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Low-energy model and electron-hole doping asymmetry of single-layer Ruddlesden-Popper iridates
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We study the correlated electronic structure of single-layer iridates based on structurally undistorted Ba2IrO4.
Starting from the first-principles band structure, the interplay between local Coulomb interactions and spin-
orbit coupling is investigated by means of rotational-invariant slave-boson mean-field theory. The evolution
from a three-band description towards an anisotropic one-band (J = 1/2) picture is traced. Single-site and
cluster self-energies shed light on competing Slater- and Mott-dominated correlation regimes. A nodal/antinodal
Fermi-surface dichotomy is revealed at strong coupling, with an asymmetry between electron and hole doping.
Electron-doped iridates show clearer tendencies of Fermi-arc formation, reminiscent of hole-doped cuprates.
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I. INTRODUCTION

Iridum oxides based on the Ruddlesden-Popper series pose
a particular challenging electronic structure problem [1–3].
The cooperation of strong spin-orbit coupling (SOC) with
5d-shell Coulomb interactions stabilizes insulating phases
at stoichiometry below room temperature. Since these com-
pounds usually show also antiferromagnetic (AFM) ordering,
it is debated if Mott or Slater mechanisms rule the observed
insulating states [4–6]. Despite formally assumed weaker
electronic correlations, the question arises if iridates still
display deeper analogies to layered ruthenates or high-Tc

cuprates in view of non-BCS superconducting properties [7].
While the Sr compound of single-layer ruthenates has

ideal tetragonal symmetry, the sister compound Sr2IrO4 shows
tilting of the IrO6 octahedra. In contrast Ba2IrO4 [see Fig. 1(a)]
is again free from distortions [8] and thus serves as a canonical
system with a single Ir ion in the paramagnetic (PM) unit cell
[9,10]. The AFM insulating phase of Ba2IrO4 has an Ir local
magnetic moment of 0.34μB, with an easy axis perpendicular
to the c axis [11], and is stable up to TN = 240 K. Only a small
charge gap of about ∼0.2 eV is deduced from angle-resolved
photoemission spectroscopy (ARPES) measurements [9].

Theoretical studies of (Ba,Sr)2IrO4 based on variational
Monte Carlo [12] as well as density functional theory (DFT)
combined with dynamical mean-field theory [4,5,13] support
the original heuristic picture of a correlation-mediated spin-
orbit driven insulator. Therein the SOC discriminates the Ir
5d(t2g) into effective Jeff = 1/2,3/2 states [14]. While four
electrons of Ir4+ fill up Jeff = 3/2 completely, one electron
remains in Jeff = 1/2 at low energy. The interacting half-filled
band at the Fermi level is then either gapped mainly due to
the Slater mechanism forming an AFM state or directly by
electronic correlations with secondary magnetic ordering.

Doping of the iridates is achievable [15], and recent experi-
mental works succeeded to reveal a subtle electronic structure
for both electron and hole doping [16–21]. By surface electron
doping of Sr2IrO4 [16], the quasiparticle (QP) strength seems
to vary along the Fermi surface, somehow reminiscent of the
famous Fermi arcs known from hole-doped cuprates. Though
effective hole-doping of Sr2IrO4 also shows k-selective fea-
tures [17], the fermiology appears much more incoherent.

In this work we focus on single-layer tetragonal Ba2IrO4

as a test case for basic accounts on the intriguing spin-orbit

assisted correlation physics. From the realistic band structure
at stoichiometry, effective low-energy three- and one-band
Hubbard models are constructed to assess the possible corre-
lation regimes. Local and nonlocal self-energy representations
are employed to study metal-insulator transition and doping
effects. Fermi-surface differentiations in qualitative agreement
with recent experimental findings are revealed. An obvious
dichotomy in the doped fermiology between electron and
hole doping is found at strong coupling, identifying the
electron-doped case as the candidate for a proper analog to
the hole-doped cuprates.

II. THEORETICAL FRAMEWORK

First-principles DFT calculations in the local density
approximation (LDA) are performed for Ba2IrO4 in the
I4/mmm space group according to crystal data by Okabe
et al. [8]. Computations are performed using a mixed-basis
pseudopotential scheme [22,23] with [24] and without the
inclusion of spin-orbit coupling. We construct maximally
localized Wannier functions (MLWFs) [25] for the Ir 5d(t2g)-
based low-energy bands close to the Fermi level from LDA
calculations without SOC. Therefrom an initial three-band
Hubbard Hamiltonian in the original 5d(t2g) basis of orbitals
m,m′ = yz,xz,xy and with local spin-orbit term on Ir sites i

is drawn, i.e.,

H =
∑

kmm′σ

ε
t2g

kmm′c
†
kmσ ckm′σ +

∑

i

(
H

(i)
CF + H

(i)
SO + H

(i)
INT

)
,

(1)

where c†, c are creation, annihilation operators for the MLWF
states with spin projection σ = ↑,↓. The t2g dispersion ε

t2g

k
excludes on-site parts, which enter the crystal-field term HCF.
A Slater-Kanamori parametrization with Hubbard Ut2g and
Hund’s exchange J

t2g

H = 0.14 eV [14,26] is used for HINT,
including density-density as well as spin-flip and pair-hopping
terms. The SO interaction reads HSO = λ

∑
ν sμ · lμ, where λ

is the coupling constant and s,l are spin-, angular-momentum
operators. Because of the shift of 5d(eg) to higher energies,
restricting the general spin-orbit interaction matrix to the
5d(t2g) manifold is justified [12,27].

The full problem (1) is solved by mean-field rotational-
invariant slave-boson (RISB) theory [28–30], using a
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FIG. 1. (Color online) (a) Crystal and AFM structure of tetrag-
onal Ba2IrO4, with Ba (green), Ir (brown), and O (small red) ions.
(b)–(e) Utilized self-energy representations within the square lattice
of an IrO2 layer. (b) Single on-site and (c) two on-site self-energies,
neglecting intersite terms. (d) NN two-site cluster and (e) four-site
(2 × 2) self-energy.

multiorbital single-site self-energy [see Fig. 1(b)] for the
correlated subspace of three effective t2g orbitals. The method
amounts to a distinction of the electron’s QP (fermionic
fνσ ) and high-energy excitations (taken care of by the set
of local slave bosons {φ}) on the operator level through
cνσ=R̂[{φ}]σσ ′

νν ′ fν ′σ ′ , where ν is a generic orbital/site index
[30]. Self-energies with a term linear in frequency and
a static part result in mean field. The RISB approach is
especially suited to model anisotropic interactions [31], and
here allows one to treat the interacting spin-orbit problem
in complete generality, i.e., without abandoning off-diagonal
terms. Neglecting HINT leads to spin-orbit QP bands in very
good agreement with the LDA+SOC low-energy dispersion.

For larger λ, the three-band Hamiltonian may be reduced
to a tailored one-band problem for the effective J = 1/2 state
at low energy. In this restricted orbital space we also allow
for an enlarged correlated subspace in real space via clusters
of two and four sites [see Figs. 1(d) and 1(e)]. Therewith
nonlocal correlations up to next-nearest neigbor (NNN) are
incorporated. The initial cluster embedding is of cellular type;
k-dependent self-energies are obtained for the two-site (�(2))
cluster and the four-site (�(4)) cluster via further periodization
using [32]

�(2)(k,ω) = �
(2)
11 (ω) + �

(2)
12 (ω)(cos kx + cos ky), (2)

�(4)(k,ω) = �
(4)
11 (ω) + �

(4)
12 (ω)(cos kx + cos ky)

+�
(4)
13 (ω) cos kx cos ky. (3)

Since single-site RISB is equivalent to single-site DMFT with
a simplified impurity solver, the cluster extension corresponds
to cluster DMFT with the named restrictions in the self-energy
representation. Albeit approximative, the cluster-RISB method
has been proven capable to shed light onto relevant features of
nonlocal correlation physics [30,33–35].

FIG. 2. (Color online) Dispersion and occupations within the
iridate t2g three-band manifold. (a) Bands without SOC; (b) band
fillings with increasing SOC strength λ and Hubbard U (with “3”
denoting highest band). (c) Effective-J weight on the respective
bands.

III. FROM THREE-BAND TO EFFECTIVE
ONE-BAND PHYSICS

The LDA calculations for Ba2IrO4 reveal dominant t2g-like
bands at low energy, and a minor eg-like electron pocket around
	. Static DFT+U computations lead to an upward energy
shift of the latter pocket into the unoccupied region. Thus that
eg-derived contribution plays no vital role in the key correlation
physics and is neglected in the following. Figure 2(a) displays
the MLWF-based t2g-like low-energy bands adapted from
LDA without SOC. Including spin-orbit coupling in the sub-
sequent RISB treatment shifts the lower band manifold with
effective J = 3/2 down in energy [see Fig. 2(b)]. Inclusion of
HINT shifts those bands even further away from the Fermi
level εF, eventually resulting in completely filled J = 3/2
and half-filled J = 1/2 states [cf. Fig. 2(c)]. This limit may
be understood from a constructive interplay between Hund’s
third rule and the minimization of Coulomb interactions in the
Ir(5d5) shell. The orbital character of the remaining half-filled
band at εF is indeed nearly exclusively of J = 1/2 kind.
Due to its isolation, the low-energy physics of single-layer
iridate can be further analyzed to a good approximation
within a one-band picture. From the three-band calculation
with λ = 0.4 eV and neglecting HINT, we therefore Fourier
transform the isolated J = 1/2 band to obtain a single-band
tight-binding parametrization. In addition to a local Coulomb
interaction scaling with a Hubbard U , a nearest-neighbor (NN)
spin-spin interaction term is introduced to take care of the
spin-orbit induced in-plane J = 1/2 pseudospin ordering [3].
The low-energy one-band iridate Hamiltonian is then given by

H1B =
∑

ijσ

tij c
†
iσ cjσ + U

∑

i

ni↑ni↓ + 	
∑

〈ij〉
S

||
i S

||
j , (4)
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where tij marks the hoppings of the underlying J =
1/2 dispersion with bandwidth W = 1.55 eV and 	 >

0 as the anisotropic AFM pseudospin coupling between
the in-plane component S|| of the pseudospins. The first
near-neighbor in-plane hoppings amount to (t,t ′,t ′′,t ′′′) =
(−205,−16,35,13) meV, and the interlayer coupling is given
by t⊥ = −11 meV. Based on the work of Katukuri et al.
[26], a value 	 = 12 meV is computed for the anisotropic
interaction. Note that the effective one-band description does
not allow one to discriminate between different ordering axes
of the pseudospins; the definite in-plane easy axis remains
arbitrary [26].

Albeit in the following we focus on in-plane aspects,
the complete three-dimensional dispersion is included for
deriving the effective one-band physics within mean-field
RISB. Half filling is generally marked by the effective one-
orbital occupation n = 1.

IV. EFFECTIVE ONE-BAND PHYSICS FROM
SINGLE-SITE RISB

Let us first focus on the pure on-site self-energy treatments,
neglecting intersite terms. Disregarding the spin-spin interac-
tion, the PM Mott transition with vanishing QP weight Z =
[1 − ∂

∂ω
� ]

−1

ω=0
occurs at Uc,PM = 2.85 eV, i.e., Uc,PM/W ∼

1.84. To account for AFM order we use a
√

2 × √
2 unit-cell

architecture, treating two NN Ir ions with their respective
on-site � [cf. Fig. 1(c)]. The anisotropic interaction between
the pseudospins is chosen favorably along the x direction and
handled in mean-field decoupling, i.e., S

(x)
i S

(x)
j → S

(x)
i 〈S(x)

j 〉.
At stoichiometry antiferromagnetism with staggered moments
aligned along the x-axis marks the ground state for any U > 0.
For Uc,AFM = 0.8 eV the system becomes insulating at a
first-order transition [see Fig. 3(a)]. Thus the critical U for
the metal-insulator transition (MIT) is strongly lowered when
allowing for magnetic order. Figure 3(b) shows that the spin
moment pointing along x becomes highly susceptible to small
interaction changes around Uc,AFM, but saturates only at much
larger interaction strength. Therefore, in this case the MIT
is not of strong Mott type, i.e., does not result in complete
electron localization. It has magnetic-driven signature, where
the charge-gap opening results in the formation of increased-
dispersive Slater-like bands [12]. Away from stoichiometry,
the AFM order remains stable up to rather large doping, as
long as 〈S(x)〉 is finite. Symmetric 30% electron/hole doping
is necessary to render 〈S(x)〉 → 0 for U = 1 eV.

FIG. 3. (Color online) Two-single-site MIT with AFM order in
the effective one-band model. (a) Metallic and insulating QP band
structure for U = 0.8 eV. (b) Jump of 〈S(x)〉 at the first-order MIT.

V. EFFECTIVE ONE-BAND PHYSICS FROM
CLUSTER RISB

To evaluate the relevance of intersite self-energy con-
tributions especially in the doped regime, we extend the
one-band investigations towards computations within a cluster
framework. Therein the pseudospin interaction term in Eq. (4)
may be treated in complete many-body form on the local
clusters. It is directed along x for the case of a two-site cluster,
and symmetrically along x, y in the four-site cluster approach.

In the following the analysis of the self-consistent statistical
weight of cluster multiplets via the resulting slave-boson
amplitudes {φ} will prove useful. Note that the local clus-
ter eigenstates can be written as |	〉 ∼ ∑

	′ φ		′ |vac〉|	′〉,
whereby 	,	′ share the same quantum numbers [30,34]. Here
the eigenbasis is labeled by the setB = {N,S2,Sz,(Hloc)}, with
N as the total particle number, S2 the total spin momentum,
Sz its z component, and Hloc as the local energy. If in the
following Hloc breaks spin symmetry, the resulting states are
treated in a first-order perturbation approach.

There are 16 eigenstates on the two-site cluster and 256 on
the four-site cluster. The statistical weight of states 	q with
identical quantum numbers according to B is collected in the
probability

ρq =
∑

q ′
ρqq ′δqq ′ =

∑

q ′p

φ∗
pqφpq ′δqq ′ , (5)

with the normalization
∑

p ρp = Tr (φ†φ) = 1.

A. Two-site cluster

Already the minimal in-plane two-site cluster involving
NN Ir sites [cf. Fig. 1(d)] allows for insights on the key effects
of an intersite self-energy �12. At half filling, the PM Mott
transition occurs at U

(2)
c,PM = 1.5 eV, accompanied by a jump

of the already negative NN spin-correlation 〈S1S2〉 towards
even lower values [cf. Fig. 4(a)]. This marks the dominance of
the intersite singlet cluster state in the Mott-insulating regime
(see below). When allowing for the AFM phase, Fig. 4(a)
displays that the MIT occurs as in the two-single-site study at
U

(2)
c,AFM = Uc,AFM = 0.8 eV.
In the doped cases, we focus on cluster effects in the

PM phase. Figures 4(b) and 4(c) show key information on
the significance of nonlocal self-energy terms for electron
and hole doping. The on-site QP weight is lower in the
electron-doped case for the same value of U = 2.5 eV, marking
somewhat stronger electron correlations. Intersite (NN) QP
weights become relevant for U > 1 eV. Their magnitude is
sizable at small doping and negligible about 20% away from
half filling. Note the sign change of ZNN when going from
hole to electron doping. For sizable U the two-particle singlet
on the two-site cluster dominates the multiplet states at half
filling (n = 1). With doping, increasing weight is transferred
to the triplet as well as one(three)-particle states when adding
holes(electrons). Also here there is a small electron-hole
asymmetry: the singlet(triplet) is more(less) pronounced with
hole than electron doping. Figure 5 shows for illustration
the two-site cluster spectrum of relevant multipltes with the
interacting Fermi level εF for 5% electron and hole doping,
respectively. The multiplets form roughly two groups in
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FIG. 4. (Color online) Two-site-cluster observables. (a) NN spin-
correlation function at half filling. (b) Intra- and intersite QP weight
for hole (left) and electron (right) doping from 5%–25%. The NN QP
weights are positive (negative) for hole (electron) doping. (c) Statistics
of cluster multiplets with hole (left) and electron (right) doping for
U = 2.5 eV. Circles denote (s)inglet states, diamonds (d)oublets, and
triangles (t)riplets. The particle sectors are color encoded and marked
by the superscript numbers.

energy, split by the interaction U = 2.5 eV, understood from
the involvment of doubly occupied sites in the higher energy
group of states [34]. In the electron-doped case the multiplets
are closer to εF in energy, reminiscent of the simple picturing
of doping into the upper Hubbard band.

B. Four-site cluster

The four-site cluster is the proper minimal motive on the
correlated square lattice and it is adequate to account for
dx2−y2 -ordering tendencies in hole-doped cuprates [36]. We
utilize it here to include NNN self-energy effects for doped
iridates in the PM phase. The paramagnetic Mott transition
at half filling is located at U

(4)
c,PM = 1.95 eV, correcting for

the too dominant NN singlet formation in the two-site cluster
approach.

In the four-site cluster description the correlation strength
for the same value of U is generally enhanced compared to the
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FIG. 5. (Color online) Two-site cluster spectra for U = 2.5 eV
with filling (a) n = 0.95 and (b) n = 1.05, which amounts to 5%
hole/electron doping. Colors and symbols mark states as described in
Fig. 4(c).

two-site cluster approach, documented by the smaller on-site
QP weight in Fig. 6(a). Moreover, the relation |ZNNN| > |ZNN|
holds for small doping, pointing towards anisotropic electron
correlations in this regime. A larger correlation anisotropy is
expected in the electron-doped compound because of the sign
difference between ZNNN and ZNN. For any given symmetric
doping the on-site Z is marginally lower for electron doping.
The pseudospin anisotropy renders the calculations numeri-
cally more challenging and is thus only included at 5% doping.
There it leads again to a marginal increase of correlation
strength. The pseudospin correlation function 〈SiSj 〉 on the
four-site cluster depicted in Fig. 6(b) has strong AFM signature
in NN distance and conclusively strong FM signature in
NNN distance, both monotonically decreasing from half
filling. With symmetric doping the respective pseudospin
correlations are somewhat stronger in the electron-doped case.
As expected, including the anisotropy term in the Hamiltonian
strengthens the in-plane correlations, especially alongside the
commensurate directions, i.e., along x for 〈S1S2〉 and along
y for 〈S1S3〉. Though energetically no in-plane easy axis is
favored, AFM order is numerically most easily stabilized with
the experimental [110] easy axis.

Figure 6(c) shows the statistical weight of the four-site
cluster multiplets with doping when neglecting the pseudospin
anisotropy term. Dominant singlet states, now in the four-
particle sector, rule again at small doping, but in contrast
to the two-site cluster approach the triplet states take over
beyond 5% hole or electron doping. Furthermore, including
the NNN self-energy, connected to the NNN hopping, now
leads to marginally stronger(weaker) triplets(singlets) in the
hole-doped regime. Thus short-range spin flucuations should
be slightly larger for hole doping. Charge fluctuations on
the electron-doped side from the four-particle into the five-
particle cluster sector are more pronounced than the symmetric
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FIG. 6. (Color online) Four-site cluster observables for U =
2.5 eV. Left panels show hole doping; right ones electron doping.
(a) QP weights without (full lines) and with inclusion of the
pseudospin anisotropy term (large crosses). (b) NN and NNN
pseudospin correlation functions 〈SiSj 〉. (c) Statistics of cluster
multiplets with hole (left) and electron (right) doping. The prefactor
10 denotes statistical weight multiplied by 10 for better visibility.
Circles denote (s)inglets, diamonds (d)oublets, triangles (t)riplets,
squares (q)uartets, and crossed circles sextuplets (x). Open symbols
at 5% doping represent the matching states from inclusion of the
pseudospin anisotropy.

fluctuations on the hole-doped side from the four-particle into
the three-particle sector. Moreover, even fluctuations into the
six-particle sector are taking place both into singlet and triplet
states. With hole doping, only the two-particle singlet has some
weight while the two-particle triplet is negligible. Eventual
inclusion of the pseudospin anisotropy term enhances the
singlet-triplet splitting in the dominant four-particle sector.
At 5% doping, the interacting Fermi level is again located in
higher energy block of multiplets for electron doping, while
for hole doping it remains more or less in between both blocks
of multiplets (see Fig. 7). Thus also in this larger-cluster
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FIG. 7. (Color online) Four-site cluster spectra without pseu-
dospin anisotropy for U = 2.5 eV. (a) n = 0.95 and (b) n = 1.05,
which amounts to 5% doping, respectively. Colors and symbols mark
states as described in Fig. 6(c).

approach a doped-Mott-insulator picture applies more to the
electron-doped regime.

In order to assess the electronic correlation strength with
hole and electron doping, still a further viewpoint can be taken.
As discussed in previous works [37,38], the computation of
the local von Neumann entropy S may provide a measure of
correlation. The off-diagonal cluster density matrix ρqq ′ [see
Eq. (5)] may be used to compute S and relative entropies. After
diagonalizing ρqq ′ , its eigenvalues ρλ are utilized to write the
local von Neumann entropy via S = −∑

λ ρλ ln ρλ as well as
the relative entropy �S(ρA||ρB) = ∑

λ ρA
λ (ln ρA

λ − ln ρB
λ ) for

two systems A and B. The larger the relative entropy, the more
distinct the two compared systems are.

Figure 8 shows that at low symmetric doping the entropy S

is slightly smaller in the electron-doped case, rendering it
more correlated. Inclusion of the pseudospin anisotropy again
enhances the correlation effect. Albeit the electron-hole corre-
lation asymmetry from entropy is small in absolute numbers,
the relative entropy by comparison to the noninteracting case
marks the electron-doped regime rather clearly as the one with
increased correlation strength (see Table I).

Finally we want to discuss k-dependent signatures at finite
doping based on the four-site cluster approach. In principle
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FIG. 8. (Color online) Local von Neumann entropy on the four-
site cluster with doping. Crosses: with inclusion of the pseudospin
anisotropy.
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TABLE I. Local von-Neumann entropy at 5% symmetric doping
including pseudospin anisotropy. The distribution ρ marks the
interacting ensemble and ρ0 is associated with the noninteracting
ensemble of states.

Doping S(ρ) S(ρ0) S(ρ||ρ0) S(ρ0||ρ)

−5% 2.37 4.04 1.63 0.0
+5% 2.31 4.08 2.18 0.0

two scenarios may hold: either doping right within the Slater-
Hubbard bands takes place (U ∼ W ), or it results in the
buildup of a renormalized FS readily from the original itinerant
dispersion (U � W ). In the first case, k-space differentiation
occurs because of the energy dependence of the gap-forming
bands [compare Fig. 3(b)]. Then here, hole(electron) doping
would lead to FS pocket formation around X′(M ′), as indeed
verified by plotting the doped FS within our two-single-site
approach in Figs. 9(a) and 9(b). Such a scenario apparently
has been detected in ARPES measurements for effective hole
doping of Sr2IrO4 [17].

FIG. 9. (Color online) Iridate k selectivity. (a),(b) FS pockets
from the two-single-site treatment for hole and electron doping at U =
1 eV. (c) NNN- and full-hoppings one-band dispersion compared with
standard cuprate dispersion (CuO2: t = −430 meV; t ′ = +129 meV
[39]). (d) In-plane QP weight Z(k) for U = 2.5 eV and electron
doping n = 1.05; black line: Brillouin zone; white line: interacting
FS. (e),(f) Magnified comparison in symmetry-inequivalent k-space
sector, between (e) hole doping and (f) electron doping, both for
U = 2.5 eV.

In the strong-coupling scenario, k selectivity in a one-band
picture is usually due to finite intersite terms �αβ = 0 for
α = β. We may encounter such effects via our periodized
in-plane cluster self-energies. For instance, the QP weight
Z = Z(k) for the model (4) can vary based on NN and
NNN self-energies of the four-site cluster. Figures 9(d)–9(f)
display the obtained QP variations in the Brillouin zone
without pseudospin anisotropy. As discussed before, inclusion
of the latter generally leads to a minor increase of the overall
correlation strength. Let’s focus on the interacting fermiology,
i.e., Z = Z(kF ), where kF is the Fermi wave vector. For
both dopings, i.e., hole- and electronlike, Figs. 9(e) and 9(f)
show an obvious in-plane nodal/antinodal dichotomy. The QP
weight on the FS along the node (0,0) − (π/2,π/2) is larger
than along the antinode (0,0) − (0,π ). Though the absolute
differences are small within cluster RISB, it serves as a
proof of principles for k-space differentiation by electronic
correlations, in agreement with recent ARPES experiments on
surface electron-doped Sr2IrO4 [16].

Second, there is a substantial quantitative difference in the
k-space differentiation of Z(kF ) between both doping direc-
tions. The electron-doped case exhibits stronger QP-weight
variation along εF than the hole-doped case. In other words, for
same interaction strength, theory predicts that electron doping
of single-layer iridates is more likely to cause a Fermi-arc
structure than hole doping. This finding is reminiscent of the
electron-hole dichotomy in cuprates [40,41], yet with a twist:
in cuprates, the hole-doped case is assumed more susceptible
to k-selective correlations. Generally, for all encountered
symmetric doping distances from n = 1, the intrasite Z is
always somewhat lower on the electron-doped side.

As pointed out before [7,12], the qualitative difference
may be explained by the relevance of hopping characteristics
beyond NN [42]. Because of the different sign of the
NNN t ′ in both compound families, the enhanced correlation-
susceptible van Hove singularity at M in reciprocal space is
above(below) the Fermi level for iridates(cuprates) as shown in
Fig. 9(c). Thus from a phase-space argument, hitting stronger
correlations at the antinode takes place by electron(hole)
doping of iridates(cuprates). The hoppings beyond NNN are
then effective in shifting the iridate van Hove singularity
further away from εF. Note that a recent extended fluctuation-
exchange-based study [43] also found electron-hole doping
asymmetries in Sr2IrO4.

VI. SUMMARY

An effective J = 1/2 low-energy one-band modeling is
derived for single-layer iridates from the initial spin-orbit
interacting t2g manifold. For U � 1.25 eV Slater-like behavior
dominates, while for U � 1.25 eV Mott-Hubbard physics is
more in control. In reality a subtle interplay between both limits
is expected [6]. Our theoretical study reveals an electron-hole
doping asymmetry approached from two directions. First the
analysis of QP weights and local cluster states at strong
coupling points to increased electronic correlations on the
electron-doped side. Second, investigating the low-energy
k-space differentiation also exposes a doping asymmetry,
taking place at weaker as well as at stronger coupling and has
partly already been confirmed by recent experiments [16,17].
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Fermi-surface pockets that occur for weaker electron-electron
interaction are more likely for hole doping, whereas Fermi arcs
may set in for stronger interaction with higher tendency again
on the electron-doped side. Therefore, electron-doped iridates
are candidates for a possible analog to hole-doped cuprates.
The inclusion of the small pseudospin anisotropy is shown to
somewhat increase the correlation strength, but no drastic qual-
itative changes arise therefrom at the present level of modeling.
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