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Chiral degeneracies and Fermi-surface Chern numbers in bcc Fe
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The degeneracies in the spinor band structure of bcc Fe are studied from first principles. We find numerous
isolated band touchings carrying chiral charges of magnitude one (Weyl points) or two (double-Weyl nodes), as
well as nonchiral degeneracy loops (nodal rings). Some degeneracies are located on symmetry lines or planes in
the Brillouin zone and others at generic low-symmetry points, realizing all possible scenarios consistent with the
magnetic point group. We clarify the general theory relating the chiral band touchings to the Chern numbers of
the Fermi sheets enclosing them and use this approach to determine the Chern numbers on the Fermi surface of
bcc Fe. Although most Fermi sheets enclose Weyl nodes, in almost all cases the net enclosed charge vanishes for
symmetry reasons, resulting in a vanishing Chern number. The exceptions are two inversion-symmetric electron
pockets along the symmetry line � parallel to the magnetization. Each of them surrounds a single Weyl point,
leading to Chern numbers of ±1. These small topological pockets contribute a sizable amount to the nonquantized
part of the intrinsic anomalous Hall conductivity, proportional to their reciprocal-space separation. Variation of
the Fermi level (or other system parameters) may lead to a touching event between Fermi sheets, accompanied
by a transfer of Chern number between them.

DOI: 10.1103/PhysRevB.92.085138 PACS number(s): 75.47.−m, 75.50.Bb, 71.18.+y, 73.43.−f

I. INTRODUCTION

The degeneracies in three-dimensional (3D) band structures
that are not lifted by the spin-orbit interaction are receiving
increasing attention in connection with topological states of
matter. Murakami [1] showed that, in the absence of inversion
symmetry (P ), a gapless crystalline phase can exist over a finite
region of parameter space between a topological insulator and
a normal insulator. This Weyl semimetal phase is characterized
by topologically protected isolated touching points—the Weyl
points (WPs)—between valence and conduction bands, and
its low-energy excitations are described by a generalized Weyl
equation of the form H (k) = kiνij σj , where k is the wave
vector relative to the touching point and {σi} are the three
Pauli matrices plus the 2 × 2 identity matrix. Similar phases
were later devised where time-reversal symmetry (T ) is broken
instead of parity P [2,3].

Weyl semimetals are expected to have interesting transport
properties. In particular, the magnetic variety can have a
nonzero intrinsic anomalous Hall conductivity (AHC) propor-
tional to the separation in k space between WPs of opposite
chirality [4], where the chirality of a WP is c = sgn(det ν) =
±1. Like other topological phases, Weyl semimetals display
a bulk-boundary correspondence: Pairs of WPs of opposite
chirality at the Fermi level EF lead to metallic “Fermi arc”
surface states connecting their projections onto the surface
Brillouin zone (BZ) [2,5,6].

Real-world examples of Weyl semimetals have been
recently identified. Compounds in the TaAs family were
predicted to be P -breaking Weyl semimetals [7,8], and the
observation of Fermi-arc surface states using angle-resolved
photoemission spectroscopy was reported soon afterwards for
both TaAs and NbAs [9–11]. Another promising candidate
is BiTeI, which is known to undergo a normal-to-topological
transition under pressure and must have a Weyl phase for some

interval of pressure [12] even if it has not yet been observed.
There has also been recent progress in realizing a related
phase that preserves both P and T symmetries, the Dirac
semimetal [13,14]. Here the bands are everywhere Kramers
degenerate, so that a total of four bands meet at the Fermi
point.

More generally, isolated band touchings can occur at
arbitrary energies in 3D band structures with broken PT

symmetry. Under those conditions accidental degeneracies that
occur away from symmetry lines and planes have codimension
three, which implies that the parameters (kx,ky,kz) provide just
enough degrees of freedom to bring a pair of bands together
at generic isolated points in the BZ [1]. With some exceptions
(see below), isolated degeneracies in a 3D parameter space
are robust topological objects, acting as monopole sources
and sinks of Berry curvature [15]. This accounts for their
remarkable stability, as well as for many of the interesting
phenomena associated with them.

Weyl points, defined as linear crossings carrying a topo-
logical (chiral) charge ±1, are not the only type of isolated
degeneracy in 3D band structures. Quadratic or cubic crossings
carrying a charge of ±2 or ±3 are also possible along certain
symmetry axes; they can be viewed as several WPs of the same
chirality brought together by point-group symmetry [16]. We
use the term point node (PN) to denote a generic isolated
degeneracy and reserve the terms WP and double-Weyl node
for the specific types that we encounter in bcc Fe (triple-Weyl
nodes are disallowed in tetragonal ferromagnets, as they can
only occur along a sixfold axis).

In addition, it is possible to arrange, via external fine tuning,
for isolated band touchings of other types. This can occur, for
example, in the context of a normal-to-topological transition
in a P -broken, T -invariant system; at the critical parameter
values at which pairs of Weyl nodes with opposite chiralities
are first created or finally annihilated, there is a quadratic band
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touching of zero overall chiral charge [1,17]. Since these are
not generic, however, they do not play any further role in our
considerations.

In some cases symmetry can glue bands together at a
high-symmetry point or along a high-symmetry line. For
ferromagnetic crystals with the spin-orbit interaction included
in the Hamiltonian, a group-theoretical analysis [18–20] has
shown that such degeneracies can be present when the structure
is hexagonal (e.g., hcp Co), but not when it is tetragonal.
Indeed, we have not encountered this type of degeneracy in
our present study of the spinor band structure of bcc Fe.

Finally, the spinor energy bands of a ferromagnet can also
remain degenerate along entire loops lying on BZ planes that
are invariant under reflection (i.e., mirror planes). We refer to
this type of degeneracy as a line node or nodal ring.

In metals, chiral degeneracies in the band structure may
induce nonzero Chern numbers on the Fermi-surface (FS)
sheets. This possibility was first considered by Haldane in con-
nection with the FS formulation of the intrinsic AHC [6,21].
Topologically nontrivial Fermi sheets have also been discussed
in the context of topological superconductivity [22,23] and
of the chiral magnetic effect and related effects in Weyl
semimetals [24]. Metals with topological Fermi sheets are
sometimes called topological metals [6,8], and the ideal Weyl
semimetal corresponds to the limiting case in which the
topological pockets collapse onto isolated Fermi points (and
no additional Fermi sheets are present).

In spite of all these formal developments, little is known
about the occurrence of PNs, nodal rings, and especially topo-
logically nontrivial Fermi sheets in everyday real materials.
Are they extremely rare, or very common, in the electronic
structure of typical T -broken crystals such as ferromagnetic
metals? How does their presence affect physical observables
associated with the k-space Berry curvature, notably the AHC?
A few studies of chiral degeneracies have been conducted
recently on model band structures of photonic [25] and
ferromagnetic [26] crystals and on ab initio band structures of
P -broken semiconductors and Weyl semimetals [7,8,27,28].
Otherwise, however, there has been remarkably little discus-
sion in the literature and, in particular, virtually no systematic
searches for topological Fermi sheets using first-principles
methods.

In this paper, we clarify the formal relations between
chiral PNs in the band structure of metals with broken PT

symmetry and the Chern numbers of the individual Fermi
sheets. Furthermore, we examine in detail the role of chiral
PNs and topological Fermi sheets in the intrinsic AHC of
T -broken metals. To that effect, we decompose the AHC
band-by-band and in terms of Fermi sheets and show how the
two decompositions are related by k-space dipole moments
of the occupied chiral PNs, which vanish upon summing over
all bands. This analysis clarifies further (see also Ref. [29])
why the presence of chiral degeneracies below EF is not an
impediment to a purely FS formulation of the nonquantized
AHC, contrary to a recent claim [26]. We also elucidate the
relation between two alternative FS formulations of the AHC,
one in terms of Berry curvatures and Berry phases [21], the
other in terms of Berry phases only [30].

In order to see how these ideas play out in real materials,
we decided to give a complete census of all the degeneracies

and their topological charges and then use that information
to determine the Fermi-sheet Chern numbers in one or more
simple ferromagnetic metals. Taking bcc Fe as our first test
case, we found to our surprise that chiral PNs are astonishingly
ubiquitous in the band structure. For example, we find 90
of them between bands six and seven alone. In the present
work we therefore chose to concentrate entirely on bcc Fe as
a paradigmatic system to illustrate the concepts and search
strategies. Interestingly, we find that bcc Fe is, at least within
our density-functional theory calculation using a generalized-
gradient approximation (see Sec. V), a T -broken topological
metal in the sense of Haldane [6]. That is, a pair of Fermi
pockets have equal and opposite nonzero Chern numbers and
contribute significantly to the AHC.

The complex band structure of bcc Fe proves to be a flexible
arena for exploring the physics of topological metals beyond
simple Weyl semimetals. For example, we demonstrate that
Chern numbers can be transferred between Fermi sheets by
varying the Fermi level or an external parameter such as the
magnetization direction. Topological transitions of this kind
have been discussed previously in the literature for model
Hamiltonians [31,32], but the detailed mechanisms have not
been investigated for real metals. Even though the touching
events leading to the Chern-number exchange occur locally
between sheets on adjacent bands, in bcc Fe we find that these
events are often concerted, e.g., such that the Chern number
gets transferred between two sheets on the same band via an
intermediary “passive” sheet in the band below.

We emphasize from the outset the crucial role played
by the spin-orbit interaction in the present study, where the
Bloch states are treated as spinors. Iron is a mostly collinear
ferromagnet with fairly weak spin-orbit coupling (SOC), but
for our purposes “weak SOC” is completely different from
“zero SOC,” as it changes qualitatively the nodal structure of
the bands and the connectivity of the FS [33–35]. Moreover,
SOC induces a k-space Berry curvature on the Bloch states
by transmitting the breaking of time reversal from the spins
to the orbital degrees of freedom. Without SOC, the up-spin
(minority) and down-spin (majority) bands are decoupled,
and in each spin channel the spatial wave functions are T

invariant (in addition to being P invariant). Without SOC, the
Berry curvature vanishes identically in iron as a result of this
effective PT symmetry, and generic like-spin degeneracies
have codimension two, not three; i.e., they are line nodes
instead of isolated PNs. For opposite-spin crossings one gets
entire nodal surfaces on which En↑(k) = Em↓(k). However,
even a weak SOC gaps these curves and surfaces almost
everywhere, reducing the locus of degeneracies to a collection
of discrete points (and occasionally, on mirror planes, a few
loops). The weakness of the spin-orbit interaction makes
for a challenging computational problem, since true band
crossings coexist with, and must be distinguished from, minute
spin-orbit-induced avoided crossings.

The paper is organized as follows. Some definitions,
notation, and basic relations are given in Sec. II. In Sec. III
we work out the relations that allow the determination of
the Chern numbers of the Fermi sheets from a knowledge
of the population of chiral degeneracies in the energy bands.
In Sec. IV we consider the role played by chiral PNs in the
theory of the intrinsic AHC, particularly in relation to FS-based

085138-2



CHIRAL DEGENERACIES AND FERMI-SURFACE CHERN . . . PHYSICAL REVIEW B 92, 085138 (2015)

formulations. In Sec. V we describe the electronic structure
methods that were used in our calculations on bcc Fe. The
numerical results are presented and discussed in Sec. VI, and
we conclude in Sec. VII with a summary.

II. DEFINITIONS AND BASIC RELATIONS

A. Berryology

The k-space Berry connection of band n

An(k) = i〈unk|∇kunk〉 (1)

is defined in terms of the cell-periodic Bloch states |unk〉 =
e−ik·r|ψnk〉. A geometric phase (Berry phase) can be associated
with a closed path C in k space by taking the circuit integral
of the connection,

ϕn(C) =
∮
C
dk · An(k). (2)

The Berry curvature is the curl of the connection,

�n(k) = ∇k × An(k), (3)

so that, according to Stokes’ theorem, n̂ · �n(k) has the
interpretation of a Berry phase per unit area for a small planar
loop with unit surface normal n̂. The Berry connection is
gauge dependent, meaning that its value at k can be changed
continuously by modifying the phase choice for the Bloch
eigenstates around k. The Berry phase is gauge invariant
apart from a 2π indeterminacy, and the Berry curvature
is fully gauge invariant. Like the energy bands En(k), the
Berry curvature has the periodicity of the reciprocal lattice,
�n(k + G) = �n(k).

Chern’s theorem. The Berry-curvature flux through a closed
oriented surfaceS in k space is equal to 2πCn(S), where Cn(S)
is an integer known as the Chern number:

Cn(S) = 1

2π

∮
S

dS n̂ · �n(k). (4)

This statement is valid provided that band n remains nonde-
generate over the entire surface.

A 2D BZ is effectively a closed surface by virtue of the
periodicity of k space, so that Chern’s theorem applies, and the
same is true for a 2D section of a 3D BZ cut along reciprocal-
lattice vectors. Consider a cubic lattice (simple cubic, bcc, or
fcc): The Chern number of band n on a BZ slice taken at fixed
kz is

Cn(kz) = 1

2π

∫
slice

d2k �n,z(k), (5)

where the integral is over a primitive cell on the (kx,ky) plane
at fixed kz. Viewed as a function of kz, the slice Chern number
Cn(kz) is a piecewise constant integer function. It can only
change at critical kz values, where band n comes in contact
with a contiguous band n ± 1 at isolated points; when that
happens, Cn±1(kz) changes by a compensating amount, and
the process can be viewed as an exchange of an integer amount
of Chern number between the two bands [36]. The periodicity
condition

Cn(kz + 2π/a) = Cn(kz) (6)

(a is the cubic lattice constant) implies that the smallest
nonzero number of integer steps over one period is two.

Another example of a closed surface is an isolated Fermi
sheet. Even though some Fermi sheets may look open because
of being cut at the BZ boundary, they are, in fact, closed
manifolds in the topological sense, when equivalence under
reciprocal-lattice translations is factored in (as, for example,
for the well-known shape of the FS in Cu). Thus, Chern’s
theorem applies and isolated Fermi sheets always have a
topological index [6,21]. (The possibility that two sheets touch,
either as a result of fine tuning or because of symmetry, should
be kept in mind.)

One can also associate a Chern number with a composite
group of bands over a closed surface. We consider the group
formed by the n lowest bands and define, for a BZ slice,

C̃n(kz) =
n∑

l=1

Cl(kz). (7)

The index C̃n(kz) inherits the properties already discussed
for Cn(kz), but it only reacts to touching events between the
uppermost band n in the group and band n + 1 above and is
instead oblivious to band crossings within the group.

A related quantity of interest is the Berry flux through a
bounded oriented surface S in the BZ,

φn(S) =
∫
S

dS n̂ · �n(k). (8)

For example, S could be a patch on a BZ slice, threaded by
a nonquantized flux φn, or an entire slice, now viewed as an
open rectangle rather than a closed 2-torus (quantized flux
φn = 2πCn). If a smooth gauge is chosen for the Bloch states
on the boundary C of S, then the Berry phase computed on C
is equal, modulo 2π , to the Berry flux through S [37],

ϕn(C) = φn(S) mod 2π. (9)

B. Isolated band touchings (point nodes)

We denote by Wnα the αth PN between bands n and n + 1,
located at (knα,Enα) and with integer chiral charge χnα . It
follows from Eq. (3) that ∇ · �n = 0 everywhere except at the
PNs, which act as monopole sources of Berry flux. Our sign
convention for χ is that the PN acts as a source of 2πχ Berry
flux in the lower band and as a sink of 2πχ Berry flux in the
upper band. Thus,

∇ · �n(k) = 2π
∑

α

χnαδ3(k − knα)

− 2π
∑

α

χn−1,αδ3(k − kn−1,α). (10)

For any connected subvolume V of the BZ with boundary
S, the divergence theorem applied to band n gives∮

S
dSn̂ · �n =

∫
V

dV ∇ · �n, (11)

where the unit normal n̂ points away from V . If we use this
unit normal to orient the surface S, then, according to Eq. (4),
the left-hand side equals 2πCn(S), and, using Eq. (10), the
right-hand side becomes the total Berry flux pumped into band
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n from PNs connecting to band n + 1 above, minus the total
Berry flux sucked into band n − 1 from PNs connecting to
band n − 1,

Cn(S) =
∑

Wnα∈V
χnα −

∑
Wn−1,α∈V

χn−1,α. (12)

In the context of Eq. (5) we can apply the divergence
theorem to the BZ subvolume between two parallel slices.
Because the fluxes through the side faces cancel out in pairs,
this gives the difference between the Chern numbers on the
top and bottom slices as the sum of the chiral charges in
between. For slices separated by �kz = 2π/a the periodicity
condition (6) implies that∑

α

χnα −
∑

α

χn−1,α = 0, (13)

where the sum is now over PNs in the full BZ. Repeating the
argument for Eq. (7) we obtain a stronger sum rule for the net
charge of all PNs connecting two adjacent bands,∑

α

χnα = 0. (14)

Alternatively, Eq. (14) can be proved by induction starting
from Eq. (13), which for n = 1 gives

∑
α χ1α = 0.

A single PN with χ �= 0 cannot be eliminated from the band
structure by varying a control parameter, as this would violate
the above “charge neutrality” condition. A chiral node can only
appear or disappear as part of a concerted chirality-conserving
event, as for example when two WPs of opposite chirality
merge and annihilate. Chiral degeneracies can be detected by
measuring the quantized Berry flux coming out of a small
enclosing box. If a box S encloses a single node of charge χnα

then, according to Eqs. (4) and (12),

χnα = 1

2π

∮
S

dSn̂ · �n(k). (15)

C. Lines of degeneracy (line nodes)

Line nodes can be thought of as “flux tubes” carrying a
quantized Berry flux of π . That is, the Berry phase of Eq. (2)
around any small loop C encircling the line node is equal to
π [40,41]. Line nodes do not carry a net chiral charge and are
therefore less robust than chiral PNs against translationally
invariant perturbations. They are often “protected” by crystal
symmetries, and lowering the symmetry can gap the line node
almost everywhere (possibly leaving behind a few PNs whose
charges sum up to zero).

III. FERMI-SURFACE CHERN NUMBERS

A. Definitions

We now turn our attention to the Chern numbers of Fermi
sheets and their relationship to the populations of enclosed
chiral PNs. We are considering a metal with a spin-split FS
as a result of broken inversion or time-reversal symmetry (or
more precisely, broken PT symmetry). In our nomenclature
the “FS” Sn of band n is the full set of points En(k) = EF ,
while the “Fermi sheet” Sna is the ath connected piece of
the FS. (Here “connectedness” is defined without reference to

the BZ boundaries, so that a Fermi pocket centered at a zone
corner is a single Fermi sheet.) Note that Sna separates a region
of occupation f = n − 1 from a region of occupation f = n.
The Chern number of Sna is, according to Eq. (4),

Cna = 1

2π

∮
Sna

dSv̂F · �n(k), (16)

where we have chosen v̂F as the unit normal to Sna , i.e., parallel
to the Fermi velocity and pointing toward the higher-energy
side, which is unoccupied in band n.

Throughout this section we assume that all Fermi sheets
are isolated, as is required, in principle, in order to define their
Chern numbers from Eq. (16). While this is the generic case
for a ferromagnet in the absence of any symmetry [6], bcc Fe
magnetized along [001] has a mirror plane at kz = 0 and, as
we shall see, some Fermi sheets are glued together at isolated
points on that plane. The implications for the calculated Chern
numbers are discussed in Sec.VI B 3.

In order to proceed, we need notions of “interior” and
“exterior.” By definition, the exterior is the side pointed to
by v̂F (the unoccupied side), while the interior is the occupied
side. This can sometimes be counterintuitive, as for a hole
pocket, where the interior defined here is the geometric exterior
and vice versa. If Sna , when regarded all by itself, divides the
BZ into two distinct connected regions, we define these regions
to be the global interior and exterior:

I ∗
na = global interior of Sna,

E∗
na = global exterior of Sna.

To illustrate this, consider Fig. 1(a), which shows a BZ with
three Fermi sheets separating band 1 from band 2; these are
labeled S21, S22, and S23. So, for example, I ∗

21 is the union of
regions B, C, and D, while E∗

23 is the union of A, B, and C.
There may be some sheets, however, for which the concepts

of global interior and exterior are not applicable. Consider,
for example, either one of the sheets shown in Fig. 1(b).
Such Fermi sheets are of the special kind having a “Luttinger
anomaly” as discussed around Eq. (7) in Ref. [6] and have the
property that the integrated unit normal

∮
v̂F dS is nonzero.

These “directed sheets” need special treatment. We take the
approach here of pairing them. That is, we take the two adjacent
directed sheets S21 and S22 in Fig. 1(b) and henceforth consider
them to comprise a single “Fermi sheet” whose global interior
is A and whose global exterior is B. Henceforth, the notation
Sna can refer either to a single nondirected sheet or to a pair
of oppositely directed sheets.

B 

A 

C 

f = 2 

f = 1 

f = 1 

f = 2 
A 

B 
C 

f = 2 
f = 1 

S21 
S21 

S22 

S23 S22 

f = 2 
D 

(b) (a) 

vF 
vF 

FIG. 1. Examples of Fermi-sheet structures.
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It is also useful to have a notion of immediate interior and
exterior:

Ina = immediate interior of Sna,

Ena = immediate exterior of Sna.

To define the immediate interior, we decompose the subspace
of the BZ in which band n is occupied into a set of disjoint
subvolumes, each of which is internally connected; call these
Vnj , where j runs over the number of disjoint subvolumes.
Similarly, let Ṽnj be the disjoint subvolumes making up the
unoccupied part of the BZ for band n. Together, the Vnj and
Ṽnj cover the BZ once and only once. The immediate interior
of Sna is then just the subvolume Vnj that is immediately
adjacent to Sna . More precisely, it is the region Vnj for which
Sna ∈ δVnj , where δ means “the boundary of.” (In general,
δVnj may consist of several Fermi sheets, one of which is
Sna .) A similar definition applies to the “immediate exterior,”
which is the subvolume Ṽnj adjacent to Sna . In Fig. 1(a), for
example, the immediate exterior E21 of sheet S21 is region A
(it is geometrically on the inside because it is a hole pocket).
The immediate interior of S21 is region B only. The immediate
interior of S22 is also region B, while its immediate exterior is
only region C, and so on.

Before continuing, we briefly note that there are two ways
of thinking about the volumes Vnj . In one point of view, the
nominal boundaries of the BZ are ignored, so that, for example,
an electron pocket centered on a zone corner point is regarded
as a single volume, and all boundaries of the Vnj are Fermi
sheets. This is the viewpoint adopted in the present section.
Alternatively, one can first establish a choice of parallelepiped
or Wigner-Seitz BZ, and decompose the interiors and exteriors
into subregions within this BZ, so that the δVnj generally
also include patches of the BZ boundary. We adopt the latter
viewpoint when discussing one of the FS formulations of
the AHC in Sec. IV B, where application of the divergence
theorem requires the specification of definite BZ boundaries.

B. Divergence theorem using global regions

Because δI ∗
na has only one connected piece, namely Sna ,

we can apply the divergence theorem to find [see Eq. (12)]

Cna =
∑

Wnα∈I ∗
na

χnα −
∑

Wn−1,α∈I ∗
na

χn−1,α. (17)

A similar argument applied to the global exterior implies that

Cna = −
∑

Wnα∈E∗
na

χnα +
∑

Wn−1,α∈E∗
na

χn−1,α. (18)

The reversal of signs between these two equations is due to
the fact that, for V = I ∗

na in Eq. (11), we have n̂ = v̂F on the
left-hand side, while for V = I ∗

na we have n̂ = −v̂F . In view
of the sum rule of Eq. (14), Eqs. (17) and (18) are consistent
with each other; we can use either one to compute the Chern
number from the PNs, depending on which is easier.

C. Divergence theorem using immediate regions

We can apply the divergence theorem to an arbitrary
connected subvolume Vnj or Ṽnj , obtaining∑

Sna∈δVnj

Cna =
∑

Wnα∈Vnj

χnα −
∑

Wn−1,α∈Vnj

χn−1,α (19)

or ∑
Sna∈δṼnj

Cna = −
∑

Wnα∈Ṽnj

χna +
∑

Wn−1,α∈Ṽnj

χn−1,α. (20)

Unfortunately, these equations do not immediately determine
the FS Chern numbers unless the boundary of the region in
question is composed of only a single sheet.

For example, applying Eq. (19) to subvolume B in Fig. 1(a)
leaves the sum of two Chern numbers (C21 + C22) on the right-
hand side, so neither can be determined directly. However, in
cases like this an iterative analysis will typically work; for
example, applying Eq. (20) to region A determines C21, and,
together with the previous result, this also determines C22.

A similar problem arises in Fig. 1(b), but now it is more
serious. Recall that we agreed to pair directed sheets; having
done so, we can apply Eq. (19) and obtain the total Chern
number summed over the two subsheets. However, now there
is no way to disentangle the Chern numbers on the individual
directed subsheets without an additional calculation. This does
not necessarily have to be done on the actual subsheet; in
Fig. 1(b), for example, a calculation on one planar surface
lying between the two directed sheets would suffice.

D. Sum rules on Chern numbers

Summing Eq. (19) or (20) over all n and all subvolumes,
we obtain the sum rule ∑

na

Cna = 0, (21)

which, as Haldane points out, must be satisfied on gauge-
invariance grounds [6,21].

When P symmetry is present (but T is broken) the sum rule
holds for each band separately,∑

a

Cna = 0. (22)

This follows from combining Eqs. (A1) and (A3) with either
Eq. (19) or Eq. (20): For every PN at k, there is a partner at −k
with the same energy but opposite charge. If, moreover, a Fermi
sheet Sna encloses a parity-invariant momentum k0 = G/2,
then Cna = 0.

IV. ANOMALOUS HALL CONDUCTIVITY

The role played by degeneracies in the intrinsic AHC
has been recently debated [26,29] in connection with FS
formulations [21,30]. This debate probably has its roots in
the simplifying assumption, made more or less explicitly at
certain points in Refs. [21] and [30], that the band under
consideration is everywhere nondegenerate. Instances where
this isolated-band assumption was made in Ref. [21] include
the sentence below Eq. (12), and also Eq. (20); examples in
Ref. [30] are the sentence below Eq. (7) and most of Sec. II B.
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In this section we show that the FS formulations of
Refs. [21] and [30] remain valid when the chiral degeneracies
that are generally present in the occupied band manifold are
carefully accounted for. To be precise, the nonquantized part of
the intrinsic AHC is still given by the same bulk FS expressions
derived in those works. The presence of isolated PNs carrying
topological charges does not lead to additional nonquantized,
non-FS contributions to the AHC, as claimed in Ref. [26].

A. Fermi-sea formulation

The AHC of a 3D crystal is conveniently expressed as

σij = − e2

2πh

∑
l=x,y,z

εij lKl, (23)

where e2/h is the quantum of conductance and K is a wave
vector. When the Fermi level lies in an energy gap, K becomes
quantized to a reciprocal lattice vector G [21,36].

Specializing to the intrinsic (Karplus-Luttinger) contribu-
tion, we can work band by band and write

K =
∑

n

Kn. (24)

The contribution from band n is

Kn = 1

2π

∫
In

d3k�n(k), (25)

where the Berry curvature �n(k) is given by Eq. (3) and
In = ∪aIna is the BZ region where band n is occupied.
Equations (23)–(25) form the standard Fermi-sea expression
for the intrinsic AHC [42,43].

While it is natural to view Kn as “the intrinsic AHC
contributed by band n,” it should be kept in mind that
each Kn by itself is not a physical observable; only the
total K is. For example, the individual Kn are not invariant
under arbitrary band-mixing gauge transformations within the
occupied band manifold. In the next section we discuss an
alternative decomposition due to Haldane [21], Eq. (34) below,
that is equally valid and in some ways more informative than
Eq. (24).

B. Haldane’s Fermi-surface formulation

1. Dipole of the chiral-charge distribution in k space

Let us rewrite Eq. (25) using an integration by parts of the
form∫

V
dV (∇g) · �n =

∮
δV

dSn̂ · g�n −
∫
V

dV g∇ · �n, (26)

which follows from replacing �n(k) with g(k)�n(k) in
Eq. (11). Setting V = In, g = ki , and using Eq. (10) we find

Kn = K(�)
n + K(χ)

n , (27)

K(�)
n = 1

2π

∮
δIn

d2kk[n̂ · �n(k)], (28)

K(χ)
n =

∑
Wn−1,α∈In

kn−1,αχn−1,α −
∑

Wnα∈In

knαχnα. (29)

These equations express Kn as the dipole moment of a
distribution of chiral charge inside the BZ [44]. K(χ )

n is
the contribution from the discrete charges associated with
the occupied PNs, and K(�)

n is the contribution from a
continuous distribution of charge across the surface δIn [with
n̂ · �n(k)/2π playing the role of an areal density of “bound
chiral charge”].

We now adopt the second point of view described at the end
of Sec. III A, in which the boundary δIn generally consists of
FS sheets Sna together with the portions of the BZ boundary
(BZB) where band n is occupied; this is demanded by the
presence of the linear term k in Eq. (28). We choose a
parallelepiped BZ, as opposed to a Wigner-Seitz one, to ensure
a simple relation between opposing faces. Thus, the surface
integral in Eq. (28) runs over portions of the BZB, as well as
over the Fermi sheets per se. Explicitly,

K(�)
n =

∑
a

K(�)
na + K(�)

n,BZB, (30)

where

K(�)
na = 1

2π

∮
Sna

d2kk[v̂F · �n(k)] (31)

is the contribution from the ath Fermi sheet and

K(�)
n,BZB = 1

2π

∮
BZBn

d2kk[n̂ · �n(k)] (32)

is the contribution from the portions of the BZB where band
n is occupied, denoted by BZBn. In this last equation n̂ points
to the outside of the BZ.

Equation (27) differs from Eq. (20) in Haldane’s Ref. [21]
in that the latter does not include the term K(χ)

n . This extra term
appears when the band has PN degeneracies and is needed to
ensure that the cell dipole Kn remains invariant when the origin
in k space is shifted. Under a shift of −δk, Eq. (27) changes
by

δKn = δk

⎡
⎣∑

a

Cna +
∑

Wn−1,α∈In

χn−1,α −
∑

Wnα∈In

χnα

⎤
⎦, (33)

where Cna is the Fermi-sheet Chern number defined in
Eq. (16), and δK(�)

n,BZB = 0 due to canceling contributions from
opposing BZ faces. The quantity in square brackets vanishes
by virtue of Eq. (19).

In some cases the volume and surface chiral-charge distri-
butions are separately neutral. This happens for a completely
filled band in a generic crystal [Eq. (13)] and for any band
in a centrosymmetric crystal [Eq. (22)]. Even then, the two
separate terms in Eq. (27) are not fully invariant under another
type of transformation: a rigid shift of the BZ cell. Consider
what happens when a PN with χnα = +1 leaves the BZ on
one side and reenters on the opposite side, at a point separated
by −G from the exit point: K(χ)

n given by Eq. (29) jumps by
G, and it will become clear in a moment that K(�)

n,BZB changes
by −G.

To summarize, the situation is as follows.
(i) The AHC contribution from band n is most naturally

defined as the integral of the Berry curvature over the occupied
portion of the band, as in Eq. (25).
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(ii) The contribution from band n can be expressed as Kn =
K(�)

n + K(χ )
n , where the inclusion of the K(χ)

n term is needed to
preserve the invariance of Kn under an origin shift, or under a
shift of the BZ cell.

(iii) As we shall see shortly, K(�)
n is quantized for any fully

occupied band. On the other hand, K(χ)
n , and hence Kn, has a

nonquantized contribution even for a completely filled band
if the band in question has chiral degeneracies with higher or
lower bands.

(iv) Nevertheless, the K(χ)
n contributions from Eq. (29) add

up to zero when summing over all bands [46]. Hence,

K =
∑

n

K(�)
n (34)

correctly gives the total AHC, in a way that the nonquantized
part of K is now ascribed exclusively to the partially filled
bands.

Let us reexamine the conclusions of Ref. [26] in the light of
the preceding discussion. Essentially the claim, stated in the
Abstract, is that when chiral degeneracies are present in the
Fermi sea, the nonquantized part of the AHC is not entirely
a (bulk) FS property. In the main text, the authors purport to
show that the additional nonquantized, non-FS contributions
originate in the chiral PNs of the completely filled bands.

If taken at face value, the above statements would seem
to imply that a purely FS formulation of the nonquantized
AHC is not possible. However, this cannot be correct, since
the nonquantized part of K can be completely ascribed to the
partially filled bands by means of Eq. (34), even when chiral
degeneracies are present. The nonquantized part of K can,
moreover, be expressed as a bulk FS property, as shown below
following Haldane’s original argument [21]. In their analysis,
the authors of Ref. [26] appear to have overlooked the fact
that the nonquantized Fermi-sea contributions K(χ)

n from the
occupied PNs sum up to zero over all bands.

2. Fermi-surface expression for K(�)
n

In Ref. [21], Haldane further manipulated his Eq. (20) [our
Eq. (28)] to arrive at his Eq. (21), in which the BZB term was
written in a more explicit form. For completeness, we repeat
this derivation here using our notation.

We choose a parallelepiped BZ defined by a triplet of
primitive reciprocal lattice vectors bj , such that the reduced
coordinate κj = (aj · k)/2π goes from κj0 to κj0 + 1 inside
the BZ, where κj0 fixes the corner of the BZ cell. Recalling
that the integration in Eq. (32) runs over the portions of the
six BZ faces where band n is occupied, we can decompose the
BZB term into contributions from the three sets of opposing
faces according to

K(�)
n,BZB =

3∑
j=1

KBZB
nj bj , (35)

obtaining

KBZB
nj = 1

2π

∮
BZBn

d2kκj n̂ · �n(k). (36)

When computing KBZB
nj , the integrations on the four side

surfaces of the BZB cancel in pairs, while the contributions

from the surfaces related by bj fail to cancel because of the κj

factor. The result is

KBZB
nj = 1

2π

∫
Bnj

d2kâj · �n(k), (37)

where Bnj is the portion of the BZB at κj = κj0 + 1 that is
occupied in band n, and âj is the outward unit normal. In the
notation of Eq. (8), KBZB

nj is 1/2π times the Berry flux,

φnj =
∫
Bnj

d2kâj · �n(k), (38)

exiting the BZ cell through the occupied portions of the BZ
face pointed to by bj .

If band n is fully occupied, KBZB
nj is just the Chern number

obtained by integrating the Berry curvature over the entire BZ
face in direction j . If the band is also isolated, the integers
KBZB

nj are independent of the choice of cell origin κ0, and

K(�)
n,BZB is a unique “Chern vector”

∑
j KBZB

nj bj describing
the topology of the filled band. If it is fully occupied but not
isolated, KBZB

nj is still quantized to be a triplet of integers, but
these may change discontinuously if κ0 is shifted in such a way
that one of the BZ boundaries passes over a chiral PN. If band
n is only partially occupied, then the integral in Eq. (37) is only
over the occupied portions of the BZ face at κj = κj0 + 1, and
KBZB

nj need not be an integer.
To summarize so far, Eq. (34) has become

K =
∑
na

K(�)
na + 1

2π

∑
nj

bjφnj , (39)

where K(�)
na is the k-weighted integral of the surface-normal

Berry curvature on sheet Sna , Eq. (31), and φnj is the Berry
flux passing through the occupied portion Bnj of the BZ
face, Eq. (38). After summing over all bands there is no
ambiguity modulo a quantum in either of the contributions
above, and Eq. (39) correctly gives the total intrinsic AHC
modulo nothing. Equation (39) is still not quite a FS property,
because the φnj have to be obtained by integrating over portions
of the band lying at energies below EF on the BZB.

In order to arrive at Eq. (21) of Haldane’s Ref. [21], we
now abandon the goal of computing the AHC exactly and only
ask for its nonquantized part. Two modifications can be made
to Eq. (39) that only affect the result by quantized amounts
and lead to a FS expression for the nonquantized part of K.
First, the sums over n can be restricted to partially occupied
bands, recalling that completely filled bands only contribute
to the second term and by a quantized amount. The second is
to invoke Eq. (9) in order to replace the Berry fluxes φnj with
sums of Berry phases that are only defined modulo 2π ,

ϕnaj =
∮
Cnaj

dk · An(k). (40)

The oriented curve Cnaj consists of one or more planar circuits
at the intersections of the sheet Sna with the BZ face at κj =
κj0 + 1, so that ∪aCnaj = δBnj . If we view the BZ face as
an open parallelogram with edges, those circuits may include
non-FS segments along the edges. If instead we view it as
a closed 2-torus, a nonvanishing Cnaj consists exclusively of
Fermi loops and we arrive at Haldane’s FS expression, Eq. (21)
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of Ref. [21], in the form

K :=
∑
na

′
K(�)

na + 1

2π

∑
naj

′
bjϕnaj , (41)

where a prime on a sum indicates that n only runs over bands
crossing EF . The symbol := indicates that the quantity on
the left-hand side is equal to the right-hand side modulo a
reciprocal lattice vector G. Since the Berry phases ϕnaj are
defined for loops lying on the FS, this is now a true FS property.

C. Tomographic Fermi-surface formulation

Equation (41) for the nonquantized part of the AHC
involves Berry curvatures on the Fermi sheets as well as Berry
phases around Fermi loops on the BZB. An alternative FS
formula was obtained in Ref. [47] that only involves Berry
phases. In this section we recover this Fermi-loop expression
starting from Eq. (41). The present derivation is therefore
complementary to the one given in Ref. [47], which starts
from the Fermi-sea formulation of Sec. IV A and does not
make an explicit connection to Haldane’s expression.

We work sheet by sheet, treating each sheet as one
connected piece. Sheets with nonzero Chern numbers are
grouped together in such a way that their combined Chern
number vanishes. This is needed to obtain an AHC contribution
that is origin-independent in the sense of Eq. (33). Thus, in the
following Sna denotes either a single sheet with Cna = 0 or a
group of sheets whose Chern numbers add up to zero.

Writing the contribution from Sna to Eq. (41) as

Kna =
3∑

j=1

Knaj bj , (42)

we find

2πKnaj =
∫

Sna

d2kκj v̂F · �n(k) +
∮
Cnaj

dk · An(k). (43)

If the sheet is holelike, the Fermi loops Cnaj should be traversed
in the negative direction of circulation.

Recalling the interpretation of Eq. (27) as a dipole moment
in k space, we can similarly view the first term in Eq. (43) as
an intracell dipole moment of a surface distribution of bound
chiral charge and the second term as an intercell “charge-
transfer” term. Separately, each term depends on the choice of
cell vectors and on the placement of the cell boundaries, but
their sum is independent of those arbitrary choices.

Since the total Knaj given by Eq. (43) is cell invariant,
we are allowed to average the right-hand-side over several
different BZ cells. We choose for this purpose the range of
cells obtained by sliding a parallelepiped BZ along the full
length of its edge bj . The dipole term then averages to zero
(because the net charge per cell Cna vanishes), and we are
left with the average of the intercell term. As the cell slides
over one period, the forward-facing boundary cuts through an
entire BZ, producing a tomographic scan of the Fermi sheet.
The contribution from each slice (viewed as a 2-torus) is given
by the Berry phases of the inscribed Fermi loops. Averaging

over a discrete set of slices spanning the entire BZ we find

Knaj = 1

nslice

nslice∑
i=1

ϕnaj (i)

2π
, (44)

and summing over all Fermi sheets we recover the FS
expression in Ref. [30] for the nonquantized AHC,

Kj :=
∑
na

′
Knaj . (45)

Equations (44) and (45) must be supplemented with a pre-
scription for choosing the branch cuts of the Berry phases. The
allowed choices are strongly constrained by the BZ-averaging
procedure: the first term in Eq. (43) changes continuously with
the position of the BZ cell (because the “bound chiral charge”
is spread across the sheet Sna), and this should be exactly
balanced by the change in the second term. Thus, ϕnaj must
change gradually (by much less than 2π ) from one slice to the
next. Note that enforcing smoothness only fixes the branch cut
on a slice relative to that on the previous slice. The freedom to
choose the branch cut on the first slice leaves the integer part
of Knaj undetermined, as expected of a FS formulation.

After summing Eq. (44) over the indices n and a, the
overall quantum of indeterminacy can be resolved by equating∑

na ϕnaj with the total Berry flux
∑

n φnj on the first slice (a
Fermi-sea quantity) [30]. It is, however, not always possible to
similarly resolve the quantum for the AHC contribution from
an individual Fermi sheet Sna . If the sheet encloses chiral PNs,
the integer part of Knaj obtained by anchoring the Berry phase
ϕnaj on the first slice to the Berry flux φnaj will depend on
where that slice stands relative to those PNs.

For a composite sheet comprising several disconnected
pieces, ϕnaj changes by 2πCα , while traversing a single piece
Sα with Chern number Cα [29]. If we fix the branch choice by
arbitrarily setting ϕnaj = 0 below the first piece, ϕnaj reaches
2πC1 at the top of that piece, remains constant until hitting the
next piece, and finally drops back to zero at the top of the last
piece. We encounter this type of behavior when studying the
AHC of bcc Fe in Sec. VI C.

V. COMPUTATIONAL DETAILS

A. First-principles calculations and Wannier-function
construction

Our electronic structure calculations including SOC are
carried out for ferromagnetic Fe in the bcc structure. We fix
the lattice constant at the experimental value a = 5.42 bohr and
orient the magnetization along the easy axis [001]. (That is,
minority and majority spins point up and down respectively.)
In reality, α-Fe distorts very slightly from bcc to body-centered
tetragonal on cooling through the magnetic transition, but
we ignore this lattice strain effect and set c/a = 1 in our
calculations.

We use the plane-wave pseudopotential method as im-
plemented in the PWSCF code from the QUANTUM-ESPRESSO

package [48], in a noncollinear spin framework. Relativistic
norm-conserving pseudopotentials are generated from param-
eters similar to those in Ref. [47], and an energy cutoff of
120 Ry is used for the plane-wave expansion of the wave
functions. Exchange and correlation effects are treated within
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the Perdew-Burke-Ernzerhof (PBE) generalized-gradient ap-
proximation [49]. The self-consistent total energy calculations
are done with a 16 × 16 × 16 Monkhorst-Pack mesh for the
BZ integration, while for the non-self-consistent calculations
a 10 × 10 × 10 mesh is used. A Fermi smearing of 0.02 Ry is
used during the self-consistent cycle, and the 28 lowest bands
are calculated in the non-self-consistent step.

Starting from the Bloch functions computed in the
non-self-consistent step, maximally localized Wannier func-
tions [50,51] are constructed using the WANNIER90 code [52].
The choice of trial orbitals and energy windows is the same
as in Refs. [47] and [30], resulting in 18 partially occupied
spinor Wannier functions. We also carry out some SOC-free
calculations where nine Wannier functions are generated
separately for each spin channel.

B. Berry phases, curvatures, and Chern numbers

For the evaluation of Berry curvatures and Berry phases in
k space we use the efficient Wannier-interpolation algorithms
of Refs. [47] and [30]. In this section we focus on the aspects
that are specific to the present work and refer the reader to
those papers for other details.

We begin by describing how to compute the slice Chern
number Cn(kz) of Eq. (5) [the same approach is used for the
slice Chern number C̃n(kz) of Eq. (7) and also for the box Chern
number of Eq. (15)]. The most direct approach would be to
evaluate the Berry curvature on a k-point mesh covering the 2D
BZ. The disadvantage is that for any finite mesh the result is not
exactly quantized, and we have encountered situations where
the deviations were significant even for very dense meshes
(this can happen close to critical kz values where the true
Chern number changes discontinuously).

The interpretation of the Berry curvature as a Berry phase
per unit area suggests an alternative strategy: Tile the 2D BZ
with square plaquettes, and compute the Berry phases ϕ�

n (kz)
around their edges [53]. The Chern number is

Cn(kz) = 1

2π

2D BZ∑
�

ϕ�
n (kz), (46)

where the plaquette Berry phase ϕ�
n (kz) is evaluated with the

discretized Berry-phase formula [54] on a counterclockwise
path consisting of its four corners. In our implementation
we use the Wannier-based version of the discretized Berry-
phase formula, Eq. (25) in Ref. [30]. [In the case of C̃n(kz)
the multiband generalization [54] of the second term in that
equation should be used instead.] Note that because each
link along the discretized path is traversed twice in opposite
directions when evaluating Eq. (46), the net contribution from
the first term in Eq. (25) of Ref. [30] vanishes identically.

The above prescription is guaranteed to give an integer
result for Cn(kz) for arbitrary lattice spacings [53]. The correct
Chern number is obtained by choosing each Berry phase
ϕ�

n (kz) in the principal branch between −π and π , provided
that the magnitude of the Berry-curvature flux through every
plaquette is safely below π . In practice, we start by tiling
the 2D BZ with a uniform array of equally sized plaquettes
(e.g., 200 × 200), and whenever |ϕ�

n (kz)| > π/3 for some
plaquette we divide it into subplaquettes so as to meet the above

requirement [55]. The slice Chern number is then obtained by
summing the Berry phases over all (sub)plaquettes covering
the 2D BZ. Care must be taken to ensure that every link
is traversed twice, once in each direction. If, for example,
a plaquette has been divided into four subplaquettes but a
neighboring plaquette has not, then when computing the Berry
phase for the larger plaquette the middle point of the shared
edge should be included in the discretized path along with the
four corner points.

We use the same algorithm to determine the Berry flux
through the occupied portions of a BZ slice, Eq. (38). For
a partially filled band the flux is not quantized, and the first
term in Eq. (25) of Ref. [30] must be included; because the
links along the edge between occupied and empty regions are
traversed only once, that term gives a net contribution. As
far as the nonquantized part of the Berry flux is concerned
(i.e., the Berry phase around the Fermi loops), this approach
is equivalent to integrating the Berry connection over a ragged
path at the edge approximating the Fermi loops. For improved
numerical accuracy, we triangulate the edge with new k points
chosen to approximate the location of the Fermi loops; this
changes the shape of the plaquettes along the edge from
squares to triangles or irregular quadrilaterals.

VI. NUMERICAL RESULTS FOR BCC IRON

A. Band degeneracies

1. Overview of the spinor band structure

Our electronic structure calculations including SOC are
carried out for ferromagnetic Fe in the bcc structure, as
discussed in Sec. V A. The energy bands, shown in Fig. 2,
are in good agreement with previous band-structure calcula-
tions for bcc Fe where SOC was included [34,56,57]. The
smaller exchange splitting at the band bottom (at around
−8 eV) compared to Ref. [56] is a consequence of using
the PBE generalized-gradient approximation rather than the
local-density approximation to treat exchange and correlation
effects.

Even though an undistorted cubic structure is used, the
combined action of spin polarization and SOC reduces the

FIG. 2. (Color online) Band structure of bcc Fe with SOC in-
cluded. Energies are measured from the Fermi level, and the bands
are color coded by the expectation value of the spin component Sz in
units of �/2, ranging from red (majority down-spin character) to blue
(minority up-spin), as indicated by the color bar.
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FIG. 3. Symmetry points and lines in reciprocal space for bcc Fe
with SOC included. The top volume is the half BZ between kz = 0 and
kz = π/a (which becomes a full BZ when expanded using inversion
through �). The shaded area at the bottom is a 2D projection. Therein,
� is a projection of �-T-H-T-� (�), X is a projection of N-P-N-P-N,
and M is a projection of H-T-�-T-H. Note that T is not actually a
symmetry point, but N′ is.

symmetry of the electronic states from cubic to tetragonal, and
the conventional labeling scheme for the high-symmetry points
and lines in the BZ must be modified accordingly. For example,
the six points N inside the BZ get split into two groups. We
reserve the label N for the two points lying on the kz = 0
plane, and label the four points lying on the kz = π/a plane
as N′; within each separate group, symmetry points are related
to one another by fourfold rotations. The �H high-symmetry
line along the (001) direction also becomes inequivalent to the
other two, since it is no longer related to them by any point-
group symmetry; we label them � and �′, respectively. The
symmetry points and lines are indicated in the half-BZ shown
in the top part of Fig. 3. The full tetragonal BZ is spanned by
the vectors (2π/a)(110), (2π/a)(110), and (2π/a)(001). Note
that only the first two are reciprocal-lattice vectors.

The lowering of symmetry due to SOC is reflected in the
band structure in Fig. 2, but since SOC is weak the effect is
small on the scale of the figure. As we see in Sec. VI B 1,
somewhat larger splittings occur away from the symmetry
lines [56].

2. Types of degeneracies

Band degeneracies can be classified as essential or ac-
cidental [58]. An essential degeneracy is a band crossing
at a high-symmetry point or along a high-symmetry line
in the BZ where an irreducible representation (“irrep”) of
dimension larger than one exists. It has been shown that
essential degeneracies do not occur in the band structure
of tetragonal ferromagnets when SOC is included [18–20].
Thus, all band degeneracies in bcc Fe are accidental. While
their exact locations in k space are not fixed by symmetry,
most (but not all) degeneracies in bcc Fe lie along symmetry
lines or planes in the BZ. Below we give an overview of the
types of accidental degeneracies that are present, classified by

symmetry (they are, in fact, the generic types of degeneracies
in any tetragonal ferromagnet).

The magnetic point group of bcc Fe is 4/mm′m′ [20].
The fourfold axis points along the magnetization direction
[001], and m denotes mirror reflection about the (001) plane
orthogonal to the fourfold axis. The symmetry elements m′
are reflections about the inequivalent vertical planes (010) and
(110), combined with time reversal.

Turning to the symmetries in reciprocal space, inspection of
Fig. 3 reveals fourfold symmetry about the axis � that projects
onto � and also about the one that projects onto M [59]. At an
arbitrary point on one of the fourfold axes no other symmetries
are present when SOC is included, and each band belongs to
one of four 1D irreps of the little group C4; bands belonging to
different irreps can cross, so that for critical values of kz (not
fixed by symmetry) PNs are generated.

The four irreps along the fourfold axes are labeled by
their symmetry eigenvalues eiπ(m+1/2)/2, and the labels of the
crossing bands carry information about the chiral charge at
the degeneracy point [16]. Two types of degeneracies can
occur. (i) If the two bands have adjacent labels on the complex
unit circle, they disperse linearly in all directions away from
the degeneracy point; the chirality of the WP is positive
(χnα = +1) if the label of the lower band n changes by a
factor of i with increasing kz, and negative (χnα = −1) if it
changes by a factor of −i. (ii) If the labels are not adjacent,
the crossing is a double-Weyl node with χnα = ±2, where the
dispersion away from the node is linear along the symmetry
axis and quadratic on the orthogonal plane; in this case, the
sign of the chiral charge cannot be inferred from the symmetry
labels alone.

The axis that projects onto X is a twofold axis, where there
are two 1D irreps (little group C2). Along this axis, crossings
between bands belonging to different irreps are always linear
(χnα = ±1), but the chirality of the WP cannot be deduced
from the symmetry labels [16].

A different type of degeneracy occurs on the simple mirror
plane at kz = 0, i.e., the �NH plane in Fig. 3. (Equivalent
planes are separated by integer multiples of 2π/a; because
the structure is body centered, the plane TPN′ at kz = π/a is
not a mirror plane.) There can be no chiral PN degeneracies
on a simple mirror plane, because the chiral charge is odd
under reflection [Eq. (A10)]. Instead, the generic degeneracies
are nonchiral nodal rings. The spinor energy eigenstates carry
mirror symmetry labels ±i; bands with different labels can
cross, and since the condition Enk = En+1,k is one constraint
for the two degrees of freedom kx and ky , the crossing takes
place along lines.

Next we consider the vertical symmetry planes �N′H, �NP,
and HNP that project onto the lines � M, � X, and X M, respec-
tively. In real space these are m′ planes (mirror composed with
T ), but because of the time-reversal component, a generic point
on the reciprocal-space plane is not invariant under m′. Instead,
the symmetry operations that leave the wave-vector invariant
(modulo G) on those planes are of the form C2T , where C2 is a
twofold rotation about an axis normal to the plane. Because the
C2T operator is antiunitary it does not admit multiple irreps,
and so does not lead to nodal rings as in the case of simple
mirror planes. However, it does place additional restrictions on
the form of the Hamiltonian on the plane. In particular, it forces
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the Hamiltonian matrix to be real when expressed in terms of
symmetry-adapted Bloch basis orbitals |χnk〉 whose phases are
chosen such that C2T |χnk〉 = |χnk〉. Since degeneracies occur
with codimension two for real Hamiltonians, WPs generically
occur on the symmetry plane [60].

Finally, we encounter one more type of degeneracy, namely
those occurring at generic points in the interior of the BZ.
Here a division into distinct irreps again plays no role, since
no symmetry is present. One still gets isolated touchings, in
general, however, because the codimension is three for the
occurrence of degeneracies in Hermitian Hamiltonians. That
is, by adjusting the wave vectors (kx,ky,kz) one can generically
zero the prefactors of the Pauli matrices (σ1,σ2,σ3) needed to
express the effective Hamiltonian in the vicinity of a putative
crossing of two bands. In the absence of fine tuning, these are
always simple Weyl nodes with a chiral charge of ±1.

We emphasize that all of the above considerations apply
when SOC is present. When it is neglected, additional
degeneracies can occur, as discussed briefly in Sec. VI B 1.

3. Survey of degeneracies

We have used a combination of numerical tools to locate
and characterize the degeneracies in the spinor band structure
of bcc Fe. In this section we present some representative results
from our survey.

In order to locate all the degeneracies between a pair
of bands, we carry out a steepest-descent minimization of
the gap function (En+1,k − Enk)2, starting from a uniform
grid covering the BZ, and look for gap-closing points [62].
(In practice, we flag as a potential degeneracy any point
where the gap is below some small threshold, of the order of
10−5 eV.) The chiral charge of each degeneracy is determined
by enclosing it in a small box and evaluating the outward Berry
flux [Eq. (15)]; in this way, we are able to discriminate between
a true chiral band crossing with nonzero quantized flux and a
tiny avoided crossing for which the flux vanishes. Figure 4
shows a map of the degeneracies between bands six and seven
in the half-BZ of Fig. 3.

In addition to finding isolated degeneracies, the above pro-
cedure results in a rather dense set of nonchiral degeneracies
between bands six and seven lying on the mirror plane at
kz = 0. These are organized along closed loops, consistent
with the line-node scenario of Sec. II C. In order to confirm that
they are nodal rings protected by mirror symmetry, we have
performed two separate numerical tests. First we checked that
these are true crossings between states belonging to different
irreps, by plotting in Fig. 5 the mirror-symmetry label of band
six across the kz = 0 plane. The boundaries between regions
of different symmetry (the gray and white regions) coincide
with the locus of degeneracies of band six with either band
seven or band five, indicated with lines. For example, when
going between a gray and a white region across a thick (red)
line, bands six and seven cross with one another and exchange
symmetry labels.

The second test was to determine the Berry flux carried by
each ring. To this end we evaluated numerically the Berry
phases of small circular loops interlinked with the rings,
obtaining the value π expected for nodal rings. Note that the
sign of the Berry phase of a mirror-symmetric vertical loop is

FIG. 4. (Color online) Degeneracies between bands six and
seven in the half BZ of Fig. 3. (a) Black dots denote WPs of positive
chirality (monopole sources of Berry curvature on band six). (b) Open
circles denote WPs of negative chirality, and the single open square
represents a negative double-Weyl node. Each chiral degeneracy is
threaded by a vertical line to help locate it with respect to the projected
high-symmetry lines (dashed gray lines). The solid gray lines on the
kz = 0 plane represent nonchiral nodal rings.

flipped by the mirror operation, but because the Berry phase is
only defined modulo 2π , the nontrivial value π is still allowed.

Recently, the FSs of several T -invariant crystals (some
P broken [7,8], others P invariant [64,65]) were found to
consist of nodal rings on mirror planes, but only when SOC is
absent. Those Fermi rings are crossings between pairs of spin-
degenerate bands, and SOC hybridizes the states of opposite
spin, gapping the rings everywhere except at a few isolated
points despite the unbroken mirror symmetry [8,65]. In bcc
Fe the spin degeneracy is lifted by the exchange interaction,
removing the hybridization channels and stabilizing the nodal
rings against SOC (except when SOC destroys the mirror
symmetry itself, e.g., on the vertical symmetry planes).

Let us now analyze the isolated degeneracies away from the
kz = 0 plane in Fig. 4. There are 45 in total in the half-BZ, and
except for a double-Weyl node along the fourfold axis � all
of them are simple WPs. Their properties are listed in Table I.
Each row represents one or more symmetry-related PNs lying
on the same BZ slice at fixed kz, and their multiplicity (one,
two, four, or eight) is determined by the projection onto the
2D BZ at the bottom of Fig. 3. Multiplicities of two and four
are generated by C4 symmetry, and multiplicities of eight are
generated by C4 symmetry together with C2T symmetry about
the vertical symmetry planes. A mirror-equivalent set of nodes,
but with reversed chiral charges, appears in the kz < 0 half of
the BZ.
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FIG. 5. (Color online) Mirror symmetry labels (+i in gray and
−i in white) of band six on the mirror plane at kz = 0. The degeneracy
lines of band six with bands five and seven are drawn in thin (green)
and thick (red) lines, respectively.

The degeneracies between bands six and seven realize
almost all possibilities that can generically exist in a tetragonal
ferromagnet: Nodes of chiral charge ±1 that project onto � or
M (multiplicity one), X (multiplicity two), � M, � X, or X M
(multiplicity four), or generic points (multiplicity eight); and
nodes of chiral charge ±2 projecting onto � or M. Only the
very last possibility is missing between bands six and seven in
Table I, but an opposite-spin crossing of this type occurs, for
example, between bands four and five at kz � 0.376 × 2π/a.

The correctness of the PN assignments in Table I is
confirmed in Fig. 6, where we plot between kz = 0 and
kz = π/a the joint slice Chern number C̃ [Eq. (7)] of the

TABLE I. Census of chiral degeneracies between bands six and
seven in the half BZ of Figs. 3 and 4. The coordinates (kx,ky,kz)
are in units of 2π/a; energy E is in eV relative to the Fermi level.
“Proj.” indicates the projection onto the 2D BZ at fixed kz (bottom of
Fig. 3; “gen.” is a generic point). The last three columns indicate spin
crossing type (↓ and ↑ are majority and minority spins, respectively),
chiral charge (χ > 0 if the band touching is a source of Berry
curvature on band six), and multiplicity within the 2D BZ.

kx ky kz Proj. E Spin χ Mult.

0.0 0.0 0.027 � − 1.16 ↓↓ −2 1
0.0 1.0 0.056 M 0.06 ↓↓ −1 1
0.5 0.5 0.130 X − 0.96 ↓↓ +1 2
0.180 0.820 0.180 X M − 0.34 ∼↓↓ +1 4
0.074 0.322 0.242 gen. − 1.01 ↑↓ −1 8
0.0 0.327 0.243 � M − 0.99 ↑↓ +1 4
0.0 0.583 0.284 � M − 0.87 ↓↓ +1 4
0.0 0.217 0.316 � M − 0.99 ↑↑ +1 4
0.135 0.662 0.338 gen. − 1.07 ↓↓ −1 8
0.0 0.365 0.365 � M − 1.02 ↑↑ −1 4
0.118 0.118 0.429 � X − 0.84 ↑↓ −1 4
0.0 1.0 0.446 M − 0.94 ↑↓ +1 1

FIG. 6. Slice Chern number C̃ [Eq. (7)] associated with the six
lowest bands of bcc Fe. Since C̃ is symmetric about kz = 0 and
kz = π/a [Eqs. (A4) and (A5)], only half of the range of kz is shown.

six lowest bands. Each step discontinuity signals the presence
on the corresponding BZ slice of one or more chiral PNs
connecting bands six and seven. The positions of the steps
match the kz coordinates listed in Table I, and their sizes satisfy

�C̃ = (multiplicity) × (chiral charge) (47)

for the chiral charges and multiplicities in Table I.
Let us contrast the behavior of the energy bands and

symmetry labels in the vicinity of a simple WP and of a
double-Weyl node, when both lie along fourfold axes. Figure 7
pertains to the WP at kz � 0.446 projecting onto M. The top

FIG. 7. (Color online) A WP between bands six and seven along
the fourfold axis that projects onto M in Fig. 3. The top panel and
the right inset show the band dispersions as one passes through the
touching point along the symmetry axis and on the orthogonal plane,
respectively. The left inset shows the dispersion along a vertical line
that is shifted from the symmetry axis by δkx = 0.05 × 2π/a. The
bands are color coded by the spin as in Fig. 2. The main bottom panel
shows the evolution along the symmetry axis of the phase of the C4

eigenvalues (symmetry labels) of the crossing bands.
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FIG. 8. (Color online) A double-Weyl node between bands six
and seven along the fourfold axis � in Fig. 3. The top and bottom
panels and the right inset have the same meaning as in Fig. 7. Near
the crossing the two bands have majority-spin character, as indicated
by the red color.

and bottom panels show, respectively, the linearly dispersing
bands and the evolution of the symmetry labels along the
symmetry axis. As expected for a WP of positive chirality,
the label of the lower band changes by a factor of i at the
crossing [16]. Exactly at the crossing the two bands retain their
separate spin characters, but moving slightly away from M (left
inset) they hybridize and no longer touch. The right inset shows
that the bands also disperse linearly away from the touching
point in the orthogonal directions (the leading behavior is
linear even though strong nonlinearities are present), but now
with strong spin mixing near the crossing. The behavior around
the double-Weyl node on the � axis is shown in Fig. 8, and it
is qualitatively different. Here the bands still disperse linearly
away from the node along the axis, but the dispersion is
quadratic on the orthogonal plane at the critical kz. Moreover,
the symmetry labels of the crossing bands are noncontiguous
on the complex unit circle [16].

This concludes our survey of the degeneracies between
bands six and seven; other bands display the same basic types
of degeneracies. For future reference we list in Table II the
chiral degeneracies between bands nine and ten.

TABLE II. Census of chiral degeneracies between bands nine and
ten in the half BZ of Fig. 3. The table is organized in the same way
as Table I.

kx ky kz Proj. E Spin χ Mult.

0.0 1.0 0.047 M 2.35 ↑↑ +1 1
0.0 0.0 0.065 � − 0.25 ↑↑ +1 1
0.188 0.812 0.188 X M 1.85 ↑↑ −1 4
0.322 0.322 0.331 � X 1.81 ↑↓ +1 4
0.0 0.0 0.428 � − 0.06 ↑↑ −1 1
0.233 0.233 0.446 � X 1.39 ↑↑ −1 4
0.0 0.0 0.480 � 0.07 ∼↑↑ +2 1

B. Fermi surface

1. Overview and spin-orbit effects

We begin by analyzing the FS of bcc Fe with SOC switched
off. Callaway and co-workers [34,66] introduced a labeling
scheme for the Fermi sheets that has been widely adopted
in the literature. The sheets are organized into eight groups.
In a calculation without SOC the majority-spin Fermi sheets
belong to groups I–IV, and the minority-spin sheets belong to
groups V–VIII. Figure 9(a) shows the labeled Fermi contours
on the mirror plane at kz = 0. We now consider the possible
touchings and intersections between Fermi sheets, starting
with the SOC-free case.

Crossings between Fermi sheets of opposite spin occur
along entire loops in the 3D BZ where the two constrains
En↑(k) = Em↓(k) = EF are satisfied. Some of those loops
intersect the portion of the kz = 0 plane shown in Fig. 9(a), at
the six points where sheets I or II (red) cross V or VIII (blue).

Touchings between like-spin Fermi sheets can occur along
lines of degeneracy, at the isolated points where the degeneracy
energy Edegen equals EF . Four such contact points can be seen
in Fig. 9(a). Two are linear touchings between majority-spin
sheets I and II, and they are located along nodal rings (the
curved gray lines) connecting bands five and six on the mirror
plane [67]. Each nodal ring changes from a solid line (Edegen <

EF ) to a dashed line (Edegen > EF ) at the Fermi touching
points, and the band indices of the two Fermi sheets that touch
tell which bands are degenerate along a given ring. The other
two are quadratic touchings, one between sheets III and IV
for majority spins and the other between sheets V and VII
for minority spins. Both of them lie on the dash-dotted gray
line �′ from � to H, where there is an essential degeneracy
between pairs of bands in each spin channel (without SOC the
little group along �′ is C4v , which has a 2D irrep). The bands
close to the Fermi level are plotted along �′ in Fig. 9(b). Note
that the essential degeneracy is between bands two and three
near �, and between bands three and four near H.

There is one more opportunity for like-spin Fermi touch-
ings, namely at generic points in the BZ along nodal rings
located away from any symmetry lines or planes: The removal
of SOC restores an effective T symmetry in each spin
channel, which combined with parity produces an effective
PT symmetry protecting such rings [41,64]. Several low-
symmetry nodal rings are present in the band structure near
the Fermi level, but none of them cross EF . For example, they
occur below EF between majority-spin bands three and four
and also five and six, and between minority-spin bands two
and three, and above EF between minority-spin bands four
and five.

Now we turn to the FS with SOC included. Figure 10 shows
the calculated FS in the 3D BZ. Each Fermi sheet is labeled
Sna as in Sec. III, and sheets with the same band index n

are displayed together. The unoccupied sides are colored in
blue, and the occupied sides in yellow/gold. Thus, the pockets
in bands five to seven are holelike, and so is the connected
tubular structure in band eight, while the pockets in bands
nine and ten are electronlike.

The spin-orbit interaction changes both the symmetry and
the connectivity of the FS, and its organization into groups
of symmetry-related sheets must be modified accordingly.

085138-13
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FIG. 9. (Color online) (a) Fermi contours of bcc Fe on the �NH plane at kz = 0, calculated without SOC. The majority-spin contours I–IV
are in red; the minority-spin contours V–VIII in blue. Curved gray lines are accidental degeneracy lines (nodal rings) that cross the Fermi level
at points of contact between like-spin Fermi sheets, where they change from solid (Edegen < EF ) to dashed (Edegen > EF ). The dashed-dotted
line from � to H is a line of essential degeneracy. (b) Energy bands close to the Fermi level along the �H line. In both panels, the spin-dependent
band indices are indicated.

Without SOC, group VIII comprises the six pockets surround-
ing each of the points N in the BZ (the centers of the faces of
the Wigner-Seitz cell in Fig. 10). With SOC, this group splits in
two: group VIII(a) formed by the four pockets surrounding the
points N′ in Fig. 3 [sheets two to five in Fig. 10(c)] and group
VIII(b) containing the two pockets surrounding the points N
[sheets six and seven in Fig. 10(c)].

The other group that gets split by SOC is group VII
comprising the six “satellite” electron pockets in band ten.
The four pockets along the lines �′ in Fig. 3 [pockets two
to five in Fig. 10(f)] remain related by C4 symmetry, so we
group them together as VII(a). Pockets six and seven along
� are no longer related by symmetry to the other four; they
are, however, related to each other by both parity and mirror
reflection, and we label them VII(b).

Figure 11(a) displays the Fermi contours on the kz = 0
plane. The contours are labeled as in Fig. 1, but using the more
compact notation na instead of Sna . (The correspondence with
the labels for groups of symmetry-related Fermi sheets is given
in Table III.) Comparison with Fig. 9(a) shows that some, but
not all, of the gluing points between Fermi sheets have been
removed by SOC, with sizable gaps opening up in some cases.
In particular, the quadratic touching between sheets III and IV
along �′ has been lifted, and the one between sheets V and VII
turned into a pair of linear crossings between the pair (9,102)
on either side of �′.

Generic Fermi-sheet touchings require a locus of band de-
generacies of dimension d � 1 since the additional constraint
Edegen = EF reduces the dimensionality by one, and with SOC
the only eligible degeneracies are nodal rings on the kz = 0
plane. The nodal rings connecting bands six and seven in
Figs. 4 and 5 lie entirely below EF and thus play no role
here. However, several nodal rings lying on the kz = 0 plane
do cross EF , as indicated by the solid/dashed gray curves in
Fig. 11(b). The ones labeled α, β1, and β2 are degeneracy loops
between bands seven and eight; α glues sheet 8 to sheet 71 at
eight points, while β1 and β2 provide gluings to sheets 76 and
77 at four points each. Ring γ provides eight points of contact
between sheets 8 and 9, and ring δ connects sheet 9 twice to

each of 102, 103, 104, and 105. We thus see that it is quite
common for Fermi sheets to be glued to one another on the
kz = 0 plane in bcc Fe. The gluing together of Fermi sheets is
protected by mirror symmetry, and hence it does not require
fine tuning. By tuning external parameters, it is also possible
to arrange for sheets to touch away from the kz = 0 plane. Two
examples are discussed in Secs. VI B 3 and VI C 2.

The situation is very different on the ky = 0 plane of Fig. 12,
which is not a mirror plane with SOC present. No actual Fermi
touchings occur there, although some of the avoided crossings
are very small and difficult to discern on the scale of the
figure. In particular, what look like two touchings between
sheets (8,9) in the lower half of the figure are, in fact, tiny
avoided crossings, as becomes clear in Sec. VI C.

2. Fermi-sheet Chern numbers

Without SOC all the band degeneracies in bcc Fe are
nonchiral, the Berry curvature vanishes identically, and as a
result the FS is topologically trivial. As we have seen, the
inclusion of SOC generates chiral band touchings that act as
sources and sinks of Berry curvature. We now determine the
Chern numbers induced on the Fermi sheets from the census of
chiral PNs, as described in Sec. III. For isolated Fermi sheets
the Chern number is unique and is correctly obtained from
this census. For those that are glued to neighboring ones by
nodal rings lying on the kz = 0 plane, on the other hand, it
provides only part of the story. The true sheet Chern number
is ill defined until the symmetry protecting the nodal rings
is broken, and when it is, the sheet Chern number may have
additional contributions from new PNs that appear at special
points along the vaporized nodal ring. This is discussed in
Sec. VI B 3.

We use the formulation of Sec. III C, based on the
PN population in “immediate regions.” (Since no Luttinger
anomalies are present, the special treatment that is required in
such cases is not needed here.) Inspection of Fig. 10 shows
that, for each Fermi sheet, it is possible to identify an occupied
or empty connected BZ region having that Fermi sheet as the
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(a) Band 5 (b) Band 6

(c) Band 7 (d) Band 8

(e) Band 9 (f) Band 10

FIG. 10. (Color online) Fermi surface of bcc Fe with SOC in-
cluded. The indices a of the individual Fermi sheets Sna on each band
n are indicated.

sole boundary. For the holelike sheets of band seven that means
working with exteriorlike regions, while for the electronlike
sheets of band ten it means working with interiorlike regions;
bands five, six, eight, and nine have a single sheet each, so
that either approach can be used (in practice, we choose the
one leading to the smallest number of enclosed PNs). In this
way we are able to determine the Chern number of each Fermi
sheet from a single evaluation of either Eq. (19) or Eq. (20),
without the need for a recursive procedure.

Our implementation of Eq. (19) for electron pockets is
as follows. In order to determine the internally connected
occupied subvolumes Vnj , we cover the BZ with a uniform
300 × 300 × 300 grid and set up an undirected graph with
nodes at those grid points where band n is occupied, and
whose edges are the links to the nearest-neighbor points that
are also occupied. The problem becomes a standard one in

graph theory, namely, to identify the connected components
of an undirected graph. Once the subvolumes Vnj have been
identified in this way (the algorithm “wraps around” the BZ,
so that the BZ boundaries are excluded from the definition
of δVnj ), we go through the list of occupied PNs Wnα

and Wn−1,α and assign each of them to the subvolume Vnj

containing the closest grid point. This allows us to carry out
the summations on the right-hand side of Eq. (19) to determine
the Chern number Cna of each electron pocket Sna = δVnj .
The implementation of Eq. (20) for the holelike Fermi sheets
is completely analogous.

The results are summarized in Table III, and several features
can be readily understood from symmetry considerations. The
vanishing of the Chern numbers summed over all the sheets
of any given band is a consequence of inversion symmetry
[Eq. (22)], and this explains the values Cna = 0 for bands six,
eight, and nine with one Fermi sheet each (the small hole
pocket in band five does not enclose any PNs, and so its Chern
number vanishes trivially). According to Sec. III D, in bands
with several Fermi sheets inversion symmetry still imposes
Cna = 0 on those which enclose parity-invariant momenta (the
points �, H, N, and N′ in Fig. 3). This accounts for all sheets
in band seven, as well as the central pocket 101 in band ten.
Note that the vanishing Chern numbers come about in different
ways for Fermi sheets belonging to groups VIII(a) and VIII(b)
in band seven: The latter do not enclose any PNs, while the
former enclose four PNs each with band eight (two inversion-
symmetric pairs).

This leaves the six satellite pockets in band ten. The pockets
(102,103,104,105) located along �′ do not enclose any PNs.
The pockets (106,107), on the other hand, enclose a single
WP each. These are touchings with band nine, located along
� at kz = ∓0.428 × 2π/a (see Table II). As their chiralities
are reversed by mirror symmetry, the enclosing pockets have
opposite Chern numbers ∓1.

Figure 13 shows the energy bands near a pocket of type
VII(b) [panel (a)], and near one of type VII(a) [panel (b)].
Upon lowering the Fermi level the electron pocket 107 in panel
(a) will shrink, eventually turning into a hole pocket in band
nine with the same Chern number +1. The situation with
pocket 102 in panel (b) is less clear, because of the degeneracy
between bands nine and ten near the bottom of band ten.
That degeneracy can be lifted by tilting the magnetization in
certain directions (those for which no WPs are left inside the
now-isolated pocket, as discussed in Sec. VI B 3). Under those
conditions pocket 102 simply disappears as EF dips below the
bottom of band ten; because its Chern number vanishes, this
does not violate the sum rule of Eq. (21).

In order to understand how the two satellite pockets along
� become different from the four along �′ when SOC is
included, and why nonzero Chern numbers are induced on
the former but not the latter, it is instructive to follow the
evolution of the relevant bands in Figs. 13(a) and 13(b) as
SOC is turned on. In the SOC-free limit bands eight to ten
[corresponding to minority-spin bands two to four in Fig. 9(b)]
behave identically along � and �′, with a doubly degenerate
band (eight and nine on the left, nine and ten on the right)
crossing a singly-degenerate one (ten on the left, eight on the
right). Along � in Fig. 13(a), SOC lifts the twofold degeneracy
between bands eight and nine, and the crossing of band ten
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FIG. 11. (Color online) Fermi contours of bcc Fe on the �NH plane at kz = 0, with SOC included. (a) The contours are color coded by the
band index n and labeled na , where a is the sheet index (it is omitted for bands with a single Fermi sheet). (b) The Fermi contours are color
coded by the spin in the same way as the energy bands in Fig. 2, and the gray lines labeled α, β1, β2, γ , and δ are degeneracy lines (nodal rings)
that cross the Fermi level at points of contact between Fermi sheets, where they change from solid (Edegen < EF ) to dashed (Edegen > EF ).

creates two nearby WPs, with the one between bands nine
and ten inducing a Chern number of +1 on the enclosing
pocket 107. Along �′ in Fig. 13(b), however, the nature of the
hybridization with band ten is very different. While no mirror
plane containing � survives when SOC is turned on, the Mz

mirror plane containing �′ does survive, and such a plane can
only harbor nodal rings, not chiral PNs. The touching between
bands nine and ten in Fig. 13(b) belongs to just such a nodal
ring; in fact, the same one that appears as ring δ in Fig. 11(b).
Since no chiral PNs are enclosed by pocket 102, its Chern
number vanishes.

TABLE III. Chern numbers of the Fermi sheets of bcc Fe, with
SOC included. Symmetry-related Fermi sheets are listed on the same
row and are assigned a group label. The Chern numbers are deter-
mined from the populations of chiral PNs within “immediate regions,”
which are exteriorlike (interiorlike) for holelike (electronlike) Fermi
sheets. For nonisolated Fermi sheets (labeled by an asterisk), this
definition neglects the possible contribution of π fluxes at touching
points between Fermi sheets (see Sec. VI B 3). The high-symmetry
points enclosed by each Fermi sheet are indicated, and if none are
enclosed the symmetry line where the pocket lies is indicated instead.
The numbers i,j of enclosed PNs with bands n − 1 and n + 1 are
also indicated.

Band Sheet Group Enclosed Enclosed Chern
n a label Type symm. points PNs number

5 1 IV Hole H 0,0 0
6 1 III Hole H 0,2 0
7 1 V Hole H 2,0 0*
7 2,3,4,5 VIII(a) Hole N′ 0,4 0
7 6,7 VIII(b) Hole N 0,0 0*
8 1 II Hole H,N,N′ 16,36 0*
9 1 I Elec. � 42,4 0*
10 1 VI Elec. � 2,0 0
10 2,3,4,5 VII(a) Elec. Along �′ 0,0 0*
10 6,7 VII(b) Elec. Along � 1,0 −1,+1

On their own, the pockets (106,107) are an almost ideal
realization of the simplest T -broken Weyl semimetal. It is
therefore natural to ask whether their presence gives rise to
“Fermi-arc” surface states connecting their projections onto
the surface BZ, as in actual Weyl semimetals. Although we
have not explicitly calculated the surface bands of bcc Fe, that
seems unlikely: Almost everywhere on the surface BZ there
are projected bulk states at the Fermi level coming from all

FIG. 12. (Color online) Same as Fig. 11(b), but for the �N′H
plane at ky = 0. The Fermi contours are labeled in the same way
as in Fig. 11(a). Because the symmetry on this plane is reduced
by the spin-orbit interaction, the displayed region has twice the area
compared to Fig. 11 and there are no symmetry-protected nodal rings.
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FIG. 13. (Color online) Details of the spinor band structure of
Fig. 2. (a) Along the line � close to the electron pocket 107.
(b) Along the line �′ close to the pocket 102. The spin-orbit-free
energy bands of Fig. 9 are shown as dotted gray lines.

the other (trivial) Fermi sheets, and their presence destroys the
stability of the putative Fermi arcs.

In summary, although chiral degeneracies abound in the
spinor band structure of bcc Fe, most Fermi sheets are
constrained by symmetry to have zero Chern numbers. The
only ones that are free from such constraints are the isolated
electron pockets (106,107). In our calculation their Chern
numbers are ∓1, turning bcc Fe into a topologically nontrivial
metal.

3. Chern numbers of nonisolated Fermi sheets

In Table III we have assigned Chern numbers to all the
sheets making up the FS bcc Fe, including those in groups I,
II, V, VII(a), and VIII(b) that are glued together along nodal
rings lying in the mirror plane [Fig. 11(b)]. For these sheets, the
meaning of the assigned Chern number requires a more careful
explanation, since Chern numbers are, in principle, only well-
defined for isolated Fermi sheets, and they can change when
sheets touch as a function of a control parameter.

Figure 14(a) shows a simplified sketch of a generic situation
in which Fermi sheets Sn and Sn+1 are glued together at an
isolated “gluing point” where a nodal ring passes through
EF . In our case, the nodal ring lies in the kz = 0 plane
and is protected by Mz symmetry. The local two-band k · p

Hamiltonian in the vicinity of the touching has a form like

H (k′
x,k

′
y,kz) = EF + αk′

x + βk′
yσ3 + γ kzσ1, (48)

where k′
x and k′

y are measured relative to the gluing point and
are parallel and normal to the nodal line, respectively, and σj

are Pauli matrices. The E = 0 solutions are conical, as shown
in the figure, with the nodal line passing through the conical
intersection point. Each nodal line carries a Berry flux of π

modulo 2π , which is indicated as ±π in the figure; without
breaking the symmetry we cannot say which value applies. The
Fermi-sheet Chern numbers reported in Table III correspond to
the integral of the Berry curvature over the sheet in question,
Eq. (16), but neglecting these possible π -flux contributions.
This is the same as the sum of the chiral charges of enclosed

  

(a)

(b)

±  ±  

Sn Sn+1 

Sn Sn+1 

FIG. 14. (a) Gluing together of two Fermi sheets along a
symmetry-protected degeneracy line carrying a Berry flux of π

modulo 2π , indicated as ±π . (b) The symmetry has been broken
weakly, gapping the degeneracy line and separating the Fermi sheets.
A Berry flux of definite sign now exits one sheet and enters the other.

PNs that are unrelated to the nodal ring, as will become clear
shortly.

Now imagine that the symmetry that was protecting the
nodal ring is broken weakly; in our case this can be done by
tilting the magnetization M away from the tetragonal axis.
Then the two bands become gapped everywhere along the
path except possibly at PNs along it, corresponding to the
addition of a term μ(k)σ2 to Eq. (48), where the argument k is
a reminder that μ can vary along the path. Then a definite flux
of +π or −π (depending on the sign of μ) flows along the
previous path of the ring, concentrated in a small vicinity (of
size proportional to μ) around the path. As shown in Fig. 14(b),
the previously glued Fermi sheets now separate and become
hyperboloids, and a concentration of π flux now exits one
sheet and enters the other. These π -flux contributions must be
included when computing the true Chern number of the sheet
in the presence of the symmetry breaking.

Note, however, that if the nodal ring enters a given Fermi
sheet at one point, it must exit at another, and the total
contribution of the π fluxes will be of opposite sign and will
cancel unless μ(k) crosses through zero and changes sign at
some special point along the ring, generating a new chiral PN
at this location. As long as this PN is included in the census of
enclosed PNs, the total Chern number of the sheet will still be
correctly given by the sum of enclosed chiral charges.

In order to see how this works out in the present context,
we have investigated the consequences of breaking the Mz

mirror symmetry, which is responsible for the nodal rings
shown in Fig. 11(b). When we tilt M away from [001] the
nodal rings evaporate, leaving behind a few extra PNs, and the
previously glued-together Fermi sheets become detached. We
can then safely determine their individual Chern numbers from
the populations of enclosed chiral degeneracies (including the
newly formed PNs).

Parametrizing the magnetization direction by polar and
azimuthal angles θ and φ, we compute the properties at a
series of values of φ at a fixed polar angle of θ = 20◦. Since
parity remains a crystal symmetry even for arbitrary (θ,φ), the
Chern numbers must still vanish individually for the Fermi
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sheets surrounding parity-invariant momenta, i.e., sheets 71,
(76,77), 8, and 9. The Chern numbers of those sheets thus
vanish unambiguously in the limit θ → 0.

According to Table III, this leaves the four pockets
(102,103,104,105) as the only ones that may acquire a nonzero
Chern number as a result of the breaking of Mz symmetry.
We find that the Chern number of any one pocket fluctuates
between values of −1, 0, and 1 as φ is varied; the Chern
numbers of inversion-related pairs of sheets are always
opposite, as required by parity; and that the sum of the four is
always zero. As discussed above, the nonzero individual values
result from remnant WPs from the vaporized nodal rings that
are left lying inside the sheet in question. Those Weyl nodes
move along the ring paths as a function of φ, and at critical
angles two nodes of opposite chirality join sheet 9 with a pair of
inversion-related pockets in band ten. This concerted touching
event leads to a net transfer of Chern number between the two
pockets in the pair, mediated by sheet 9 whose Chern number
remains at zero. One such touching event between sheets 9
and 102, as well as the subsequent annihilation of a pair of
remnant WPs inside 102, are depicted in the Supplemental
Material [68].

C. Anomalous Hall conductivity

The intrinsic AHC of bcc Fe has been calculated from
first principles by several authors. In Refs. [57] and [47]
two different implementations of the Fermi-sea approach of
Sec. IV A were used, while in Ref. [30] a FS calculation was
carried out along the lines of Sec. IV C. In all these works the
focus was on the total intrinsic AHC (i.e., summed over all
bands in the Fermi-sea calculations and over all Fermi sheets
in the FS calculation). The resulting AHC values were found to
be in excellent agreement with one another and in reasonable
agreement with measurements at room temperature.

In this section we provide a breakdown of the intrinsic
AHC first into band contributions and then into Fermi-sheet
contributions. Even though only the total intrinsic AHC
is a well-defined physical observable, such decompositions
provide insights into the role played by band degeneracies. It
can be readily understood that nodal rings do not contribute to
the AHC: They form when M ‖ [001], in which case the AHC
vector K of Eq. (24) is constrained by symmetry to point along
kz, while instead the Berry flux carried by the nodal rings is
directed along the tangential direction on the (kx,ky) plane.
As for the chiral Weyl nodes, they do contribute to the AHC
by acting as sources and sinks of Berry curvature, as becomes
apparent in the ensuing discussion.

1. Band-by-band decomposition

We work with the AHC vector K = ∑
n Kn, where the

contribution from a single band is given by Eq. (25). Following
Ref. [30] we calculate Kn in reduced coordinates as an average
over BZ slices of the Berry flux through the occupied portions
of each slice,

Knj = 1

2π
aj · Kn = 1

nslice

nslice∑
i=1

φnj (i)

2π
, (49)

where the Berry flux φnj (i) [Eq. (38)] is evaluated by adding
up the Berry phases around small plaquettes covering the
occupied portions of the BZ slice (see Sec. V B). Since we
take the magnetization to point along a3 = (0,0,a), the only
nonzero components of the AHC tensor are σxy = −σyx , and
Knj only needs to be evaluated for j = 3.

The calculated fluxes φn3 are piecewise continuous func-
tions of kz, jumping by integer multiples of 2π when passing
through chiral PNs. In our calculations we initially divide the
BZ into 800 evenly spaced slices, and whenever |φn3(i + 1) −
φn3(i)| > π we interpose four additional slices. This allows
us to locate more precisely the step discontinuities and to
distinguish them from rapid but continuous variations in the
flux.

Table IV shows the breakdown of the AHC into band
contributions. In the middle columns the dimensionless band
contribution given by Eq. (49) is further decomposed accord-
ing to Eq. (27),

Kn3 = K(�)
n3 + K(χ)

n3 , (50)

and in the last column the total contribution from band n is
converted to S/cm using σn,xy = −(e2/ha)Kn3. In practice we
calculate Kn3 and K(χ)

n3 from Eqs. (49) and (29), respectively,
and then obtain K(�)

n3 as the difference. Recall from Sec. IV B
that depending on the placement of the cell boundaries relative
to the PNs, integer amounts may get transferred between the
two terms in Eq. (50); the values in Table IV are for a BZ cell
located between kz = −π/a and kz = π/a.

All nonempty bands (n � 10) contribute to the AHC in
Table IV, as expected for a Fermi-sea formulation. For bands
that are fully occupied (n � 4) the � term in Eq. (50) becomes
the slice Chern number of Eq. (5) evaluated on the cell
boundary at kz = ±π/a; the total Kn3 of each of those four
bands is not quantized, however, because of the additional
term in Eq. (50) contributed by the chiral degeneracies [69].
Since those χ terms sum up to zero over all bands, we can
choose to focus exclusively on the � terms, in which case the
nonquantized part of the AHC is apportioned entirely to the
bands crossing EF (5 � n � 10). This viewpoint is adopted
in the next section.

TABLE IV. Band-by-band decomposition of the AHC of bcc
Fe. In the three middle columns the dimensionless AHC is further
decomposed according to Eq. (50).

Band AHC
n K(�)

n3 K(χ )
n3 Kn3 (S/cm)

1 2 0.51 2.51 −3394
2 − 6 3.03 − 2.97 4018
3 2 1.96 3.96 −5345
4 6 − 8.85 − 2.85 3840
5 − 8.01 6.22 − 1.79 2413
6 − 7.80 3.27 − 4.53 6111
7 14.12 − 6.44 7.68 −10 368
8 − 3.17 − 0.31 − 3.48 4702
9 − 0.53 1.33 0.80 −1076
10 0.83 − 0.72 0.11 −146
Total − 0.56 0 − 0.56 755
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2. Fermi-surface decomposition

Following Sec. IV C, we write the AHC contribution from
each Fermi-sheet as an average over BZ slices of Fermi-loop
Berry phases [Eq. (44)]. Instead of evaluating the Berry phases
ϕnaj (i) directly on the FS as done in Ref. [30], we first
compute Berry fluxes and then remove the discontinuities,
as explained below. In the case of bands nine and ten with
electronlike pockets, we determine the flux φnj (i) through
the occupied portions of each BZ slice in the same way as
in Sec. VI C 1, by adding up the Berry phases around small
occupied plaquettes [70]. In the calculations of Sec. VI B 2
we had identified the connected BZ subvolumes where band
n is occupied. Since in bcc Fe each subvolume is bounded
by a single Fermi sheet Sna (this is not true in general),
that information can be used to decompose the Berry flux
as φnj (i) = ∑

a φnaj (i) by assigning each plaquette to the
appropriate subvolume. Having done this for every slice
we then set ϕnaj (i) = φnaj (i) + 2πNnaj (i), choosing nonzero
integers Nnaj (i) at the critical slices so as to cancel the jumps
in φnaj (i). The procedure is the same for the holelike sheets
in bands five to eight, except that we switch from occupied
to empty subvolumes and flip the signs of the Berry fluxes.
As in Sec. VI C 1, calculations only need to be carried out
for j = 3.

The Fermi-sheet contributions to the AHC are listed in
Table V. Because these are nonquantized contributions, they
are only defined modulo e2/ha = 1350 S/cm. This ambiguity
arises from the freedom to choose the branch cut of the Berry
phase ϕna3 on some reference slice (Sec. IV C), and below we
describe the choices we have made in order to arrive at the
values in the table.

For the sheets in groups I, III, IV, V, VI, VII(a), VIII(a), and
VIII(b), all of which have zero Chern numbers, we arbitrarily
set ϕna3 = 0 on an “empty” slice below the Fermi sheet. As an
example, Fig. 15(a) shows the evolution of the phase −ϕna3 for
n = 10 and a = 1 [the large pocket centered at � in Fig. 10(f)].

TABLE V. Decomposition of the AHC of bcc Fe into nonquan-
tized Fermi-sheet contributions. Symmetry-related sheets are grouped
in the same row, and they contribute equal amounts. The two pockets
(106,107) [group VII(b)] with opposite Chern numbers are treated as
a single “composite sheet” and assigned a joint AHC contribution.
The shortest distance from each Fermi sheet to a chiral PN on the
same band is also indicated.

Band Sheet Group Distance to a PN AHC
n a label (2π/a) (S/cm)

5 1 IV 0.30 9
6 1 III 0.02 −274
7 1 V 0.06 459
7 2,3,4,5 VIII(a) 0.01 −203 ×4
7 6,7 VIII(b) 0.09 100 ×2
8 1 II 0.03 242
9 1 I 0.02 714
10 1 VI 0.10 58
10 2,3,4,5 VII(a) 0.31 −1 ×4
10 6,7 VII(b) 0.01 167
Total 759

FIG. 15. Evolution with kz of the Berry phase along the intersec-
tion loops between a Fermi sheet and a BZ slice, enforcing continuity
from one slice to the next. (a) Fermi pocket 101. (b) Topological
pockets (106,107), treated as a composite Fermi sheet. (c) Fermi
sheet 81.

Upon hitting the pocket it first rises continuously from zero,
reaches a maximum, and then starts to decrease, returning to
zero at the top of the pocket.

The two pockets (106,107) have nonzero Chern numbers. It
is therefore not possible to set the Berry phase to zero both at
the bottom and at the top of each of them, while at the same time
insisting on a continuous evolution across each pocket [29].
Following Sec. IV C we treat the two pockets as a composite
Fermi sheet with an overall zero Chern number and assign
them a joint AHC contribution. There are two possibilities
for setting ϕna3 = 0 on empty slices between the two pockets:
either in the wide region around kz = 0, or in the narrow region
around kz = π/a. We have arbitrarily chosen the former, and
the resulting Berry-phase curve is shown in Fig. 15(b) (with
the latter choice the entire curve would be shifted downwards
by one). The phase −ϕna3(kz) rises quickly from zero to 2π

while traversing the small pocket with C = +1 on the right
side of the panel, stays constant at 2π in the narrow region
between the two pockets, and finally drops rapidly back to
zero while traversing the periodic image of the pocket with
C = −1 on the left side.

The third case we have encountered is that of the tubular
Fermi sheet in band eight. As in the first case considered above
the Chern number vanishes, but here there are no empty slices
that can be used to set the Berry phase to zero [see Fig. 10(d)].
Instead, we have made in Fig. 15(c) the unique branch choice
leading to the correct total intrinsic AHC when summing the
contributions from all the Fermi sheets. (We have verified that
the curve −ϕ3(kz) obtained by summing −ϕna3(kz) over all
Fermi sheets agrees with Fig. 5 of Ref. [30].) Note the very
steep variation in the Berry phase around kz = 0.465 × 2π/a:
It is caused by the tiny avoided crossing between sheets (8,9)
in Fig. 12 that was mentioned at the end of Sec. VI B 1.

Regarding the magnitude of the nonquantized AHC con-
tributions, inspection of Table V and Fig. 10 reveals that
the most significant contributions tend to come from large
Fermi sheets with chiral PNs close by. This makes intuitive
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sense, as can be seen by considering a typical Fermi pocket
with zero Chern number and that can be completely enclosed
inside a BZ cell. Using Haldane’s formulation with such a
choice of BZ cell, its AHC contribution equals the dipole
moment of the surface-normal Berry curvature [the term K(�)

na

in Eq. (39)]. This quantity scales with the pocket size and
is enhanced by the presence of nearby sources and sinks of
Berry curvature. As a specific example, compare the pockets
(72,73,74,75) in group VIII(a) with the pockets (76,77) in group
VIII(b). Although they are almost identical in size and shape,
the former contribute twice as much AHC per pocket, by virtue
of being much closer to chiral PNs.

The joint AHC contribution from the topological pockets
(106,107) is considerable (about 20% of the total), despite
the fact that the pockets themselves are rather small. In this
case the AHC contribution scales not with the size of the
pockets but with the distance between them, as can be seen
from Fig. 15(b). An estimate is provided by the k-space dipole
moment between the mirror-symmetric WPs enclosed by each
of the two pockets,

(+1) × 0.428 + (−1) × (−0.428) − 1 = −0.144,

in units of 2π/a (note that the WP at kz = 0.428 × 2π/a in
Table II acts as a sink of Berry curvature in band nine, and
therefore it acts as a source in band ten). This corresponds to
a nonquantized AHC contribution of −0.144 × (−e2/ha) =
194 S/cm, close to the ab initio value of 167 S/cm in Table V;
the small overestimation has to do with the finite size of the
pockets.

We conclude by analyzing the evolution of the Fermi-sheet
Chern numbers and AHC upon varying the Fermi level.
Inspection of Fig. 13(a) and Table II shows that at the critical
value �EF = 0.07 eV the Fermi level coincides with the
energy of a double-Weyl node between bands nine and ten,
located along the fourfold axis � at kz = 0.48 × 2π/a. The
evolution with �EF of sheets 9 and 107 is depicted in the
Supplemental Material [68]. At the critical value the two sheets
touch at the node, and there is a simultaneous touching between
sheets 9 and 106 at the mirror symmetric node in the lower
half of the BZ. Since the chiral charges at the touching points
are ±2, sheet 9 donates to 107 a Chern number of +2, and it
simultaneously receives a compensating amount from 106. The
net result is that the Chern numbers on pockets 106 and 107 flip
sign, while that of sheet 9 remains at zero. As for the AHC, the
joint contribution from the pair (106,107) changes abruptly by a
nonquantized amount, but the total AHC remains continuous
because of a compensating discontinuity in the contribution
from sheet 9 [71]. This example suggests that a measurement
of the AHC cannot by itself resolve the Berry topology of the
Fermi sheets.

VII. SUMMARY

In summary, we have used first-principles methods to
survey the degeneracies in the spinor band structure of bcc
Fe and to calculate the chiral charges of those degeneracies.
From the census of chiral band touchings we then determined
the Chern numbers of the individual Fermi sheets, paying
attention to the subtleties that arise when Fermi sheets are not
isolated, but glued together along nodal rings. We found that

when the magnetization points along the easy axis [001] most
Fermi sheets in bcc Fe are topologically trivial, except for two
low-symmetry electron pockets along � with Chern numbers
±1 and four others along �′ with ill-defined Chern numbers
due to Fermi gluing.

The systematic relations we derived between the Fermi-
sheet Chern numbers and the enclosed chiral charges are
generally applicable to any metal with broken PT symmetry.
In particular, we have considered in our formal discussion
the case of complex FSs with nested sheet structures, as
well as the case where sheets with a Luttinger anomaly
are present. Combined with the efficient steepest-descent
strategy that was used to locate band degeneracies, our
algorithm for determining the FS Chern numbers could be
useful in high-throughput ab initio searches for topological
metals.

The role played by chiral degeneracies in the intrinsic AHC
was carefully examined, confirming that they do not pose an
impediment to a bulk FS formulation for the nonquantized part.
We identified two different ways of decomposing the AHC
(band by band and in terms of Fermi sheets) and showed how
the two decompositions are related by dipole moments of the
distribution inside the BZ of chiral band touchings below the
Fermi level. We carried out both decompositions numerically
for bcc Fe and found the FS decomposition to be particularly
informative and physically transparent: Chiral degeneracies
act as sources and sinks of Berry curvature in k space, and the
distribution of Berry curvature across the Fermi sheets in turn
governs the nonquantized AHC response. So, for example,
Fermi sheets with chiral PNs very nearby tend to contribute
more to the AHC than otherwise similar Fermi sheets that are
farther from chiral PNs.

By showing that 2 of 18 Fermi sheets in bcc Fe are
topologically nontrivial, we have established that nonzero
Chern numbers are not only possible, in principle, in T -broken
FSs, but that they actually occur in realistic ferromagnetic
band structures. Further studies on other ferromagnets will
be needed before it becomes clear how common they are.
Since symmetry was seen to play an important role, it would
be interesting to explore materials with other symmetries,
e.g., a sixfold axis. The fact that parity imposes zero Chern
numbers on most Fermi sheets in bcc Fe suggests that
topologically nontrivial sheets may be more common in
P -broken metals. Known examples include MnSi and related
ferromagnetic compounds with the B20 structure and also
metals such as LiOsO3 that undergo ferroelectriclike polar
distortions [72].

By varying either the magnetization direction or the Fermi
level, we were able to change the Chern numbers on the
FS of bcc Fe. The process consisted of concerted chiral
touching events involving three electronlike Fermi sheets, with
a large, topologically trivial sheet in band nine mediating
the transfer of Chern number between two small enclosed
pockets in band ten. The experimental consequences of
such topological transitions remain largely unexplored. The
manner in which the topological properties can change as a
function of other external parameters such as pressure, e.g.,
via discrete Fermi-sheet reconnection or PN pair annihilation
or creation events, is also an attractive subject for future
investigation.
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APPENDIX: SYMMETRY CONSTRAINTS

In this appendix we list the constraints imposed on several
k-space quantities by the spatial inversion symmetry P of
bcc Fe and also by the additional mirror symmetry Mz that
is present when the magnetization points along the easy axis
[001]. The quantities of interest are the energy eigenvalues
En(k), the Berry curvature �n(k), the chiral charge χnα , and
the slice Chern numbers Cn(kz) and C̃n(kz).

Inversion symmetry implies

En(−k) = En(k), (A1)

�n(−k) = �n(k), (A2)

χnα′ = −χnα, (A3)

where Eq. (A3) follows from Eqs. (10) and (A2), and the node
nα′ in Eq. (A3) is the parity-reflected partner of nα. Evaluating
Eq. (5) at −kz we find

Cn(−kz) = 1

2π

∫
d2k �n,z(−k) = Cn(kz), (A4)

where we first made the change of variables kx → −kx ,
ky → −ky , and then used Eq. (A2). Because of the periodicity
condition (6) we also have

Cn(π/a − kz) = Cn(π/a + kz), (A5)

so that Cn(kz) is even with respect to both kz = 0 and kz = π/a,
and the same is, of course, true for C̃n(kz).

The presence of mirror symmetry Mz implies

En(Mzk) = En(k), (A6)

�n,x(Mzk) = −�n,x(k), (A7)

�n,y(Mzk) = −�n,y(k), (A8)

�n,z(Mzk) = �n,z(k), (A9)

χnα′ = −χnα, (A10)

where Mz(kx,ky,kz) = (kx,ky, − kz) and nα′ is the mirror-
reflected partner of nα.

[1] S. Murakami, New J. Phys. 9, 356 (2007).
[2] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.

Rev. B 83, 205101 (2011).
[3] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205

(2011).
[4] K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129

(2011).
[5] A. M. Turner and A. Vishwanath, in Topological Insulators

(Elsevier, Amsterdam, 2013), Chap. 11, p. 293.
[6] F. D. M. Haldane, arXiv:1401.0529.
[7] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,

B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia,
A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373
(2015).

[8] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys.
Rev. X 5, 011029 (2015).

[9] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.
Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang,
H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P.
P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349, 613
(2015).

[10] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P.
Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai,
T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

[11] S.-Y. Xu, N. Alidoust, I. Belopolski, C. Zhang, G. Bian, T.-R.
Chang, H. Zheng, V. Strokov, D. S. Sanchez, G. Chang, Z. Yuan,
D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. Wang,, A.
Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and
M. Z. Hasan, arXiv:1504.01350 [Nat. Phys. (to be published)].

[12] J. Liu and D. Vanderbilt, Phys. Rev. B 90, 155316 (2014).
[13] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng,

D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z.
Hussain, and Y. L. Chen, Science 343, 864 (2014).

[14] M. Neupane, S. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I.
Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou,
and M. Z. Hasan, Nat. Commun. 5, 3786 (2014).

[15] M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
[16] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys. Rev.

Lett. 108, 266802 (2012).
[17] S. Murakami and S.-i. Kuga, Phys. Rev. B 78, 165313

(2008).
[18] L. M. Falikov and J. Ruvalds, Phys. Rev. 172, 498 (1968).
[19] A. P. Cracknell, J. Phys. C: Solid State Phys. 2, 1425 (1969).
[20] A. P. Cracknell, Phys. Rev. B 1, 1261 (1970).
[21] F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[22] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 81,

134508 (2010).
[23] P. Hosur, X. Dai, Z. Fang, and X.-L. Qi, Phys. Rev. B 90, 045130

(2014).
[24] J.-H. Zhou, J. Hua, Q. Niu, and J.-R. Shi, Chin. Phys. Lett. 30,

027101 (2013).
[25] L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, Nat. Photonics
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