.6 − 1.1 − 5.5 52 0.48 − 0.6 − 0.8 − 0.5 − 1.9 47
4 0.81 − 1.8 − 1.6 − 1.1 − 4.4 25 0.92 − 0.0 − 0.5 − 0.3 − 0.9 19
6 1.13 − 1.5 − 1.0 − 1.0 − 3.5 13 1.10 0.2 − 0.1 − 0.3 − 0.1 19
8 1.23 − 1.4 − 0.6 − 1.0 − 3.0 19 1.08 0.4 0.4 − 0.2 0.6 27
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FIG. 2. (Color online) Ueff (left) and U |J (right) corrected density of states for fully relaxed A-AFM LaMnO3 as a function of energy,
E − EF. Black curves show the total density of states while red and yellow curves show Mn d majority spin and minority spin densities of
states.

anisotropy in the LaMnO3 Mn d manifold. The results in
Table III are encouraging, but since distortion of the lattice
is critical in LaMnO3 [2], the trends observed must be verified
by fully relaxing ionic positions and lattice parameters, which
we report on next.

4. Relaxed LaMnO3 structure vi a DFT + U|J

Table IV displays key data for fully relaxed bulk LaMnO3

using the DFT + U |J framework. Relaxed results largely
echo the experimental structure results above for A-AFM
LaMnO3, with the U |J combination of U = 8 eV and J =
2 eV providing a good overall description. In particular the
U |J = 8|2 eV combination provides agreement in terms of
electronic, magnetic and structural observables from experi-
ment [44,46,47,51] and also more computationally expensive
many-body GW approximation [52] results. Volume errors
<1% improve on previous work [23,44,51], and the error

TABLE III. Results from GGA (PBEsol) + U |J for the exper-
imental geometry of bulk LaMnO3. Band gaps EGap are in eV for
each magnetic state, and �E = EA-AFM − EFM is the total energy
difference per unit cell between the two magnetic phases.

U |J (eV) E
Gap
A-AFM (eV) E

Gap
FM (eV) �E(meV)

6|0 1.3 0.1 14
6|1 1.3 0.2 6
6|2 1.2 0.4 − 10
6|3 0.6 0.2 − 39
8|0 1.4 0.2 17
8|1 1.5 0.4 11
8|2 1.6 0.8 − 2
8|3 1.0 0.5 − 32

in energy gap is small at approximately ∼5 % (<0.1 eV
error) [46]. In addition, the A-AFM ordering is stabilized
against FM ordering, which was previously seen as a missing
ingredient [23,24]. The improvements in LMO description
depend intimately on the intraorbital exchange description—
this is explored further by quantifying the action of the Hund’s
coupling interaction on the LMO Mn d states.

TABLE IV. Fully relaxed LaMnO3 results based on GGA
(PBEsol) + U |J . Band gaps EGap, lattice parameter errors, and total
energy differences between the A-AFM and FM magnetic phases
�E = EA-AFM − EFM per formula unit are listed.

A-AFM

U |J (eV) EGap (eV) �a (%) �b (%) �c (%) �Vol. (%) �E (meV)

6|0 1.1 0.4 − 0.1 − 0.4 0.0 19
6|0.5 1.2 0.6 − 0.4 − 0.4 − 0.2 14
6|1 1.3 0.9 − 0.7 − 0.5 − 0.3 7
6|1.5 1.4 1.2 − 0.9 − 0.6 − 0.3 − 1
6|2 1.4 0.8 − 1.2 0.1 − 0.4 − 10
6|2.5 1.3 1.8 − 1.3 − 0.8 − 0.2 − 21

7|0 1.2 0.5 0.1 − 0.3 0.3 23
7|0.5 1.3 0.7 − 0.2 − 0.4 0.2 17
7|1 1.4 0.9 − 0.5 − 0.5 0.0 11
7|1.5 1.5 1.2 − 0.7 − 0.5 − 0.1 3
7|2 1.6 1.6 − 1.0 − 0.7 0.0 − 6
7|2.5 1.5 1.9 − 1.2 − 0.7 − 0.1 − 17

8|0 1.1 0.5 0.4 − 0.3 0.6 27
8|0.5 1.2 0.6 0.1 − 0.3 0.4 21
8|1 1.4 1.0 − 0.2 − 0.5 0.3 15
8|1.5 1.6 1.2 − 0.5 − 0.5 0.1 7
8|2 1.8 1.5 − 0.8 − 0.6 0.1 − 2
8|2.5 1.7 1.7 − 1.0 − 0.6 0.1 − 14
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B. Explicit exchange anisotropy in Mn3+
Strong on-site Coulomb repulsion is the central theme in

paradigms of “Mottness” and electron localization. However,
the importance of Hund’s coupling (intraorbital exchange)
in materials with partial d-and f-shell occupations has been
highlighted [53]. In this section, we attempt to understand
the nature of Hund’s coupling in LMO, by examining the
effects of the on-site exchange terms as defined in Appendix A.
We explore why the U |J methodology can describe LaMnO3

adequately, reproducing band gap and correct magnetic ground
state simultaneously. We employ a simple model where we
focus only on the occupancies of the Mn3+ d4 manifold
in order to isolate the effect of the exchange J parameter
(and related physics) on the Mn d states as per Eq. (4).
Majority-spin t3

2g states are generally fully occupied due to
the strong exchange splitting between spin channels, and as is
well known, increasing U increases occupancy polarization.
However, the nature of anisotropic interactions in the Mn
d-shell due to J is less well understood, particularly with
respect to the polarization of the e1

g occupation into 3z2 − r2

or x2 − y2 (or some mix of the two).
We begin with three model e1

g occupations, πeg = 0,±1, in
an attempt to pinpoint what J really does and understand the
nature of Hund’s coupling in different limits. As a reminder,
πeg is the eg occupancy polarization as defined in Eq. (1). After
examining these model systems, we will consider the effect
of J in the actual calculations where we use the calculated
ab initio occupations together with our analytical rewriting
of the U |J energy function and eigenvalue corrections. As
explained above, the eg and t2g group terms discussed corre-
spond to the local octahedral basis (i.e., post rotation as per
Appendix B).

1. Anisotropic exchange for model orbital occupations

To illustrate the anisotropic effects of the J terms in the U |J
schema, we begin with a set of model occupancies where we
fix the formal occupation of Mn3+ (d4) but vary the orbital
polarization. A πeg = +1 model polarization corresponds

to a single hole on the majority spin 3z2 − r2 site (i.e.,
fx2−y2σ = ft2gσ = 1, f3z2−r2σ = 0, and fσ̄ = 0). Based on
Eq. (4), the added effect of the exchange J terms is to
create additional energy splittings (beyond simple occupancy
polarization proportional to Ueff) given by

πeg = +1 : (�εσ |�εσ̄ ) = J ·

⎛
⎜⎜⎜⎝

0.00 −1.14
0.52 0.63
0.52 0.63

−0.52 −0.06
−0.52 −0.06

⎞
⎟⎟⎟⎠. (6)

The opposite polarity, πeg = −1, corresponds to a single hole
on the majority spin x2 − y2 site (that is, f3z2−r2σ = ft2gσ =
1, fx2−y2σ = 0, and fσ̄ = 0). This results in the following
exchange energy splittings:

πeg = −1 : (�εσ |�εσ̄ ) = J ·

⎛
⎜⎜⎜⎝

0.52 0.63
0.00 −1.14

−0.86 −0.29
0.17 0.40
0.17 0.40

⎞
⎟⎟⎟⎠. (7)

Removing the polarization, πeg = 0, the single hole is equally
spread over the two majority spin eg sites (fegσ = 0.5, ft2gσ =
1, and fσ̄ = 0). This leads to the splittings

πeg = 0 : (�εσ |�εσ̄ ) = J ·

⎛
⎜⎜⎜⎝

0.26 −0.26
0.26 −0.26

−0.17 0.17
−0.17 0.17
−0.17 0.17

⎞
⎟⎟⎟⎠. (8)

To visualize these results, we display a schematic showing
these splittings in these three cases of πeg = 0, ± 1 in Fig. 3
where the corrections due to both U and J are shown.

These model results together with the Fig. 3 clearly point
out that the effect of the J terms is explicitly anisotropic
and its anisotropy and precise value depends on the orbital
polarization (which may have been present due the action of
the Ueff term). The anisotropy exists across both the magnetic

FIG. 3. (Color online) The occupation of states is represented in the model Mn3+ d4 manifold (majority spin only). Orbital degeneracy is
broken by octahedral crystal field (CF), Coulomb repulsion Ueff (U in the figure) and exchange J following Eq. (4). Each vertical bar represents
one unit of electron occupation. πegσ (denoted πeg for the majority spin channel in the figure) is defined in Eq. (1), and three limits are
examined: πegσ = 0 (fx2−y2σ = f3z2−r2σ = 0.5), πegσ = +1 (fx2−y2σ = f3z2−r2σ + 1 = 1), and πegσ = −1 (fx2−y2σ + 1 = f3z2−r2σ = 1).
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quantum number and spin channels (σ and σ̄ ). We now discuss
these three cases in more detail.

When we have full eg orbital polarization, i.e., πeg = ±1,
each polarity produces a unique splitting pattern where the
magnitude of anisotropy depends on the sign of πeg . This is
despite the fact that 3z2 − r2 and x2 − y2 states both have eg

symmetry: as we can see that occupying each one (separately)
splits the t2g quite differently. This difference is due to fact
that the x2 − y2 state is symmetry related to the t2g states (it
is the xy state rotated by π/4 about the z axis). For example,
when x2 − y2 is fully occupied, the splittings for x2 − y2 and
xy are identical but differ from the other orbitals, but the
same is not true when 3z2 − r2 is filled instead. Interestingly,∑

iσ �εiσ fiσ = 0 when πeg = ±1: this indicates that neither
polarization is energetically preferred by intraorbital J terms.

With zero eg orbital polarization, i.e., πeg = 0, we find
that this degeneracy inhibits anisotropy from the J terms: the
splitting within each t2g and eg manifold is isotropic for both
spin channels. The action of the J terms in this situation
is to shift the energies of this manifold en masse. Here,∑

iσ �εiσ fiσ = −0.26J when πeg = 0 compared to zero for
πeg = ±1.Hence the anisotropic exchange terms in isolation
actually favor degenerate occupancy. This result appears to be
counterintuitive given the importance of J to anisotropy. The
resolution is that we have a much larger and dominant direct
Coulomb term U that produces orbital polarization in the first
place; the weaker J terms then further enlarge the polarization
and make the system more anisotropic. Table V shows this
behavior numerically.

In brief, we see that J acting alone energetically favors
degeneracy. However, with a strong U term already creating or-
bital polarization, the J terms provide the enlarged anisotropic
splitting that one finds in the final results of the calculation.

2. Anisotropic exchange for ab initio orbital occupations

For the ab initio orbital occupations, we use the
DFT + U |J = 8|2 eV calculation results, which yield an
occupation-polarized eg manifold as shown in Table V. The
eg polarity is found to be orbitally ordered across the LaMnO3

unit cell as shown in Fig. 4. We now examine this situation in
more detail.

TABLE V. Orbital occupation polarization, πegσ , for fully relaxed
LaMnO3 within the Ueff and U |J approaches. Majority spin are σ and
minority spin are σ̄ .

Same-spin Opposite-spin
Correction (eV) polarization, πegσ polarization, πegσ̄

Ueff = 0 0.06 0.08
Ueff = 8 −0.27 0.25

U |J = 8|1 −0.33 0.41
U |J = 8|2 −0.41 0.54
U |J = 8|3 −0.52 0.65

The Mn d occupancies from the U |J = 8|2 eV method
with relaxed geometry are

(fσ |fσ̄ ) =

⎛
⎜⎜⎜⎝

0.99 0.10
0.41 0.33
0.98 0.06
0.96 0.04
0.97 0.05

⎞
⎟⎟⎟⎠. (9)

These occupancies correspond to πegσ = −0.41 (from
f3z2−r2σ = 0.99 and fx2−y2σ = 0.41). The Mn d shell ob-
viously has more electrons than the model system above,
which was based on formal occupancies for Mn3+. Again,
we note that this increase is due to hybridization of the Mn
d orbitals with the neighboring O 2p orbitals, which admixes
some Mn d into the low-energy occupied valence states and
increases the electron count. Put differently, the itineracy
due to the kinetic energy minimization competes with the
“Hubbard-esque” Coulomb repulsion and we reach a balance.
Numerically, for U |J = 8|2 eV, the oxidation state based on
the above Mn d occupations can be calculated to be 2.12+ (an
alternative or complementary Bader charge picture yields an
oxidation state of 1.68+, still less than the formal 3+).

The U |J = 8|2 eV occupancies of Eq. (9) result in energy
splitting beyond the splitting from Ueff alone:

(�εσ |�εσ̄ ) = J ·

⎛
⎜⎜⎜⎝

0.15 0.20
0.30 −0.65

−0.41 −0.06
−0.03 0.18
−0.01 0.20

⎞
⎟⎟⎟⎠. (10)

The eg occupancy polarization of the U |J = 8|2 eV calcu-
lation is considerably weaker than the previous model cases.
Nevertheless, it is large enough to drive significant anisotropic
exchange splittings in Eq. (10). For example, the splittings
are anisotropic within the majority spin t2g manifold: the xy

state is pushed down by approximately 0.4J compared to
the other two t2g states. Within the eg manifold, the fully
occupied 3z2 − r2 state is pushed up by 0.15J while the
partially occupied x2 − y2 state is pushed up considerably
more by 0.30J .

The direct Coulomb interaction U obviously increases πeg ,
as expected from the standard instability condition for orbital
polarization [23,54],

Ueff × Dσ (EF) � 1 ,

where Dσ (EF) is the density of states in the σ spin channel at
the Fermi level. The origin of the monotonic relation between
πeg and J, shown in Table V, is less obvious as J is naı̈vely
expected to drive the electronic structure away from orbital
polarization as Ueff = U − J . However, πeg does increase with
J , for the above-noted reason that J alone may favor orbital
degeneracy but J is strongly anisotropic when in conjunction
with a large U value, resulting in the unequal upward “push”
of the two eg orbitals with increasing J . That J and πeg are
so strongly coupled in this material is interesting, as the band
gap, Jahn-Teller distortions, and intersite magnetic couplings
all depend on πeg .

As first examined by Kugel and Khomskiı̆ [55], e1
g oc-

cupation polarization (i.e., an electron-electron Jahn-Teller
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FIG. 4. (Color online) Orbitals in the LaMnO3 unit cell from a U |J = 8|2 eV calculation. (a) MnO6 octahedron with Jahn-Teller distorted
plane and local basis vectors labeled. (b) Visualization of the occupation of the 3z2 − r2 and x2 − y2 states in the rotated basis of the density
matrix as well as their superposition for the total local eg occupancy (plotting the occupation times the orbital expressed in spherical harmonics).
(c) The ordering of the occupied eg shell (1.97z2 − 0.58x2 − 1.4y2) in the (010) Jahn-Teller distorted FM coupled plane. (d) The ordering
of the occupied eg shell in the (001) plane with AFM coupling along b. Note x,y,z is the local octahedron basis, and a,b,c lattice vectors
correspond to x ′,y ′,z′ global (prerotation) calculation basis.

degeneracy breaking) enhances virtual superexchange inter-
actions, relative to kinetic exchange interactions such as FM
double exchange. This competition between superexchange
and double-exchange is observed in the LMO magnetic
ground state, which varies according to the magnitude of
πeg (eg occupancy polarization). πeg increases with J , which
explains the flip in long-range magnetic ordering of the ground
state from FM to A-AFM as the intraorbital parameter J is
increased.

At J = 2 eV, the value of πeg in Table V is large enough to
stabilize the correct A-AFM ordering (as per Table IV). The
U |J = 8|2 A-AFM ground state in Fig. 1 corresponds to a
0.99(3z2 − r2) + 0.41(x2 − y2) eg occupation density in the
local octahedral basis. The orbital ordering pattern across the
unit cell is shown in Fig. 4, and can be rationalized in terms of
the Goodenough-Kanamori superexchange rules [56,57].

The 0.99(3z2 − r2) + 0.41(x2 − y2) eg occupation density
can be rewritten as 1.97z2 − 0.58x2 − 1.4y2. This expression
shows the anisotropy in the eg state, in particular, between the
z and x directions in the octahedron: the z2 contribution is
much larger than x2, as per Fig. 4(b). Each octahedral frame in
the ac plane is related to its neighbor by a π/2 rotation about
the b lattice vector, so z2/x2 anisotropy forms a checkerboard

pattern of eg partial occupation in the ac plane. Note that
this corresponds to the long/short Jahn-Teller Mn-O pattern in
the ac plane, as per Fig. 4(c). According to the Goodenough-
Kanamori rules, superexchange in the ac plane is determined
by z2/x2 anisotropy in the eg partial occupation, and results in
the FM coupling in the ac plane.

The y2 component of eg partial occupation forms occupied
stripes pointed along local octahedra y axes, following the
b lattice direction (with a small tilt) as in Fig. 4(d). The
continuous stripes of y2 character along the b lattice direction
correspond to the “non-Jahn-Teller” Mn-O bonds in this
direction. The Goodenough-Kanamori rules determine that the
continuous stripe of y2 character from the eg partial occupation
corresponds to AFM superexchange. The AFM coupling is
along the b lattice parameter direction, between the FM
coupled ac planes. Together the in-plane FM and interplane
AFM produce the A-AFM ground state of LaMnO3, so our
U |J = 8|2 eV calculation results are in-line with experiment
as well.

If instead the Hund’s coupling was weaker (i.e., smaller J),
then πeg would also be smaller. This alters the character of the
occupied states in the eg shell, so that orbital ordering mediated
A-AFM superexchange is reduced relative to other effects such
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as FM double-exchange. This explains why stabilization of
A-AFM magnetic ordering (see Table IV) is only possible
when the intraorbital exchange is large enough. The very small
magnitude of the intraorbital exchange interaction is the origin
of the incorrect FM ground state found in prior examinations
[2,23,24] of LMO using standard DFT.

The improvements in the LMO description through apply-
ing exchange corrections reinforce hints by Sawada et al. [23],
Solovyev et al. [2], and Hashimoto et al. [24], that the correct
orbital and magnetic ordering in LMO requires an anisotropic
intraorbital exchange correction to the DFT ground state. In
what follows, we discuss further details of the electronic and
crystal structure.

C. Electronic and crystal structure details

1. Orbital order

It was previously shown that applying Coulomb cor-
rections, such as with U |J = 8|2 eV, corrected the LMO
electronic, magnetic, and lattice structure. Further electronic
structure details are shown for the LMO DOS in Fig. 5 at
the U |J = 8|2 eV level of correction. In Fig. 5, the position
of each band in the Mn DOS agree quantitatively with
the optical conductivity measurements of Jung et al. [47].
Further experimental agreement comes from our U |J = 8|2
eV calculated local magnetic moment, which at 3.7μB agrees
with Eleman’s measurement [51]. The U and J dependence
of the local magnetic moments are shown in Fig. 6. The high
sensitivity of the electronic structure of LMO to perturbations
underlies in part its complex phase diagram. This is illustrated
by comparing the U |J = 8|2 and U |J = 8|3 eV DOS in Fig. 5,
and by examining the magnetic state of DOS near the edges
of the valence band maximum (VBM) and conduction band
minimum (CBM). For U |J = 8|2 eV, Hund’s rules are obeyed
as both VBM and CBM have the same spin state whereas
Hund’s rules are broken for U |J = 8|3 eV. We find that the
crossover occurs at J ≈ 2.4 eV. LaMnO3 is fragile in terms
of exchange: above J ≈ 2.4 eV, we have the breakdown of

FIG. 5. (Color online) LaMnO3 densities of states (DOS) for
U |J = 8|2 and 8|3 eV calculations. Majority spin corresponds to
positive DOS and minority to negative DOS.

FIG. 6. (Color online) Local magnetic moment within the Bader
volume for Mn cations and O anions [within the (010) basal plane],
from DFT + Ueff and DFT + U |J methods. The notation U6|J and
U8|J indicates U is fixed to 6 and 8 eV, respectively, while J is
varied. The experimental reference local magnetic moment is 3.7μB

[51].

Hund’s rules, while below J ≈ 1.8 eV, incorrectly stabilizes
the FM rather than A-AFM ground state.

2. Magnetic coupling constants

The magnetic coupling constants in LMO have been
extracted by Muñoz et al. [20] amongst others [2,24,49,58], by
considering an Ising model (with S = 2 spin moment per Mn
ion) for different spin-ordered solutions. The intraplane (ac)
J1 and interplane (b) J2 coupling constants for the 20 atom
LMO unit cell are

J1 = 1
64 [EG-AFM − EA-AFM]

(11)
J2 = 1

32 [EA-AFM − EFM].

The initial A-AFM/FM stability results in Table IV hint
that the coupling constants will depend strongly on the Hund’s
exchange parameter. In the context of previous works, Ji are
well known to be highly sensitive, for example, to variation
in Mn-O-Mn angle through superexchange interactions [59],
and the Mn ionic charge population [58].

On the trend of magnetic stability in U and J , the
superexchange interaction, which stabilizes AFM ordering,
is expected to scale inversely with effective on-site Coulomb
interaction, i.e., ∼t2/Ueff where t is effective intersite hopping.
Considering first J2 (∼EA-AFM − EFM) in Fig. 7, the stability
of AFM coupling along b decreases both with increasing U or
decreasing J as expected since Ueff = U − J . However, the
dependence of the J2 coupling on U and J is not equivalent:
the variation in J2 is some fivefold more sensitive to changes
in J than U , i.e., ∂J2/∂J ≈ −5∂J2/∂U . The AFM coupling
in the ac plane, measured by J1, is even more sensitive to the
intraorbital Hund’s parameter, with ∂J1/∂J ≈ −10∂J1/∂U .
The origin of the coupling constant sensitivity to J is the
strongly anisotropic effect of J on the LMO Mn d shell states,
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FIG. 7. (Color online) LaMnO3 magnetic coupling constants J1

and J2 vs U |J schema Hund’s exchange parameter J , for U = 6
(white squares), 7 (white circles), and 8 eV (black squares). J1 and J2

are defined in Eq. (11). The red-blue overlap (centered at J = 1.9 eV)
suggests a J exchange value for the U |J scheme that provides the
correct sign for both coupling constants—see main text for discussion.

with variation in J increasing πeg in Table V above and beyond
that accessible with U alone.

Neutron scattering experiments have determined coupling
constant values of J

exp
1 = 0.83 meV and J

exp
2 = −0.58 meV

[60]. In Fig. 7, reasonable values for J1 are produced with
J ≈ 1.75 eV, and for J2 with J2 ≈ 2 eV. The discrepancy
in J value for each Ji is perhaps unsurprising given the
extreme sensitivity of A-AFM, G-AFM, and FM phases to
the intraorbital Hund’s interaction. Overall, the U |J = 8|2 eV
combination previously suggested remains a good compromise
at the level of half-integer eV screening intervals considered
here. Although higher-resolution screening in J is beyond the
scope of this work, if DFT + U |J calculations are required for
thermodynamic applications, the results indicate that a small
modification of J by a few percent may be advantageous to
tune the magnetic transition temperatures precisely, while the
magnetic couplings are relatively insensitive to the direct U

term.
Due to the sensitivity of the magnetic couplings to

the Coulombic J correction, agreement with experiment is
challenging. At U = 8 eV required to open the band gap,
and screening in J at the half-integer intervals shown in
Fig. 7, U |J = 8|2 eV remains the best compromise. For
U |J = 8|2 eV, the interplane coupling at J2 = −0.30 meV

has the correct sign but in magnitude falls short of J
exp
2 =

−0.58 meV [60]. More problematic is the intraplane coupling,
which overestimates the tendency for electrons to couple
antiferromagnetically in the ac plane, excessively stabilizing
G-AFM ordering at J2 = −0.19 meV compared to J

exp
2 =

+0.83 meV.
In Fig. 7, the colored areas show the J values that

correspond to coupling constants between zero and J
exp
i ,

i.e., the correct sign for each Ji . The overlap in colored
areas identifies the narrow range of intraorbital exchange
values, 1.88 � J � 1.95 eV, that gives the correct signs for
both Ji together, with E(A-AFM) < E(FM) < E(G-AFM) in
agreement with experiment [60]. Based on the refinement in
J value, we have performed GGA (PBEsol) calculations with
U |J = 8|1.9 eV. The error in calculation results with respect
to experimental values [44,47,51,60–62] is summarized in
Table VI. The U |J = 8|1.9 eV calculations produce good
experimental agreement overall, with magnetic coupling con-
stants with signs that agree with experiment, J1 = +0.2 and
J2 = −0.1 meV, a band gap value only a couple of percent
above the experimental 1.7-eV value, and lattice parameter
errors between +1.5% and −0.8%, which largely cancel to
give a volume error with respect to experiment of +0.1%
[47,60].

3. Jahn-Teller distortion

We end our analysis with conclusions on the nature of the
Jahn-Teller distortion in LMO and on the origin of the LMO
insulating state. The Jahn-Teller distortion in LaMnO3 can
be characterized in terms of two normal modes of the type
introduced by van Vleck [63] and by Kanamori [64]. The
normal modes are shown in Fig. 8 along with the crystal unit
cell and the local octahedral basis. The modes are calculated
as

QOrtho = 1√
2

[Y2 − Y5 − X1 + X4],

QTetra = 1√
6

[2Z3 − 2Z6 − Y2 + Y5 − X1 + X4] .

Each variable represents an octahedral bond length, with
subscripts indexing oxygen octahedral cage sites for a given
manganese center, i (i = 1, . . . ,6). In the local basis in this
work, which differs from other choices [24,49,65], Zi = zO

i −
zMn are the long Mn-O bonds and Xi = xO

i − xMn short Mn-O
bonds, with both in the FM coupled ac plane.Yi = yO

i − yMn

are along the interplane AFM coupled b lattice direction.
We begin commenting that the formation of a band

gap in LaMnO3 is not solely electron-electron (e-e) or

TABLE VI. LaMnO3 electronic, magnetic, and structural properties obtained from a U |J = 8|1.9 eV calculation, with comparison to
experimental counterparts [44,47,51,60–62]. The J = 1.9 eV value is based on a refinement of the Hund’s exchange parameter to secure the
correct sign for both magnetic coupling constants, J1 and J2, which are exceptionally sensitive to on-site exchange—see Fig. 7.

Electronic gap Magnetic Structural

U |J (eV) E Gap (eV) [47] Character [47] J1, J2 (meV) [62] M (μB) [51] QOrtho, QTetra (a.u.) [44] a, b, c (Å) [44] V (Å
3
) [44]

8|1.9 1.75 e1
g↑ → e2

g↑ +0.2, − 0.1 3.76 0.145, 0.856 5.823, 7.642, 5.508 245

Exp. 1.7 e1
g↑ → e2

g↑ +0.83, −0.58 3.7 0.14, 0.78 5.736, 7.703, 5.540 245
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FIG. 8. (Color online) (Top left) Band gap of LaMnO3 vs U − J within the Ueff approach for fully relaxed structures where both electron-
lattice and electron-electron interactions are active (dashed line, e-l, and e-e) and for structures with the Jahn-Teller distortion frozen out so
only electron-electron interactions are active (solid line, e-e only). (Bottom left and middle) Jahn-Teller normal modes vs U − J within the
Ueff approach (white circles), and within the U |J approach (black circles) for U fixed to 8 and 6 eV with J varied. (Right) Orbitally ordered
and strongly Jahn-Teller active ac plane, the local basis convention, and QOrtho and QTetra modes.

electron-lattice (e-l) in character. Rather, it is a joint function
of the lattice relaxation and development of Jahn-Teller
distortions as well as the strong on-site Coulomb interaction.
This is illustrated explicitly in Fig. 8. As mentioned above,
two logically distinct routes to breaking the symmetry exist
in order to produce a gap: (i) a purely electronic effect via
electron-electron interactions and the formation of a sizable
orbital polarization πeg that breaks symmetry (also called
e-e Jahn-Teller distortion) [55], or (ii) electron-lattice (e-l)
Jahn-Teller distortions where certain local octahedral phonon
modes become soft, the Mn-O bond lengths become unequal,
and this creates crystal field symmetry breaking. These two
mechanisms are in fact mutually enhancing, and which one
causes which in LaMnO3 is an open question that has been
debated in the works of Khomskiı̆ [66], Yin et al. [67], and
Loa et al. [7].

In some materials, one mechanism can clearly dominate
over the other. For example, in KCuF3, to which LaMnO3

is superficially similar as both are perovskites with partial
eg occupation, the symmetry lowering is truly driven by
electronic interactions alone [22], and thus KCuF3 is said
to exhibit e-e Jahn-Teller distortion. Figure 8 shows that the
nature of Jahn-Teller is different in LaMnO3.

Firstly, with the e-l distortion frozen out, one can generate
symmetry breaking and a gap for a Coulomb interaction
strength (U − J ) above a critical value ∼2 eV, so that, in
principle, the lattice distortion is not necessary to create a
gap. However, in practice, the gap and orbital splitting remain
small without lattice Jahn-Teller distortions. Secondly, with
U − J set to zero, the DFT calculations do produce weakly
active e-l Jahn-Teller distortions of QOrtho = −0.02 a.u. and

QTetra = 0.14 a.u., but the gap remains essentially zero. The
addition of Coulomb repulsion via Ueff greatly enhances the e-l
distortion of each mode to approximately QOrtho ≈ 0.12 a.u.
and QTetra ≈ 0.62 a.u.. However, even with Ueff applied QOrtho

and QTetra remain still short of experiment by some 13% and
20%, respectively. As per Table V and Fig. 8, one can only go
so far with Ueff: the orbital polarization πeg is too weak and
the Jahn-Teller e-l distortion remains largely unchanged with
increasing Ueff.

The only way to bridge the deficit is through the use of
a dedicated exchange term via the U |J approach. As shown
in Table V, J increases πeg and anisotropy throughout the d

manifold significantly. By increasing J in the U |J scheme,
the LMO QOrtho and QTetra modes can be tuned to agree with
experiment by accessing additional e-e Jahn-Teller activity
otherwise unavailable.

IV. CONCLUSION

An isotropic Hubbard correction, such as the Ueff method-
ology, is unable to simultaneously reproduce the band gap, the
experimental level of Jahn-Teller distortion, and the magnetic
ordering of bulk LaMnO3. At small Ueff,A-AFM magnetic
ordering is correctly stabilized but the gap and structural
distortions are underestimated. With increasing Ueff values,
the gap and crystal structure are reproduced but FM ordering
is incorrectly stabilized. The U |J approach, with its explicit
exchange dependence on orbital symmetry, provides a better
picture of electronic, magnetic, and structural properties of
LaMnO3. The origin of the U |J success is the Hund’s
coupling accounted for by the spatial/orbital dependence of the
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dedicated exchange terms that depend on J. These terms selec-
tively polarize orbital occupation through highly anisotropic
energy splitting in the Mn d manifold. Only the addition of J
terms, rather than crystal field or direct Coulomb U, can pro-
vide appropriate and large enough anisotropic splitting within
the t2g and eg manifolds. Orbital order due to the short-range J
makes possible the combination of long-range FM exchange in
the (010) plane, and AFM exchange between {010} planes, to
stabilize the A-AFM ordered ground state. Soft phonon modes
(e-l Jahn-Teller) and electronic occupation polarization (e-e
Jahn-Teller) contribute jointly to the insulating state, with the
latter being predominant. The magnitude of the experimental
Jahn-Teller distortion can only be reproduced by using the
anisotropic exchange correction J on top of the direct Coulomb
interaction correction U. The best description of LaMnO3 is
achieved within the PBEsol + U framework when U = 8 eV
and J = 1.9 eV.
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APPENDIX A: DFT + U EXPRESSIONS

We begin with the U |J rotationally invariant DFT + U total
energy expression [22] written for a single atomic site (since
the corrections are linear sums over atomic sites),

EDFT+U |J = EDFT + EU − Edc.

EDFT is the total DFT energy using some flavor of exchange
and correlation; the Coulombic +U correction energy is

EU = 1

2

∑
σ,σ ′,mi

(mσm′′σ ′|V |m′σm′′′σ ′)

× (
ρσ

m′mρσ ′
m′′′m′′ − ρσ

m′′′mρσ
m′m′′δσσ ′

)
and the double-counting correction Edc is

Edc =
∑

σ

(U − J )

2
Nσ (Nσ − 1) + U

2
Nσ Nσ̄ .

In the above expressions, V (r,r′) = 1/|r − r′| is the bare
Coulomb interaction, σ labels spin where σ̄ is the opposite
spin to σ , m labels angular momentum states of the atomic
shell under consideration (d orbitals for Mn in this paper),
ρσ

mm′ is the single-particle density matrix, Nσ = tr(ρσ ) =∑
m,m′ ρ

σ
mm′δmm′ is the number of electrons on the site of spin σ ,

and U and J are the direct and exchange Coulomb parameters.
The matrix elements of V are defined by

(mσm′′σ ′|V |m′σm′′′σ ′) = ∫
dr

∫
dr ′ φ∗

mσ (r)φm′σ (r) 1
|r−r′|

φ∗
m′′σ ′(r′)φm′′′σ ′(r′). The matrix elements of V are further

decomposed for an atomic shell with angular momentum l via

(mσm′′σ ′|V |m′σm′′′σ ′)

= δm−m′,m′′′−m′′

2l∑
k=0

ck(lm,lm′)ck(lm′′′,lm′′)Fk,

where ck and Fk are standard atomic Slater angular integrals
and radial integrals. For d shells, U = F 0, J = (F 2 + F 4)/14,
and F 4/F 2 = 0.625 are the canonical choices [22]. Thus only
two parameters are needed to specify the radial integrals: F 0 =
U , F 2 = (112/13)J , and F 4 = (70/13)J .

To make progress with expressions for EU and Edc, which
are given in terms of ρσ

mm′ and Nσ , we need to rewrite these
expressions in terms of the occupancy eigenvalues of the
density matrix, fiσ . Denoting the eigenvectors of ρσ

mm′ as V σ
m,i

so that

ρσ
mm′ =

∑
i

V σ
m,i fiσ

(
V σ

m′,i
)∗

we may insert this expansion into the expression for EU . After
some algebraic manipulations, using the fact that c0(lm,lm′) =
δmm′ for the k = 0 term and the unitarity of the eigenvector V σ

matrices, we find

EU = U

2

(
N2 −

∑
iσ

f 2
iσ

)

+ 1

2

∑
σ,σ ′,i,j

C σσ ′
ij fiσ fjσ ′ − Xσ

ij fiσ fjσ δσσ ′,

where N = ∑
σ Nσ is the total electron count on the site, and

the Coulombic C σσ ′
and exchange X σ correction matrices are

given by

C σσ ′
ij =

2l∑
k=2

Fk
∑

mm′m′′m′′′
δm−m′,m′′′−m′′

× (V σ )†imck(lm,lm′)V σ
m′i(V

σ ′
)†jm′′′c

k(lm′′′,lm′′)V σ ′
m′′j

and

Xσ
ij =

2l∑
k=2

Fk
∑

mm′m′′m′′′
δm−m′,m′′′−m′′

× (V σ )†imck(lm,lm′)V σ
m′j (V σ )†im′′′c

k(lm′′′,lm′′)V σ
m′′j .

The Coulomb correction C σσ ′
matrices have zero average over

all entries, a fact easily shown by using some basic properties
of the Slater angular integrals. The same can be done for the
exchange correction matrices by separating out a constant term

X σ
ij = �X σ

ij + J (1 − δij ) .

Substituting this into the previous EU expression and subtract-
ing the double-counting term Edc to cancel common terms then
yields the total energy

EDFT+U |J = EDFT + U − J

2

∑
iσ

(
fiσ − f 2

iσ

)

+ 1

2

∑
σ,σ ′,i,j

C σσ ′
ij fiσ fjσ ′ − �X σ

ij fiσ fjσ δσσ ′ ,

085151-12



IMPORTANCE OF ANISOTROPIC COULOMB INTERACTION . . . PHYSICAL REVIEW B 92, 085151 (2015)

which is in the form of the DFT + Ueff (Dudarev) energy [21]
plus a correction involving the C σσ ′

and �X σ matrices and
the occupancies. Therefore the U |J scheme can be viewed as
a correction to the Ueff method, which includes additional
Coulombic and exchange terms stemming from exchange
integrals between different orbitals: this is because both C σσ ′

and �X σ are proportional to J , which leads to an orbital
shape dependence of the Coulombic interactions on the site,
something neglected by the Ueff scheme.

The correction to the eigenvalue follows from the occu-
pancy derivative of the added terms to the DFT energy:

∂(EU − Edc)

∂fiσ

= (U − J )

(
1

2
− fiσ

)

+
∑
jσ ′

C σσ ′
ij fjσ ′ − �X σ

ij fjσ δσσ ′ .

In what follows, it is more convenient to work with vectors and
matrices. Thus if we collect all occupancies fiσ into a column

vector fσ , then the above eigenvalue correction can be more
compactly written as

∇fσ
(EU − Edc) = (U − J )

(
1

2
− fσ

)
+ J [Aσ fσ + Bσ fσ̄ ],

where we have peeled off the constant J and also indicated
same spin and opposite spin occupancy dependencies via the
unitless matrices

Aσ = (C σσ − �X σ )/J

and

Bσ = Cσ σ̄ /J .

We now proceed to actual example cases to compute
numerical values for the Aσ and Bσ matrices. The simplest
assumption is to take the spherical harmonic states Ylm as the
eigenbasis of the density matrix ρσ . This means Vσ = I and
one can directly compute the matrices using numerical values
for Slater angular integrals. The results are

Aσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Y22 Y21 Y20 Y2,−1 Y2,−2

Y22 0 −0.52 −0.52 0.17 0.86
Y21 −0.52 0 0.52 −0.17 0.17
Y20 −0.52 0.52 0 0.52 −0.52

Y2,−1 0.17 −0.17 0.52 0 −0.52
Y2,−2 0.86 0.17 −0.52 −0.52 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Bσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Y22 Y21 Y20 Y2,−1 Y2,−2

Y22 0.72 −0.40 −0.63 −0.40 0.72
Y21 −0.40 0.37 0.06 0.37 −0.40
Y20 −0.63 0.06 1.14 0.06 −0.63

Y2,−1 −0.40 0.37 0.06 0.37 −0.40
Y2,−2 0.72 −0.40 −0.63 −0.40 0.72

⎞
⎟⎟⎟⎟⎟⎟⎠

.

However, this basis is not the most relevant for solid state systems such as perovskite oxides. For high-symmetry situations, the
eigenbasis of the density matrix will be given by t2g (xy,yz,xz) and eg (3z2 − r2,x2 − y2) states. The conversion matrix is

V σ =

⎛
⎜⎜⎜⎜⎝

0 1/
√

2 i/
√

2 0 0
0 0 0 −i/

√
2 1/

√
2

1 0 0 0 0
0 0 0 i/

√
2 1/

√
2

0 1/
√

2 −i/
√

2 0 0

⎞
⎟⎟⎟⎟⎠

if we choose the order (3z2 − r2,x2 − y2,xy,yz,xz). The transformed matrices are now in the more useful basis with entries

Aσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

3z2 − r2 x2 − y2 xy yz xz

3z2 − r2 0 −0.517 −0.517 0.517 0.517
x2 − y2 −0.517 0 0.861 −0.172 −0.172

xy −0.517 0.861 0 −0.172 −0.172
yz 0.517 −0.172 −0.172 0 −0.172
xz 0.517 −0.172 −0.172 −0.172 0

⎞
⎟⎟⎟⎟⎟⎟⎠

085151-13



MELLAN, CORA, GRAU-CRESPO, AND ISMAIL-BEIGI PHYSICAL REVIEW B 92, 085151 (2015)

and

Bσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

3z2 − r2 x2 − y2 xy yz xz

3z2 − r2 1.143 −0.630 −0.630 0.059 0.059
x2 − y2 −0.630 1.143 0.288 −0.401 −0.401

xy −0.630 0.288 1.143 −0.401 −0.401
yz 0.059 −0.401 −0.401 1.143 −0.401
xz 0.059 −0.401 −0.401 −0.401 1.143

⎞
⎟⎟⎟⎟⎟⎟⎠

.

These matrices directly tell us how the U |J scheme corrects
the energy eigenvalues beyond the Ueff energy shift. For
example, the diagonal entries of Bσ indicate that occupying
any orbital pushes up the energy of the opposite spin orbitals
by 1.14J .

As another example, if we have an ion such as Mn4+

with a full spin-up and empty spin-down t2g shell, so that
f↑ = (0,0,1,1,1) and f↓ = 0, then for the spin-up orbitals
the energy correction beyond Ueff is (0.52,0.52, − 0.34,

− 0.34, − 0.34)J , which destabilizes the same spin eg and
stabilizes the same spin t2g , while for spin-down orbitals the
situation is exactly reversed with energy correction (−0.52,

− 0.52,0.34,0.34,0.34)J . A final example is a full t6
2g shell

such as Co3+, which gives zero correction to the Ueff scheme.
The above two matrices form the basis for various analyses in
the main text.

APPENDIX B: DENSITY MATRIX ROTATION
TO LOCAL AXIS REPRESENTATION

In typical DFT + U approaches, the electronic structure
is given in terms of density matrices for each subspace,
e.g., the d shell. Unfortunately, the orthogonal global axial
representation, which is most efficacious for computation, is
often not the most convenient representation for analysis and
understanding. This happens in calculations with nontrivial
unit cells where inequivalent oxygen octahedra surround
transition-metal ions. Octahedral rotations and tilts mean
that the global axial system for the calculation, here labeled
x ′,y ′,z′, will differ from the native local axes, labeled x,y,z.
Native axes for each octahedron point along the transition-
metal–O bonds, and form the natural basis for understanding
the electronic structure of the transition-metal d orbitals. We
describe the details of a simple approach that rotates the density
matrix, from the global to the local basis, via polynomial
transformations, with LaMnO3 as our example.

We choose a particular Mn ion and its nearest-neighbor
O atoms, which identify an octahedral cage. Three Mn-O
bonds are chosen that point in approximately orthogonal
directions. The bonds are indexed i = 1,2,3 , and we compute
the difference vectors from the Mn to O positions: ui =
r(Oi) − r(Mn). These vectors are then normalized and define
the local axes for the Mn. We create a 3×3 rotation matrix R
connecting the global x ′,y ′,z′ and local x,y,z systems,

⎛
⎝x ′

y ′
z′

⎞
⎠ = R

⎛
⎝x

y

z

⎞
⎠ =

⎛
⎝R11 R12 R13

R21 R22 R23

R31 R32 R33

⎞
⎠

⎛
⎝x

y

z

⎞
⎠,

defined by placing the unit vectors ui in the columns of R. It
is at this point that we choose the ordering of the unit vectors
to reflect the physical questions at hand.Note, a traditional
choice is to align z with the apical bond, but other choices are
possible; for example, in our work, we have placed y along
the non-Jahn-Teller “apical” Mn-O (see Fig. 4), while x and z

span the Jahn-Teller active plane.
This rotation represents a linear polynomial transformation

relating x ′,y ′,z′ to x,y,z. The angular behavior of each
d orbital is quadratic in the coordinates: 3z′2 − r ′2, x ′2 −
y ′2, x ′y ′, y ′z′, x ′z′, so it is straightforward to plug in and
algebraically transform the polynomials to the unprimed
(local) coordinate system. Performing the substitutions, using
the orthogonal nature of the R matrix, and collecting terms,
we find

⎛
⎜⎜⎜⎝

3z2 − r2

x2 − y2

xy

yz

xz

⎞
⎟⎟⎟⎠ = C

⎛
⎜⎜⎜⎝

3z′2 − r ′2

x ′2 − y ′2
x ′y ′
y ′z′
x ′z′

⎞
⎟⎟⎟⎠,

where the matrix C is

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2

(
3R2

33 − 1
)

1
2

(
R2

13 − R2
23

)
1
2R13R23

1
2R23R33

1
2R13R33

3
2

(
R2

31 − R2
32

)
1
2

(
R2

11 − R2
12 + R2

22 − R2
21

)
1
2 (R11R21 − R12R22) 1

2 (R21R31 − R22R32) 1
2 (R11R31 − R12R32)

6R31R32 2(R11R12 − R21R22) R11R22 + R12R21 R21R32 + R22R31 R11R32 + R12R31

6R32R33 2(R12R13 − R22R23) R12R23 + R13R22 R22R33 + R23R32 R12R33 + R13R32

6R31R33 2(R11R13 − R21R23) R11R23 + R13R21 R21R33 + R23R31 R11R33 + R13R31

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The matrix C is not unitary due to the fact that the bare polynomials 3z′2 − r ′2,x ′2 − y ′2,x ′y ′,y ′z′,x ′z′ are orthog-
onal but are not normalized. The normalization is done by averaging the squares of the functions (3z′2 − r ′2)/r ′2,
(x ′2 − y ′2)/r ′2,x ′y ′/r ′2,y ′z′/r ′2,x ′z′/r ′2 over the surface of the unit sphere. We place these averages, which are
4/5,4/15,1/15,1/15,1/15, respectively, on the diagonals of a diagonal scaling matrix S and then form the scaled and unitary
transformation matrix D = S1/2 C S−1/2, which is our final matrix relating the d orbitals in primed and unprimed coordinates.
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To give a feeling for how the method works, we take the experimental structure for LaMnO3 crystal with a = 5.736 Å,
b = 7.703 Å, and c = 5.540 Å, as in Fig. 1. In experimental structured LMO, consider the octahedron about the Mn atom at
(0.00,0.00,2.77) Å, which has two basal oxygens at O1 = (1.12, − 0.31,1.26) Å and O2 = (1.75,0.31,4.03) Å, and an apical
oxygen at O3 = (−0.07,1.93,2.37) Å. We form the normalized ui vectors, compute R and then C and upon normalization find

D =

⎛
⎜⎜⎜⎝

0.06 0.04 0.01 0.23 0.31
−0.03 0.16 0.88 −0.24 0.64

0.58 −0.74 0.97 −0.09 0.27
0.78 0.54 −0.71 −0.19 −0.33

−0.05 −0.20 −2.76 −0.29 0.99

⎞
⎟⎟⎟⎠.

D can now be used to diagonalize the 5×5 density matrix in the subspace of the Mn d orbitals. For a DFT + U |J calculation
with U = 8 eV and J = 2 eV, fixed at the experimental structure, the Mn d eigensystem is

φσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

fiσ 0.42 0.96 0.97 0.98 0.99

3z′2 − r ′2 0.50 0.12 0.80 −0.22 −0.19
x ′2 − y ′2 0.54 0.17 −0.53 −0.07 −0.63

x ′y ′ −0.10 0.80 −0.02 −0.56 −0.21
y ′z′ 0.28 −0.57 0.09 0.77 −0.07
x ′z′ −0.60 0.11 0.25 0.21 −0.72

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Here each eigenvector is a column vector with its eigenvalue fiσ provided above it. Before rotation, it is hard to easily read off
the nature of each eigenstate by inspection. After rotation, the eigenvectors in the local basis are given by

Dφσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

fiσ 0.42 0.96 0.97 0.98 0.99

3z2 − r2 −0.17 −0.05 −0.07 0.13 −0.97
x2 − y2 0.99 0.05 −0.07 0.03 −0.17

xy 0.00 −0.01 0.05 −0.99 −0.15
yz −0.03 −0.99 −0.09 0.00 0.07
xz 0.01 +0.11 −0.99 −0.06 0.07

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The local basis eigenvectors are clearly much “purer” as each vector has a component whose magnitude is 0.97 or larger. And
thus each configuration is easy to read off by inspection: the partially occupied state in the first column is essentially the x2 − y2

state while the last column shows that the 3z2 − r2 has become filled. We have strong orbital polarization in the eg manifold.
This indicates the rotation to local octahedral coordinates successfully diagonalized the eigensystem, and that the local basis is
physically relevant for understanding the electronic structure.
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