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Correlation effects in pyrochlore iridate thin films grown along the [111] direction
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Over the past few years, bulk pyrochlore iridates of the form A2Ir2O7 (where A is a rare earth element, Ir
is iridium, and O is oxygen) have been studied as model systems for investigating the interplay of electronic
correlations and strong spin-orbit coupling, particularly with the aim of finding correlation-driven topological
phases. In this work, we use cellular dynamical mean field theory (CDMFT) to study effects of electronic
correlations beyond Hartree-Fock theory in thin films of pyrochlore irradiates grown along the [111] direction.
We focus on the bilayer and trilayer systems, and compute the phase diagrams of these systems as a function of
electron-electron interaction strength, which is modeled by an onsite Hubbard interaction. By evaluating the Z2

invariant and Chern number using formulas based on the single-particle Green’s function and the quasiparticle
effective Hamiltonian, we show that onsite correlations can drive an interaction-induced topological phase
transition, turning a time-reversal-invariant topological insulator and a nearly flat band metal to a correlated
Chern insulator (CI) in bilayer and trilayer systems, respectively. By comparing with the Hartree-Fock results,
the CDMFT results show that quantum fluctuations enhance the robustness of the interaction-driven CI phase
in the thin films. Furthermore, our numerical analysis of the quasiparticle spectrum reveals that the topological
phases we find in our many-body calculations are adiabatically connected to those in the single-particle picture.
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I. INTRODUCTION

Over the past decade, time-reversal-invariant topological
insulators (TI) in two and three dimensions have received
significant theoretical and experimental attention [1–9]. Re-
cently, significant effort has been made to investigate the
role of electron-electron interactions in topological states of
of matter [10–17]. Although it is generally understood that
topological phases described by electronic band structure
are robust to weak electron-electron interactions, the full
many-body problem of a strongly interacting system remains
far from completely understood [17,18]. One possible effect
of electronic interactions is magnetic order that carries with
it a topological phase transition (either from a nontopological
system to a topological one, or from a TI to a nontopological
magnetically ordered state) [19–23].

Among the real-material proposals for systems expected to
exhibit topological properties, transition-metal oxides (TMO)
are a promising candidate for realizing nontrivial interacting
topological phases [24–36]. Among the bulk (as apposed
to thin-film) TMO that have been theoretically studied in
the context of topological phases, the irradiates have been
particularly singled out [17,24–35,37]. In these materials,
the iridium 5d electrons typically dominate the states near
the Fermi energy. The d orbitals are usually correlated and the
large atomic number of iridium means that spin-orbit coupling
can be significant as well. Thus, the iridates are a natural
platform for investigating the interplay of strong spin-orbit
coupling and correlation effects [17].

In addition to the search for three-dimensional topological
phases in bulk TMO oxides, thin films (as thin as a bilayer)
of TMO have also received significant attention recently [38].
A number of these studies have focused on the perovskite
structure ABO3 (where A is a rare earth element, B is a
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transition metal, and O is oxygen) where thin films are grown
along the [111] direction [11,12,29,32,39–46]. In this work, we
are interested in thin films of the pyrochlore irididate A2Ir2O7

(where A is a rare earth element, Ir is iridium, and O is oxygen)
grown along the [111] direction [33,47,48]. The thin-film
geometry of A2Ir2O7 allows one to investigate the effects
of reduced dimensionality on the interplay of correlations
and strong spin-orbit coupling. Along the [111] direction (or
equivalent directions), Ir4+ ions form alternating layers of
kagome and triangular lattices. See Fig. 1 for a visualization
of the geometry of the Ir atoms in the bilayer and trilayer
geometries.

Our main objective in this work is to go beyond the
Hartree-Fock (HF) approximation [47,48] in the study of
the effects of reduced dimensionality on the interplay of
correlations and strong spin-orbit coupling in [111] grown
pyrochlore iridate thin films. The intrinsic spin-orbit coupling
of the Ir local moments generally breaks the spin-rotational
invariance [25,30] and therefore opens the possibility of
long-range magnetic order at nonzero temperatures. Therefore,
we do not expect qualitative changes to the magnetic order
upon the inclusion of spatial fluctuations on top of the magnetic
order predicted in HF theory. On the other hand, we wish to
better understand how the quantum fluctuations in time may
impact the HF predictions of interacting topological phases
(namely the Chern insulator) in these systems. In particular,
we would like to know whether the temporal fluctuations
can be so severe that interaction-generated topological phases
predicted by HF theory disappear. For Chern insulators
induced “purely” by electron-electron interactions (that is, the
underlying Hamiltonian has no intrinsic spin-orbit coupling at
the noninteracting level), it appears that temporal fluctuations
can indeed destroy the topological phase [49]. In our model,
that does include a finite spin-orbit coupling at the nonin-
teracting level, we reach the opposite conclusion: Temporal
fluctuations do not generally destroy an interaction-driven
topological phase in two dimensions.
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FIG. 1. (Color online) The lattice structure of the (a) bilayer (TK)
and (b) trilayer (TKT) pyrochlore iridate thin films grown along the
[111] direction.1 Each lattice site denotes an Ir4+ ion. The light green
dots form a coplanar kagome lattice, whereas the pink dots form a
coplanar triangular lattice. (c) Shows the hexagonal Brillouin zone of
the TK and TKT systems.

To investigate the physics of temporal fluctuations in
our thin-film systems, we employ cellular dynamic mean-
field theory (CDMFT) [50,51]. We focus on two thin-film
systems of A2Ir2O7 grown along the [111] direction: a bilayer
consisting of a kagome and a triangular lattice (KT), and
a trilayer consisting of triangular-kagome-triangular (TKT)
lattices, as shown in Figs. 1(a) and 1(b).

Because our interest in this work is primarily the investiga-
tion of temporal fluctuations on interaction-driven topological
phases in two-dimensional models (as opposed to a first-
principles prediction of interaction effects in real material
systems [48]), we will simplify the problem by restricting
the Hilbert space of our Hamiltonian to the “Jeff = 1

2 ” model,
appropriate for the limit of a large spin-orbit coupling [17].
While the large spin-orbit coupling limit may not be reached
in real materials [37,48], we expect the central physical results
of our study to be unchanged upon the inclusion of the full
t2g subspace of the iridium 5d orbitals. The reduced Hilbert
space allows us to carry out the CDMFT study; the inclusion
of the full t2g subspace is beyond the numerical capabilities
presently available. Because the bandwidth of the states near
the Fermi energy is rather narrow, even a moderate interaction
can put the system in a strongly correlated regime.

Our CDMFT results show that the correlation effects can
drive a topological phase transition from a TI to a magnetic
Chern insulator (CI) with nontrivial Chern number C = 1 in
the bilayer (KT) system. In the trilayer (TKT), we find that
many-body interaction effects on the nearly flat band near the
Fermi surface can induce a topological phase transition from
a nonmagnetic conductor (C) to an interacting CI with Chern
number ±1. Both thin-film cases show that the ground state
is a trivial magnetic insulator in the strong interaction limit.
Compared to the previous HF results [47], our results suggest
that moderate quantum fluctuations (captured by CDMFT)
can stabilize the interaction-driven CI phases in both bilayer
and trilayer systems, effectively enlarging the parameter space
where they appear.

1The crystal structure was drawn with Balls and Sticks [52].

Our paper is organized as follows. In Sec. II, we first
introduce a simplified model Hamiltonian for the thin films
of pyrochlore iridates A2Ir2O7. In Sec. III, we briefly describe
the CDMFT method, and explain how to evaluate the Chern
number and the Z2 invariant. In Sec. IV, we present our
numerical results for the bilayer and trilayer cases with
the exhaustive phase diagrams and corresponding magnetic
configurations. Finally, we summarize our work in Sec. V.

II. MODEL HAMILTONIAN

In the pyrochlore oxides A2B2O7, with A a rare earth
element such as Y or La, the A site has a vanishing magnetic
moment and the physics is dominated by the transition-metal
B ions. In this work, we apply the model Hamiltonian
proposed for the three-dimensional (3D) materials [25,30] to
the quasi-two-dimensional thin-film systems [47]. Effectively
integrating out the oxygen orbitals involved in indirect hopping
processes between B-site ions, one obtains a model that only
involves the B sites. We will use such a model in this work.
The 5d atomic orbitals in Ir4+ are subject to a cubic crystal
field, which splits the 5d orbitals into eg and t2g manifolds. The
eg manifold typically lies 2–3 eV above the t2g manifold [53].
Spin-orbit coupling (SOC) further splits the t2g manifold into
a Jeff = 1

2 doublet and a Jeff = 3
2 quadruplet. At infinite SOC

strength, the Jeff = 1
2 states form a low-energy manifold (the

Jeff = 3
2 levels are inactive since they are fully occupied below

the Fermi level) for the thin films.
In the pyrochlore iridates A2Ir2O7, four Ir4+ ions form a

tetrahedron in the unit cell of a face-centered-cubic Bravais
lattice and the Jeff = 1

2 manifold is half-filled [17]. In addition,
we include an onsite Coulomb repulsion within the Jeff = 1

2
pseudospin space to obtain the effective Hamiltonian for our
thin films [28,30]:

H =
∑

〈Ri ,Rj 〉,σσ ′

(
[Toxy]ijσσ ′ + [Tdir]

ij

σσ ′
)
c
†
Ri σ

cRj σ ′

−μ
∑
Ri ,σ

c
†
Ri σ

cRiσ + U
∑
Ri

nRi↑nRi↓, (1)

where cRi σ annihilates an electron with pseudospin σ at the
ith site of the Bravais lattice vector R. The site index i runs
from 1 to 4 in the bilayer KT lattice [in Fig. 1(a)], while it
runs from 1 to 5 in the trilayer TKT lattice within a single
unit cell [in Fig. 1(b)]. The hopping parameter Toxy arises
from the oxygen-mediated hopping between nearest-neighbor
(NN) Ir4+ atoms with amplitude t ∝ V 2

pd/�, where Vpd is
the tunneling amplitude between p orbitals of the oxygen
and d orbitals from Ir; � is the energy difference between
the two atomic orbital levels. The hopping parameter Tdir

is the direct NN Ir-Ir hopping due to the direct overlap between
the extended 5d orbitals, which depends on tσ and tπ from σ -π
bonding between the d orbitals [30]. The chemical potential μ

is adjusted so that at half-filling, each site has one particle on
average in the Jeff = 1

2 bands. The values of the tight-binding
parameters in the matrices [Toxy] and [Tdir] have been explicitly
expressed in Appendix A of Ref. [47]. For simplicity, we
choose hopping between oxygen p orbitals and iridium d

orbitals, tpd = 1, as the unit of energy, and set tπ = −2tσ /3
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FIG. 2. (Color online) The noninteracting band structure along
high-symmetry directions in the Brillouin zone and density of states
(right side of each figure shown in red) for (a) bilayer (KT) at tσ = 2
and (b) trilayer (TKT) at tσ = −1. At half-filling, (a) is insulating
whereas (b) is metallic.

for both bilayer and trilayer systems in order to compare with
bulk systems [28,30] and thin-film results [47].

Following earlier work on pyrochlore iridiates [30,47],
we select different values of the tight-binding hopping
parameter tσ to explore different regimes of the parameter
space potentially relevant to experimental systems. Because
of the underlying triangular lattice in the (111) planes, the
Brillouin zones of both the KT and the TKT systems are
hexagonal [see Fig. 1(c)].

For the bilayer system, we choose tσ = 2 and present the
noninteracting band structure and density of states (DOS) in
Fig. 2(a). The KT lattice breaks inversion symmetry and the
noninteracting band structure has an energy gap around the
Fermi level at half-filling. A Kramers degeneracy is found
at time-reversal-invariant momenta (TRIM), i.e., � and M in
Fig. 1(c). By calculating the Z2 invariant using the Fu-Kane
formula [4] or with Fukui’s method [54], one finds the system
is a topological band insulator for U = 0 [47]. For this value
of tσ , we can thus calculate within the CDMFT formalism
how interactions drive the system away from a Z2 TI as the
parameter U is increased.

On the other hand, we choose tσ = −1 for the trilayer case.
In this parameter regime, the noninteracting band structure,
depicted in Fig. 2(b), shows nearly degenerate flat bands close
to the Fermi level, such that at half-filling it is metallic. As
is revealed by previous HF results [47], however, a small but
finite interaction U will open a gap, and drive the system to
a CI. We wish to study the fate of this transition within the
CDMFT formalism.

III. CDMFT FORMALISM AND EVALUATION
OF TOPOLOGICAL INVARIANTS

CDMFT is an extension of the single-site dynamical
mean-field theory method [55] to include spatial correlation
effects within a superlattice unit cell [50,51]. As a result,
this method can capture the short-distance effect of quantum
fluctuations neglected in single-particle approximation and
has already been successfully applied to study other complex

oxides [32,56–58] and the three-dimensional bulk (and slab)
pyrochlore iridates [28]. In general, the dynamical mean-field
theory method reduces lattice problems with infinite degree
of freedom to a type of Anderson impurity problem, in
which a cluster of Nc sites hybridizes with electron bath sites
(environment):

Himp =
∑
μνσ

Eσσ ′
μν c†μσ cνσ ′ + U

∑
μ

nμ↑nμ↓

+
∑
μlσσ ′

(
V σσ ′

μl a
†
lσ ′cμσ + V σσ ′∗

μl c†μσ alσ ′
)

+
∑
lσ

εlσ a
†
lσ alσ , (2)

where the greek symbols μ,ν = 1,Nc label cluster sites;
l = 1, . . . ,Nb labels bath sites, and σ,σ ′ are pseudospin labels.
The electron operators c†μσ (cμσ ) apply to the cluster sites,

whereas a
†
lσ (alσ ) to the bath sites. The hopping integrals

and chemical potential within the cluster are incorporated by
the matrix elements of E, which are obtained from the tight-
binding parameters [Toxy] and [Tdir]. The V ’s and ε’s are bath
parameters describing hybridization between the clusters and
bath sites, and onsite energy levels, respectively. The values
of the V , the ε, and the lattice Green’s functions of Eq. (2)
are numerically determined via an exact diagonalization and
self-consistency procedure.

The self-consistency procedure is as follows: an initial input
of the bath parameters V and ε is given in Eq. (2) to solve the
impurity Hamiltonian. From the cluster impurity Hamiltonian,
we compute the cluster Green’s function Ĝ(iω) as a 2Nc × 2Nc

(number of sites =Nc and number of pseudospin degrees of
freedom =2) matrix, as well as the cluster self-energy

	̂c(iω) = [Ĝ(iω)]−1 − [Ĝ(iω)]−1, (3)

where Ĝ is the noninteracting cluster Green’s function. In
CDMFT, it serves as the Weiss field describing the coupling
of the cluster to the environment. Then, the lattice Green’s
function is coarse grained as

Ĝloc(iω) = Nc

N

∑
k∈BZ

[(iω + μ)1̂ − t̂(k) − 	̂c(iω)]−1, (4)

where k is the momentum in the Brillouin zone, and t̂(k) is
the Fourier transformed hopping integral. The self-consistent
loop is closed by calculating the new Weiss function

[Ĝnew(iω)]−1 = [Ĝloc(iω)]−1 + 	̂c(iω), (5)

and requiring [Ĝnew(iω)] 
 [Ĝ(iω)] to within a prescribed
accuracy. In updating the V and the ε, we fit the new
Weiss function on the Matsubara axis with conjugate gradient
methods and chose an artificial low temperature kBT = 0.01
(in units of t) to simulate the zero-temperature case. This
value is much smaller than other characteristic energy scales
in the problem, including the energy spacing due to the
discretization of the momentum space in the Brillouin zone,
and thus approximates the zero-temperature limit well.

In our work, we chose a tetrahedron as a unit-cell cluster for
the bilayer case, i.e., Nc = 4; while for the trilayer case, the
unit-cell cluster is chosen as a tetrahedron with an external
(pink) site linked to one of its four corners, i.e., Nc = 5
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[cf. Figs. 1(a) and 1(b)]. In order to solve Eq. (2), exact
diagonalization with the Lanczos algorithm [55] is employed
to get the ground-state properties of the cluster, such as the
magnetic order parameter and single-particle Green’s function.
In the bilayer case, we compare Nb = 4 and 8 to determine
how the phase diagram depends on the finite bath sites [59];
in the trilayer case, we choose Nb = 5.

Next, we briefly describe how we numerically calculate
topological invariants using the CDMFT method. Interested
readers can see more details in Appendix A. In a noninteracting
topological band insulator, the Chern number is equal to
the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) num-
ber [60]

C =
∫

d2k

2π

∑
α=filled

fxy, (6)

where fij = ∂ai(k)/∂kj − ∂aj (k)/∂ki is the Berry curvature,
and ai(k) = −i〈uα(k)| ∂

∂ki
|uα(k)〉 is the Berry connection. The

summation is over filled band indices. Here, |uα(k)〉 denotes
the αth eigenstate of the noninteracting Hamiltonian H (k).
There is no inversion symmetry in the pyrochlore oxide [111]
grown bilayer system. To calculate the Z2 index (−1)P2 in a
generic way, we resort to the approach given by Fukui [54] in
the half-BZ:

P2 =
∫

BZ
d2kf12 −

∫
∂BZ

dk · a mod 2. (7)

Note that in the Z2 formalism, a time-reversal smooth gauge
has to be chosen as

|uα(−k)〉 = T |uα(k)〉, (8)

where T is the time-reversal operator.
For a general interacting system, one is no longer able to

use the noninteracting invariants given in Eqs. (6) and (7).
Instead, one must express the invariant in terms of the
single-particle Green’s function at zero frequency [61,62].
With the CDMFT method, we can easily obtain the zero-
frequency Green’s function Ĝ(iω = 0,k) at self-consistency.
The zero-frequency Green’s function allows one to define
a “topological Hamiltonian” [61,62] from which one can
compute the corresponding invariant

Htop(k) = −Ĝ−1(0,k). (9)

One diagonalizes the “topological Hamiltonian” to obtain the
eigenvalues

Htop|α,k〉 = μα(k)|α,k〉, (10)

where α is a “band” index. Filled “bands” are selected as
eigenvalues with μα(k) < 0. Then, the Berry connections ai(k)
are constructed by replacing the noninteracting Hamiltonian
eigenstates |uα(k)〉 with the topological Hamiltonian eigen-
states |α,k〉, and plugging the result into Eqs. (6) and (7) to
evaluate the Chern number and Z2 invariant, respectively.

For weak to moderate strength interactions, quasiparticles
exist with a finite lifetime. Because of the lifetime broadening
of the states, it can be difficult to determine if a gap exists by
directly evaluating the interacting quasiparticle spectral func-
tion A(ω,k) = − 1

π
ImG(ω + iη,k): The quasiparticle bands

will have a finite width in energy and are sensitive to the value

of η. In order to deal with this numerical issue, we deter-
mine the “effective” quasiparticle dispersion from the quasi-
particle effective Hamiltonian (B14) by expanding the local
self-energy up to first order in frequency. The details are
explained in Appendix B. We emphasize that this effective
Hamiltonian mainly captures the quasiparticle features around
the Fermi energy (ω = 0).

IV. NUMERICAL RESULTS

In this section, we present our CDMFT results. In the HF
theory, the single-particle band structure is renormalized by the
Hartree and Fock terms in the mean-field Hamiltonian [47],
and the self-energy of the single-particle Green’s function
depends only on the momentum k (being independent of the
frequency ω). Therefore, we reexamine the fate of topological
phases and transitions obtained by HF with CDMFT. In
the latter approach, quantum fluctuations and correlations
are included nonperturbatively in the self-energy within the
cluster. However, in CDMFT calculations, one usually obtains
a hysteresis behavior when the phase transition is of the first
order. Namely, the critical value of U (say Uc1) when the
system undergoes a transition from phase A to phase B by
increasing U does not coincide with the one (say Uc2) when
the system undergoes a transition from phase B to phase A

by decreasing U . In order to determine the complete phase
diagram, we numerically calculated and compared the free
energy per site when both magnetic and nonmagnetic solutions
coexist for a particular value of U . The phase is assigned to
the state with the lower free energy.

A. Bilayer system

The Nb = 4 and 8 CDMFT phase diagrams together with
the magnetization in the unit cell are presented as a function
of U in Figs. 3(a) and 3(b), respectively. While our results
are for the parameter tσ = 2, we also confirmed that a similar
phase diagram is obtained with tσ = 1. For comparison, we
also show the phase diagram obtained by Hartree-Fock theory
[Fig. 3(c)].

Both the CDMFT and HF approaches show that there
exist three different phases upon increasing U , and that the
phase boundaries are quantitatively similar, except for the
region of the Chern insulator (CI) which is much larger when
quantum fluctuations are included. There exists a finite range
of values, 0 � U � 3.5 in Nb = 4 and 0 � U � 3.0 in Nb = 8
(CDMFT), for which the system remains in the time-reversal-
symmetric (TRS) TI phase. The spectral functions and the
quasiparticle band structures (see Appendix B) computed from
Nb = 8 CDMFT are plotted in Fig. 4(a), while Nb = 4 gives
similar results. We can see from Fig. 4(a) that the Kramers
degeneracy for quasiparticle bands remains intact and the
finite band gap leaves the Z2 invariant ν = 1 unchanged. In
this case, there is no magnetization induced, and the phase is
adiabatically connected to the noninteracting TI phase. Thus,
the TI is stable against moderate electronic correlation, as
would be expected for a system with a gap in the excitation
spectrum about the Fermi energy.

For U � 3.0 (in CDMFT), TRS is broken and the system
becomes a magnetic insulator. At Uc ≈ 3.0, a magnetization
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FIG. 3. (Color online) Bilayer (KT) phase diagram for tσ = 2.
(a) Nb = 4 CDMFT results; (b) Nb = 8 CDMFT results; (c) HF
results. In (a), the net magnetic moment defined in the unit cell
m (black circles) and averaged magnetic moment per site m̄ (blue
triangles) are plotted as a function of U . TI: time-reversal-invariant
topological insulator; MI: trivial magnetic insulator; CI: topological
Chern insulator.

jump appears, which indicates a first-order phase transition
from a nonmagnetic to a magnetic insulator. The net magnetic
moment, in units of gμB depicted by black circles in Fig. 3(a),

FIG. 4. (Color online) Spectral weights along high-symmetry
lines and local density of states for the bilayer (KT) with tσ = 2,
Nb = 8. The broadening factor is η = 0.02. The yellow dots show
quasiparticle spectrum obtained from Eq. (B14). (a) TI: U = 2.0;
(b) CI: U = 3.0; (c) MI: U = 6.0.

is defined as

m =
∣∣∣∣∣
∑

i

Si

∣∣∣∣∣, (11)

where i runs over all sites within a unit cell. On the other
hand, in Fig. 3(a), the averaged magnetic moment per site,
defined as

m̄ = 1

Nc

∑
i

|Si |, (12)

shows a monotonically increasing magnetization upon increas-
ing U . A similar behavior is also captured using the HF theory
shown in Fig. 3(b). In this regime, the ground state is a trivial
magnetic insulator (MI) due to the trivial Chern number C = 0.

Upon increasing U , a finite range that harbors the
interaction-induced CI phases is observed at U ∼ 3.8–4.8
for Nb = 4, U ∼ 3.8–4.7 for Nb = 8 by CDMFT, and at
U ∼ 3.63–3.65 by HF theory. In comparison between Nb = 4
and 8, it is found that the magnetic phase boundary is
shifted by around 0.5 in U . We ascribe this shift to the
effect of finite bath sites. The spectral functions and the
quasiparticle dispersion for the CI from Nb = 8 are plotted
in Fig. 4(b). To avoid the broadening of the spectral function
by the imaginary part of the self-energy, we identify the gap
around Fermi level by examining the band gaps from both
topological Hamiltonian (9) and the quasiparticle effective
Hamiltonian (B14). In both themes, the band topologies
are well defined and a nontrivial Chern number C = +1 is
found for half-filled bands. One can observe from Fig. 4
that the quasiparticle dispersion matches well with the ridges
of spectral weights along high-symmetry lines, according to
our definition of quasiparticle effective Hamiltonian (B14).
The Kramers degeneracy at the TRIM points is lifted in
the presence of finite magnetic moments. More interestingly,
the CI phase “survives” for wider range of U values in the
CDMFT phase diagram than in the HF phase diagram. This
observation suggests that quantum fluctuations stabilize the
interaction-induced CI phase.

The magnetic configurations for the CI and MI for Nb = 8
are illustrated in Figs. 5(a) and 5(b), respectively. Similar
configurations are also found for Nb = 4. For the parameters
we have studied, the magnetic configurations in the bilayer
case are similar to that in the bulk pyrochlore oxides [28,30],
denoted as �5 [63], except for the nonvanishing net magne-
tization in the tetrahedron (m 
= 0) due to spatial anisotropy
between the in-plane and out-of-plane directions. This pattern
is called the antiferromagnetic ordering in the previous studies
of the bulk system [28,30]. In the CI phase of Fig. 3(b)
(Nb = 8), we found a discontinuity in the magnitude of net
magnetization around U ∼ 4.0 due to a sudden drop of the ratio
between the magnitude of moment 3 and moment 1 in Fig. 5(a),
while the orientation of the moments remains almost the same.
This phenomenon does not appear in Fig. 3(a) (Nb = 4). Due
to the finite number of bath sites used in ED solver, it is not
clear whether there is indeed a magnetic phase transition in
CI phase. But our results indicate that the CI phase is robust
against a small change in magnetic order.

It is interesting to compare the discrepancy between
the bilayer case and the three-dimensional bulk. To further
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(a) (b)

(c)

FIG. 5. (Color online) Magnetic configurations of the bilayer
system within a unit cell at tσ = 2 and at (a) U = 4.0 (CI) and
(b) U = 5.0 (MI). Both magnetic configurations resemble the antifer-
romagnetic ordering discovered in Refs. [28,30], where moment 1 (2)
intersects with moment 4 (3), or moment 1 (2) intersects with moment
3 (4). To compare with the bulk case [30], (c) takes tσ = −1,U = 4.0
and is a trivial MI. The configuration (c) is close to the “all-in/all-out”
(AIAO) order obtained in the three-dimensional bulk [30], but with a
nonvanishing net moment pointing in the [111] direction. The AIAO
order will have zero m but nonzero m̄.

examine magnetic configurations between the bulk and the
bilayer system, we present the magnetic pattern for tσ = −1
in Fig. 5(c). The magnetic moments are aligned in close
similarity to the AIAO configuration, denoted as �3, found
in the three-dimensional bulk materials [63]. The nonzero net
moment in the tetrahedron is pointing in the [111] direction due
to the failure of cancellation between moment 1 (in triangular
layer) and sum of moments 2, 3, and 4 (in the coplanar kagome
layer). Since the Chern number C = 0, it is still a MI.

B. Trilayer system

The tσ = −1 noninteracting band structure for the TKT
system is shown in Fig. 2(b). Unlike the bilayer system, the
TKT system has both inversion symmetry and TRS. Thus,
the noninteracting bands are doubly degenerate and a metallic
ground state is expected with a half-filled nearly flat band lying
at the Fermi energy. The ground state of the U = 0 system is
a trivial conductor (denoted “C”). The trilayer phase diagram
as a function of the interaction U is shown in Fig. 6.

When the Hubbard interaction reaches U ≈ 0.2 (in
CDMFT), the system breaks TRS and the doubly degenerate
flat bands split into two nearly flat bands carrying opposite
Chern numbers. Therefore, half-filled bands give a nontrivial
Chern number C = ±1. Meanwhile, as can be seen in the
spectral weight along high-symmetry line and local density of
states in Fig. 7(a), one can identify a finite gap in this regime.
Combining these observations, it is a nontrivial CI. This
indicates the single-particle nature of the interaction-induced

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

M CI MI

(b)

U

m

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

(a)

U

m  C  CI  MI

FIG. 6. (Color online) Trilayer (TKT) phase diagram for tσ =
−1. (a) CDMFT results; (b) HF results. In (a), the net magnetic
moment defined in the unit cell m (black circles) and averaged
magnetic moment m̄ (blue triangles) are plotted as a function of
U . C: trivial nonmagnetic conductor; M: trivial magnetic conductor.

CI appearing in TKT. The corresponding magnetic order for
TKT is still noncollinear and close to the HF results in both
bulk [64] and trilayer [47] systems, as shown in Fig. 8(a).

If the interaction strength is further increased to U ≈ 0.8,
a quadratic band touching appears around the � point and the
band topology becomes trivial [cf. Fig. 7(b)]. Upon further
increasing U , another topological quantum phase transition
occurs. We confirm this by measuring the band gaps around
the Fermi level using both the topological Hamiltonian and the
quasiparticle Hamiltonian. By diagonalizing the quasiparticle
effective Hamiltonian defined in Appendix B and calculating
the corresponding Chern number of the filled bands, one finds
the same change in the band topology found directly from
the corresponding analysis on the topological Hamiltonian
determined from the single-particle Green’s function.

For U > 0.8, the TKT system becomes a trivial MI, and the
magnetic configuration resembles (but is different from) the
AIAO pattern similar to what is found in the bulk. However,
for any value of U , the CDMFT results do not indicate the

FIG. 7. (Color online) Spectral weights along high-symmetry
lines and local density of states for trilayer (TKT) tσ = −1. The
broadening factor is η = 0.02. The black dots show quasiparticle
spectrum. (a) CI: U = 0.5; (b) MI: U = 1.0; (c) MI: U = 3.0.
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FIG. 8. (Color online) Magnetic configuration of TKT within a
unit cell. (a) tσ = −1, U = 0.5; (b) tσ = −1, U = 4.0. In (a) and
(b), the magnetic configuration resembles AIAO but with nonzero
net magnetization in a tetrahedron. The magnetic moments 1 and 5
are almost parallel, which enhances the ferromagnetism within a unit
cell and the net magnetic flux through the (111) plane.

presence of the magnetic conductor phase [labeled “M” in
Fig. 6(b)], as predicted by the HF theory. But similarly, the
CI phase in the trilayer system is more stable in the CDMFT
phase diagram than in the HF phase diagram, showing that
moderate correlations and quantum fluctuations tend to favor
to the CI phase.

Finally, we note that while in the bilayer system, the CI
phase is “born” out of a parent TI state, the same is not true of
the CI in the trilayer: The CI in the TKT system is an example
of interactions driving a topological state without a parent
topological state. Combined, the bilayer and trilayer CDMFT
results show that the general conclusion reached within the the
HF theory, that a CI can emerge from both gapped and gapless
states at the noninteracting level, is robust to the inclusion of
quantum fluctuations.

V. SUMMARY

In summary, we go beyond the single-electron approxima-
tion to reinvestigate the phase diagram of bilayer (KT) and
trilayer (TKT) thin-film pyrochlore iridates in an effective
Jeff = 1

2 model with onsite Hubbard interaction. By applying
the cellular dynamical mean-field theory (CDMFT) method
with an exact diagonalization cluster impurity solver, the
correlation effects in the model Hamiltonian we studied have
been fully incorporated in the time domain, and partially in
the spatial degrees of freedom. Importantly, we show that
local quantum fluctuations will not destroy the magnetic order
and interaction-driven topological phases of these quasi-two-
dimensional systems. The effect from different choice of bath
levels is summarized in Fig. 3 and a comparison of the CDMFT
and Hartree-Fock results are shown in Figs. 3 and 6. An
interesting result to emerge from this comparison is that in
both systems the quantum fluctuations captured in CDMFT
(but left out of HF theory) tend to stabilize the Chern insulator
phase by enlarging the region of Hubbard U values over which
it occupies the phase diagram. It is worth mentioning that
we also studied other values of tσ and in all cases found
a similar level of agreement between the CDMFT and HF

phase diagrams to the phase diagrams shown in this paper.
Thus, we conclude that the HF calculations are reliable for
predicting the qualitative features of the phase diagrams of
systems similar to those we study here, namely, that there is
a nonvanishing spin-orbit coupling at the noninteracting level
of the Hamiltonian. In particular, one does not want to rely on
a purely interaction-driven spin-orbit coupling to generate the
Chern insulator phase [49].

The magnetic order that appears above a critical value of U

is another important feature of our results. The configurations
of local moments under the CDMFT calculations are non-
collinear in both bilayer and trilayer systems and they highly
resemble their counterparts in the bulk material with the same
tight-binding parameters, although they are different in detail
because of the lowered symmetry of the films. For example,
the net magnetic moment in the unit cell is nonvanishing
due to the quasi-two-dimensional nature of the system, which
brings additional anisotropy in the magnetization. Moreover,
our CDMFT study indicates that the TI phase exists with
an interaction strength sufficient to break the time-reversal
symmetry. This correlated topological phase is adiabatically
connected to the topological band insulator with the band
dispersion and topology given by the “quasiparticle effective
Hamiltonian” and “topological Hamiltonian,” as we define in
the text. It is worth pointing out that although our numerical
results suggest positive outcomes for topological phases to be
hosted in many-body interacting systems, the energy scales
for these phases to be detected in experiments are relatively
small, being set by the gap value of the quasiparticle bands. The
extent to which the observable topological transport properties
survive thermal fluctuations and disorder in interacting phases
is an important open question for future work.
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APPENDIX A: CALCULATION OF CHERN NUMBER
AND Z2 INVARIANT

In Sec. III, we have briefly introduced the approach to calcu-
late the topological invariants using the single-particle Green’s
function. Here, we provide more details. In a noninteracting
topological band insulator, the Chern number and Z2 invariant
are evaluated with the following TKNN [60] and the generic
Z2 formula [2]

C =
∫

d2k

2π

∑
α=filled

fxy, (A1)

(−1)ν =
4∏

i=1

√
Det[B(
i)]

Pf[B(
i)]
, (A2)
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where fij = ∂ai (k)
∂kj

− ∂aj (k)
∂ki

and ai(k) = −i〈uα(k)| ∂
∂ki

|uα(k)〉
are the Berry curvature and Berry connection, respec-
tively. Here, |uα(k)〉 are the noninteracting Hamilto-
nian eigenstates, i.e., H (k)|uα(k)〉 = Eα(k)|uα(k)〉. The
summation is over filled band index for Eα(k) < EF .
Bmn(
i) = 〈um(−k)|T |un(k)〉 is the sewing matrix entry on
the overlap between Bloch state um(−k) and the Kramer
partner of Bloch state un(k) at TRIM points 
i . In the
quasi-two-dimensional thin films, there are four TRIM points:
� and M1,2,3. An alternative approach to calculate the Z2 index
is to see it as an obstruction to Stokes’ theorem in the half-BZ,

P2 =
∫

BZ
d2k f12 −

∫
∂ BZ

dk · a mod 2, (A3)

where in the Berry connection for ai(k), a time-reversal smooth
gauge is obtained by choosing the state and the corresponding
time-reversal partner

|un(−k)〉 = T |un(k)〉, (A4)

where T is the time-reversal operator. The topological order
parameters for interacting topological insulators are derived
from topological field theory as

C1 = i

24π2

∫
d2k dω εμντ Tr

[
G

∂G−1

∂qμ

G
∂G−1

∂qν

G
∂G−1

∂qτ

]
,

(A5)

P2 = 1

120
εμνρ

∫ 1

−1
du

∫ 1

−1
dv

∫
d3k

(2π )3

× Tr

[
G

∂G−1

∂qμ

G
∂G−1

∂qν

G
∂G−1

∂qρ

×G
∂G−1

∂u
G

∂G−1

∂v

]
mod n. (A6)

Note that in the above formulas, one integral is over all
frequency ranges. It is shown in Refs. [61,62] that the
finite-frequency Green’s function G(iω,k) is topologically
equivalent to the zero-frequency Green’s function G(iω =
0,k). As a consequence, the above formulas can be simplified
by using the zero-frequency Green’s function to reduce the
integral by one dimension. Furthermore, one can define a
“topological Hamiltonian” [62]

Htop(k) = −Ĝ−1(0,k). (A7)

Since the zero-frequency Green’s function is Hermitian, the
eigenvalues for the “topological Hamiltonian” are real:

Htop|α,k〉 = μα(k)|α,k〉, (A8)

where α is a “band” index. Filled “bands” have eigenvalues
μα(k) < 0. We construct the Berry connection and apply
Eqs. (A5) and (A3) with the noninteracting Hamiltonian eigen-
states |uα(k)〉 replaced by topological Hamiltonian eigenstates
|α,k〉 to evaluate both the first Chern number and Z2 invariant
in pyrochlore oxides thin films, which do not have inversion
symmetry in general. The numerical evaluation of the integral
over BZ is based on lattice discretization of the gauge field
ai(k) [54,65].

TABLE I. The Z2 index of the 3D bulk pyrochlore iridates at
U � 6.11.

P2 mod 2 P3 mod 2

n1 = 0 1 1
n1 = 1 0
n2 = 0 1 1
n2 = 1 0
n3 = 0 1 1
n3 = 1 0

We have numerically benchmarked Eq. (A5) in the three-
dimensional bulk pyrochlore iridates by evaluating the strong
Z2 topological index at U = 0,6,6.11 [28], which has eight
time-reversal-invariant momentum points (TRIM). The recip-
rocal lattice vector is written as

K = n1b1 + n2b2 + n3b3, n1,2,3 ∈ Z (A9)

where b1,b2,b3 are basis vectors corresponding to real lattice
vectors a1,a2,a3. The strong topological index can be obtained
by P3 = [P2(ni = 0) + P2(ni = 1)] mod 2 for i = 1,2,3,
where P2 is evaluated from Eq. (A3). With the results
summarized in Table I, one can verify the strong topological
insulator index (1; 000) in the 3D bulk pyrochlore iridates.

APPENDIX B: QUASIPARTICLE EFFECTIVE
HAMILTONIAN

In this section, we derive the formalism for the quasipar
ticle effective Hamiltonian. A generic Green’s function can be
written as

Gαβ(ω,k) = ([(ω + μ + iδ) · 1 − t(k) − 	(ω,k)]−1)αβ,

(B1)

where α, β are some arbitrary quantum numbers (orbital, spin,
or sites in a unit cell, etc.), and t(k) is the Fourier transformed
hopping integral. The self-energy is in general a complex
matrix, but from the Lehman representation, we have

G†(0,k) = G(0,k) (B2)

and

	†(0,k) = 	(0,k). (B3)

At general complex frequency, we can separate the self-energy
into Hermitian part and anti-Hermitian part as

	H (z,k) = [	(z,k) + 	(z∗,k)†]/2, (B4)

	A(z,k) = [	(z,k) − 	(z∗,k)†]/2. (B5)

The quasiparticle band structure can be defined as [66]

Det|(ω + μ) · 1 − t(k) − 	H (ω,k)| ≡ 0. (B6)

To analytically solve Eq. (B6) around the Fermi level, we
expand the Hermitian part of the self-energy up to first order
in ω,

	H (ω,k) = 	H (0,k) + ∂	H (ω,k)

∂ω

∣∣∣∣
ω=0

ω + · · · . (B7)
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Plugging the above into Eq. (B6), now we have

Det

∣∣∣∣ω ·
(

1 − ∂	H (ω,k)

∂ω

∣∣∣∣
ω=0

)

− [t(k) − μ · 1 + 	H (ω,k)]

∣∣∣∣ ≡ 0. (B8)

Equation (B8) can be converted into an eigenvalue problem of
an artificial Hamiltonian. First, we diagonalize the matrix to
the first order of ω in Eq. (B8) as

B(k) =

⎛
⎜⎝

α1(k) 0 0
0 α2(k) 0

0 0
. . .

⎞
⎟⎠

= U (k)

(
1 − ∂	H (ω,k)

∂ω

∣∣∣∣
ω=0

)
U †(k). (B9)

For simplicity, we drop the momentum index k in B(k)
and U (k) [U †(k)], so that Eq. (B8) can be rewritten
as

Det|ω · B − U [t(k) − μ · 1 + 	H (0,k)]U †| ≡ 0.

Let us rewrite

W =

⎛
⎜⎜⎝

1√
α1(k)

0 0

0 1√
α2(k)

0

0 0
. . .

⎞
⎟⎟⎠, (B10)

then Eq. (B8) becomes

Det|ω · 1 − WU [ttt(k) − μ · 1 + 	H (0,k)]U †W | ≡ 0.

At this stage, we have defined the “quasiparticle dispersion”
by solving the eigenvalue problem

Heff(k)ψα(k) = Eα(k)ψα(k), (B11)

for the effective quasiparticle Hamiltonian

Heff(k) = WU [t(k) − μ · 1 + 	H (0,k)]U †W. (B12)

In the CDMFT formalism, since self-energy has no depen-
dence on k,

	(0,k) ≈ 	(0), (B13)

Eq. (B12) becomes

H CDMFT
eff (k) = WU [t(k) − μ · 1 + 	H (0)]U †W. (B14)

The quasiparticle weight matrix is calculated by applying the
Cauchy-Riemann equations

(Z−1)αβ =
(

1 − ∂	H (ω)

∂ω

∣∣∣∣
ω=0

)
αβ

≈ δαβ − Im[[	A(ω0)]αβ]

ω0
+ i

Re[[	A(ω0)]αβ]

ω0
,

(B15)

where ω0 = π/β is the first positive Matsubara frequency.
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