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In a recent work [A. Altland, Y. Gefen, and B. Rosenow, Phys. Rev. Lett. 108, 136401 (2012)], we have
addressed the problem of a Luttinger liquid with a scatterer that allows for both coherent and incoherent
scattering channels. We have found that the physics associated with this model is qualitatively different from the
elastic impurity setup analyzed by Kane and Fisher, and from the inelastic scattering scenario studied by Furusaki
and Matveev, thus proposing a paradigmatic picture of Luttinger liquid with an impurity. Here we present an
extensive study of the renormalization group flows for this problem, the fixed point landscape, and scaling near
those fixed points. Our analysis is nonperturbative in the elastic tunneling amplitudes, employing an instanton
calculation in one or two of the available elastic tunneling channels. Our analysis accounts for nontrivial Klein
factors, which represent anyonic or fermionic statistics. These Klein factors need to be taken into account due
to the fact that higher-order tunneling processes take place. In particular, we find a stable fixed point, where an
incoming current is split 1

2 - 1
2 between a forward and a backward scattered beams. This intermediate fixed point,

between complete backscattering and full forward scattering, is stable for the Luttinger parameter g < 1.
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I. INTRODUCTION

The concept of a Luttinger liquid (LL) provides a very
general framework to deal with a strongly interacting electron
gas confined to one spatial dimension (1D) [1]. Contrary to
higher-dimensional situations, where the quasiparticle (qp)
concept describes low-energy excitations, in an LL only
collective excitations are long lived and stable. Particlelike
excitations of an LL have an energy dependent density of states
and can relax in energy in the presence of backscattering.
Applications of the LL concept include semiconductor [2],
metallic [3] and polymer [4] nanowires, carbon nanotubes [5],
quantum Hall edges [6], and cold atoms [7].

Due to the geometrical restriction to 1D, electrons may
be divided into two sectors, right moving and left moving.
The presence of an impurity [8] gives rise to interbranch
scattering, i.e., backscattering with a power-law dependence of
the scattering probability on energy. Hitherto there have been
two paradigmatic models that addressed impurity scattering
in the context of LL: a purely elastic impurity as discussed
by Kane and Fisher [9] (KF), and totally inelastic scattering
described by Furusaki and Matveev [10] (FM).

In a recent publication [11], we have introduced and
studied a model which is a hybrid between the two. We have
addressed interacting electrons in one dimension described
by a Luttinger model, which includes a scatterer that may
give rise to elastic coherent tunneling, and at the same time
may accommodate inelastic modes. Our analysis has led to
predictions that are qualitatively different from the KF and
the FM pictures, and in this sense can be considered as a new
paradigmatic scheme of impurity scattering in the context of
LL. For generalizations to systems comprising more than one
LL coupled by tunneling terms see [12–21].

In particular, we have obtained the following results. (i)
Due to the presence of both elastic and inelastic scattering
channels, there exists a new stable non-Fermi liquid fixed
point (FP). Asymptotically, the impurity becomes a symmetric
beam splitter, which halves the incoming beam into two equal

outgoing beams. For this reason we termed this limit a 1
2 - 1

2
FP. We also identify other non-Fermi liquid FPs, which are
stable in a certain direction and unstable in another direction
in parameter space. A major facet of our earlier work was
that upon renormalizing our model down in temperature
(or bias voltage), under generic conditions the model flows
to a stable FP. The neighborhood of this FP is marked by
the non-Fermi liquid correlations described above. (ii) At
equilibrium, there is thermal noise at each incoming and each
outgoing terminal, but no cross-correlation in the thermal
noise, i.e., no correlations between incoming-incoming
and outgoing-outgoing edges—in stark contrast to the
Landauer-Buttiker picture. (iii) Out of equilibrium, when the
system is voltage biased at one of the incoming terminals,
the impurity acts as a 1

2 - 1
2 beam splitter with no shot noise

component in the outgoing current. Similarly, cross-current
correlators do not contain a shot noise component.

Our analysis in Ref. [11] involved bosonization of the inter-
acting fermionic Hamiltonian. It was based on perturbation in
the elastic (coherent) scattering amplitudes in the presence of
a charging term representing electrostatic correlations in the
scattering region. We have concluded that for energies below
the charging energy, the bosonic fields affected by the elastic
scattering terms become massive. As a result, only one of the
four independent bosonic fields in the model remains asymp-
totically free. The asysmptotically Gaussian action has facili-
tated calculation of noise and current-current correlations.

Naturally, the fact that our analysis has been based on,
and the results have been motivated by perturbative analysis,
raises some questions. Most important is the fact that various
relevant terms of the action have been analyzed within a
renormalization group (RG) scheme separately. Evidently, this
procedure ceases to be justified when the respective amplitudes
of the elastic tunneling terms grow through the RG analysis.
One may need to evaluate expectation values of products of
noncommuting terms, which a naive perturbative analysis is
incapable of doing. Careful analysis is required in this process.
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We note that the elastic tunneling channels involve scat-
tering from any of the two incoming channels to any of the
outgoing channels. To establish the right language, and to
enable a compact description of the RG flow diagram, we
divide the elastic scattering terms into back scattering (the
terms connecting channels 1 with 3, and 2 with 4, cf. Fig. 2)
and forward scattering (the terms connecting 1 with 4, and
2 with 3). We assume that the coefficients of the two back
scattering terms are equal to each other, and similarly the
coefficients of the two forward scattering terms are equal
to each other. Relaxing this assumption does not modify the
asymptotics of the problem, but makes the description of the
RG flows more cumbersome. Assuming we have renormalized
the problem down from high temperature (or voltage), and that
certain irrelevant nonuniversal terms have been renormalized
out, we are left with flows in a two-dimensional parameter
space. We indeed establish the existence of a new stable 1

2 -
1
2 FP, which corresponds to strong coupling in both scattering
channels (backscattering and forward-scattering respectively).
We denote this a strong-strong fixed point (SSFP). In addition,
we find and characterize three more FPs: a trivial unstable weak
scattering FP (weak-weak fixed point, WWFP), and two other
FPs: a weak-strong fixed point (WSFP), and a strong-weak
fixed point (SWFP), each being stable in one direction of
parameter space and unstable in the other direction. All these
points are marked by non-Fermi liquid correlations.

We note that the issue of noncommutativity of the various
tunneling operators is central to the analysis of the model
beyond the perturbative limit. Here, we will be dealing
with operators describing tunneling of Abelian quasiparticles.
Such particles (known as anyons) possess fractional statistics,
intermediate between bosons and fermions. The exchange of
two qps involves a statistical phase which is ill-defined: its
sign depends on the “history” of the trajectories employed in
the course of the exchange. In order to avoid such a pathology,
one may resort to either one of the three following tricks: (i)
avoid single qp field operators (qp creation or annihilation
operators) and assign statistical Klein factors only to operators
which are bilinear in qp field operators, e.g., to qp tunneling
operators [22,23], (ii) attach a statistical flux tube to a qp
and follow the kinetics by way of a quantum master equation
[24,25], (iii) introduce all relevant edges on a single contour,
and choose a convention how qp’s are being exchanged [26]
(i.e., clockwise or anticlockwise). In the present analysis, we
will assign generalized Klein factors to qp operators, following
the philosophy of (iii).

The outline of the paper is the following. In Sec. II, we
introduce the problem addressed here, and discuss its mapping
onto a model setup that allows systematic bosonization
and subsequent analysis. The assumptions underlining this
modelization and the applicability thereof are outlined. In
Sec. III, we position our building blocks (in particular the
chiral channels of our model) within a particular geometry,
giving rise to a well-defined convention that determines
the commutation relations of the anyonic quasiparticles.
Performing a sequence of canonical transformations allows
us to derive an effective action that captures the symmetries of
the problem. Section IV is devoted to the perturbative analysis
of the weak scattering fixed point (WWFP), while Sec. V is
focused on the study of the scaling near the weak-strong fixed

point WSFP. We note that the physics of the strong-weak fixed
point SWFP is trivially obtained by trivial exchange of field
indices from the WSFP. Here, we argue that the low-energy
dynamics is dominated by a phase slip-instanton mechanism.
In Sec. VI, we analyze the scaling near the SSFP. In this limit,
an instanton picture within a two-dimenional parameter space
is employed. In the limit of noninteracting Luttinger wires,
our analysis needs special care: some of the flows become
marginal. This is discussed in Sec. VII, where comparison with
known results is presented as a consistency check. Finally, in
Sec. VIII, we present a short summary of our results, and a
few proposals and speculations concerning further directions
of our analysis. In Appendix A, we make a few comments
concerning experimental verification of our predictions, and
in Appendix B, we compare the results obtained within our
bosonic theory with an exact refermionization treatment for a
specific value of the Luttinger parameter.

II. THE SETUP AND ITS MODELING

Our model is motivated by an experimental setup with a
two-dimensional electron gas in a strong magnetic field, such
that the fractional quantum Hall (FQH) regime is reached.
We focus on a Laughlin filling fraction, such that, in the
absence of edge reconstruction, the structure of the edge is
simple, consisting of a single chiral channel at each edge. In
addition, we imagine the existence of a compressible puddle
with somewhat reduced density, e.g., ν = 1/3 in the bulk
and a puddle with a compressible ν = 1/4 state of composite
fermions. Such a setup can be realized by locally modifying
the backgate voltage in a certain region, see Fig. 1.

Due to its small geometric size, the puddle has a charging
energy associated with it and constitutes a quantum dot
(QD). The edge modes support anyonic qps, which may
be backscattered through the incompressible bulk near the
entrance and exit of the QD. The setup we thus envision is
that of a QD with four semi-infinite chiral edges coupled to
it. We assume that the contacts between the leads and the QD
are ideal, i.e., reflectionless. In total, one needs to consider
a Hamiltonian, which describes the ideal chiral edges, the
contact between edges and puddle, the puddle modeled as a
metallic quantum dot (QD) with charging energy, and elastic
(coherent) tunneling channels that may support qp tunneling
(see Fig. 2). In terms of modeling this setup, we need to find
a way to describe an ideal, reflectionless contact between

VG

VG

FIG. 1. Sketch of a QH bar with a gate defined QPC. The bulk of
the Hall bar is incompressible with filling fraction ν, the density in
the QPC region is lower, such that mixing between edge states in a
compressible region can occur, both via elastic and inelastic channels.
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FIG. 2. (Color online) Schematic model of a quantum wire with
two incoming (labeled 1 and 2) and two outgoing chiral modes
(labeled 3 and 4) connecting to an extended scattering region.
The dark shading represents a region of capacitive charging, the
quantum dot. Near the entrance and exit to the quantum dot, where
translational invariance is broken, backscattering of quasiparticles
across the Hall bar is possible, denoted by vertical dashed lines. In a
possible realization with a compressible quantum dot region, the edge
current spreads into the bulk, and both elastic transmission along the
edge (indicated by horizontal dashed line) and inelastic transmission
through the dot is possible.

a chiral lead and a QD. In order to achieve this goal, we
follow Matveev: we employ four electrostatically coupled
infinite chirals. For each of these infinite chirals, one half
is identified with the chiral wire outside the dot, whereas the
other half is assumed to be positioned inside the dot. In this
way, low-energy excitations of the chiral parts “inside the
dot” can be identified with dissipative processes within the
QD. Transport processes between a chiral entering the dot and
another chiral leaving the dot are mediated by (i) the charging
energy within the dot, which prevents charge accumulation
inside the QD, and (ii) by coherent elastic tunneling between
incoming and outgoing chirals. The setup corresponding to
our model is depicted in Fig. 3.

We are now in a position to write the total Hamiltonian.
It consists of three terms. The low-energy dynamics of the
original semi-infinite leads, as well as the part of the chiral
edge channels that constitutes part of the quantum dot, are
delegated of a Hamiltonian that represents four infinite chirals,
Hch. Separately, the charging energy of the QD is described
by Hdot. Finally, the coherent part of the lead-QD tunneling
is represented by Htun. We resort to bosonization, and define
bosonic fields φi(x) with i = 1,2,3,4 for each chiral, see Fig. 2.
We decompose the bosonic fields into finite momentum and
zero modes according to

ϕi(x) = φi(x) + φ0
i (x). (1)

1 

3 

4 

2 

FIG. 3. (Color online) Effective modeling of the system (cf.
Fig. 2) through four infinite chiral channels. Each channel consists of
a half infinite wire (either incoming or outgoing), and a half infinite
wire, which is part of the quantum dot (shaded area). Elastic scattering
channels are represented by wiggly lines.

The finite momentum part has a Fourier representation
according to

φi(x) =
∫

dq

2π
θ (±q)

√
2πν

|q| (ai,qe
iqx + a

†
i,qe

−iqx), (2)

and the structure of the zero modes will be discussed in the
context of Klein factors in Sec. III. For the mode decomposi-
tion above, the plus sign should be used for the right-moving
modes 1 and 4, and the minus sign for the left-moving modes
2 and 3. The ai,q and a

†
i,q are canonical boson operators with

commutation relations [ai,q ,a
†
j,q ′ ] = δi,j 2πδ(q − q ′), giving

rise to [ϕi(x),ϕj (y)] = (πg/2)sgn(x − y). The charge density
is related to be boson fields via ρi(x) = 1√

2π
∂xφi(x), and the

Hamiltonian for the chirals is given by

Hch = �v

2πg

4∑
i=1

∫
dx[∂xϕi(x)]2. (3)

In addition, there is a Coulomb charging energy for the dot:

Hdot = e2

2C
Q2, (4)

where

Q = 1√
2π

[−φ1(0) − φ2(0) + φ3(0) + φ4(0)] (5)

denotes the charge on the dot. Coherent elastic tunneling
between incoming and outgoing wires is described by the
Hamiltonian

Htun = t13 cos (ϕ1 − ϕ3) + t24 cos (ϕ2 − ϕ4)

+ t14 cos (ϕ1 − ϕ4) + t23 cos (ϕ2 − ϕ3). (6)

Here we ignore retardation effects, assuming that tuneling is
instantaneous. Thus the total Hamiltonian for the system is
given by

H = Hch + Hdot + Htun. (7)

As for some parts of our analysis, it will be useful to resort to
a functional integral formulation of the problem, we also state
the Matsubara finite temperature action of the system:

S = �

2πg

4∑
j=1

∫
dx dτ ∂xϕj (x,τ )[±i∂τϕj (x,τ )] −

∫
dτH.

(8)
Here, the plus sign refers to the right moving branches 1 and
4, and the minus sign to the left moving branches 2 and 3. We
note that the zero-mode part of the Hamiltonian H0 and and of
the action S0 will be discussed in detail in Sec. III.

A few commons are in order now. (i) Our analysis will be
performed using the Matsubara technique. (ii) The tunneling
is that of anyons (qps). We consider only this type of tunneling
terms as they are (when allowed) potentially the most relevant
terms. (iii) All channels are put on an equal footing. There is
no distinction between forward scattering and backscattering
any more. Particles on different chirals are different species,
hence the finite momentum boson fields φ1, φ2, . . . commute.
It is therefore vital (for the sake of preserving the appropriate
commutation relations) to introduce Klein factors which, in
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the case of qp tunneling, will be anyonic Klein factors.
In the notation of Eq. (6), the Klein factors are implicit
in the prefactors tij , their precise realization will be discussed
below. We denote the c-number-valued scattering amplitudes
without Klein factors by γij , i.e., tij = γij× (Klein factors).
(iv) Each infinite chiral contributes half to the lead (either
incoming or outgoing) and half to the degrees of freedom of a
compressible puddle. The puddle (also known as quantum dot)
accommodates gapless soft modes. (v) The charging (that is,
electrostatic) interaction introduces coupling among the four
channels. As we renormalize the model down in temperature
(or applied voltage), flowing towards low-energy dynamics
(long-time scales), the presence of a charging energy scale will
force charge fluctuations on the QD to freeze-out. The QD then
remains effectively neutral. (vi) The model is a hybrid of elastic
(coherent) scattering between incoming and outgoingleads,
and inelastic transport through the QD. The latter involves the
excitation of low-lying modes in the QD, which can be de-
scribed in terms of many particle-hole excitations. The former
represents (to lowest order in the tunneling coupling constant)
elastic tunneling through the QD. While one may imagine that
backward tunneling, say between channels 1 and 3, is mediated
by a resonant impurity level in a Hall bar constriction, one
can motivate the forward tunneling, say between channels 1
and 4, as being due to coherent propagation along the edge
of the QD. For any real QD, there is an energy scale defined by
the mean single-particle level spacing in the QD, �. Once the
maximum of temperature and bias voltage is driven below �,
the soft modes, which constitute an essential part of our model
are frozen out. At that point, our model ceases to be valid.
Nevertheless, as long as the infrared cutoff of our RG flows is
larger or comparable to � (which might be extremely small)
the model and the predictions following from its analysis, are
valid. (vii) The interesting regime of our RG flows stipulates
running frequencies � � |ω| � Ec. Modes involving charge
fluctuations are frozen out; for the model to be valid, soft modes
in the QD still need to be available. Is such a regime possible?
If we are focusing on a QD subject to a strong perpendicular
magnetic field, then the relevant spectrum of the QD is 1D (on
the edge). Ostensibly, both Ec and � will scale like 1/L (L=
the linear size of the QD), and the difference between them may
be only due to different coefficients. However, we may control
the charging energy Ec, and actually render it larger than �, by
considering a puddle realized by a sea of composite fermions,
for instance at filling ν = 1/4, whose motion does not follow
1D edges but instead explores the available 2D area of the QD.

Our analysis presented here is done with a view to the
chiral edges of a FQHE. We stress here that it may apply to
quantum wires described by Luttinger liquid models. Applying
our analysis to Luttinger liquids implies certain assumptions.
This is discussed in Appendix A.

III. GENERALIZED KLEIN FACTORS, AND THE
EFFECTIVE ACTION

As was commented in Sec. II, we need to establish a
convention as far as Klein factors, underlying the anyonic
field operators, are concerned. We choose to establish such
generalized Klein factors in relation to a geometry where all
four infinite chirals are assumed to be segments of a single

γ

γ13

14

γ24

γ
23

FIG. 4. (Color online) Putting all four chiral wires onto a single
contour. Our previously disconnected chiral wires become segments
denoted 1, 2, 3, and 4. They are connected by scattering as shown
[cf. Eq. (7)]. The quantum dot is represented by the shaded area. All
segments should be imagined “infinitely long,” e.g., a quasiparticle
entering the dot along 1 will then propagate vertically upwards but will
never make it to the “top of the contour” in finite time. It has to scatter
to get to 4 (henceforth to 2). Note that the vertical scattering amplitude
γv = |γ13 + e−iπg γ24| and the horizontal scattering amplitude γh =
|γ23 + γ14| will be the parameters of our RG flow as shown in Fig. 6.
The relative phase factor in the definition of γv is due to the phases
of scattering operators in Eq. (17).

chiral contour. In that convention, the exchange of two anyons
positioned on channel i and channel j respectively has an
unambigious chirality. The geometry is shown in Fig. 4, and
the related bosnonic field configuration is depicted in Fig. 5.

A. Effective geometry

As we will consider qp scattering between the wires,
we need to find a faithful representation of quasiparticle
operators in terms of bosonic constituents. For the purpose
of establishing unique commutation relations between qp

FIG. 5. (Color online) Field configuration on the closed contour.
We introduce zero modes qi , pi to describe the increment of the
field throughout any of the four segments. The “finite momentum
components” φi obey periodic boundary conditions. Shaded regions
indicate the dot regions.
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operators acting on different chirals, we will put the four chiral
edges defining our problem onto a single contour, as shown in
Fig. 4. We now follow the recipe for representing quasiparticle
operators as discussed by Oshikawa, Chamon, Afleck (OCA
in the following) in Appendix E 5 of Ref. [26]. The starting
point is a representation of chiral bosonic field, generalized for
the presence of zero modes. In operator notation,

ϕ̂i(xi) = 1√
2

(
q̂i − 2π

2L
p̂ixisi

)
+ φi(xi). (9)

Here, xi is confined to the ith segment of the contour,
and L is an extension of that contour. The sign factor is
si = 1 for i = 1,2 and si = −1 for i = 3,4. The Fourier
components of the oscillator modes are such that these modes
are algebraically independent on the different contours, and
hence they commute. The role of zero modes and finite
momentum modes in manufacturing a field continuously
covering the whole contour is indicated in Fig. 5. We note
that the zero modes satisfy the commutator relation

[q̂j ,p̂k] = giδj,k. (10)

At this point, a comment on normalization is due: we represent
our chiral fields as exp(i

√
2ϕ) → exp[i(q − 2π

L
px + √

2φ)].
This differs from the OCA convention by the factor

√
1/g.

OCA have a convention exp[i(
√

gq + 2π
√

g

L
p + φ)], and unit

commutation relations [q,p] = i.
When substituted into a functional integral, q̂i → qi(t) be-

comes a time-dependent field. In the literature, one often finds
the additional dynamical substitution rule, p̂ixi → p̂i(xi − t),
where, in order to simplify the notation, we have taken the
velocity to be unity. This we should interpret in terms of
the interaction picture dynamics generated by the zero-mode
Hamiltonian

Ĥ0 ≡ π

4gL

∑
i

p̂2
i , (11)

and the corresponding zero-mode action

S0[q,p] =
∫

dτ

(
i

g
pidτ qi − H0

)
. (12)

The corresponding equations of motion

dtqi = π

L
pi,

dtpi = 0,

are solved by qi(t) = qi + pi
π
L
t , with constant (qi,pi). Sub-

stitution into the field definition (9) leads to the dynamical
interpretation

ϕi(xi,t) = 1√
2

(
qi − π

L
pi(xisi − t)

)
+ φi(xi,t)

with time-independent (qi,pi). At this stage, the meaning of
the sign factors si becomes transparent. They make sure that on
contours 1,2 causality is towards increasing coordinates (“in-
coming”), and on contours 3,4 towards decreasing coordinates
(“outgoing”).

B. Generalized Klein factors

Following OCA, we represent a quasiparticle operator
obeying proper intrawire commutation relations as

ψi = eiqi e−i 2π
L

pixi eiφi , (13)

as a product of zero-mode operators and the finite momentum
vertex operators exp(iφi). Quasiparticle interwire commuta-
tion relations are now generated by multiplication with a factor

ηi ≡ ei π
2

∑
j αij pj , (14)

where the matrix α is given by

α =

⎛
⎜⎝

0 1 1 1
−1 0 1 −1
−1 −1 0 −1
−1 1 1 0

⎞
⎟⎠. (15)

The matrix structure encodes the sequential ordering of
segments on the contour. For example, the first row indicates
1 < 2,3,4, and the second 2 > 1,4 and 2 < 3. We define new
operators �i = ηiψi , which are designed such that

�i�j = �j�i e
iπgαij . (16)

The derivation of these commutation relations from the current
path integral formalism is detailed in Appendix A.

We aim to understand how the presence of these “Klein
factors” will interfere with the scaling of the scattering
operators. To achieve this, we define the latter in such a
way that the tunneling points sit at xi = 0. In order to avoid
ambiguity, we actually remove the tunneling sites a little bit
from zero as indicated in Fig. 4. This means that the pixi terms
in the quasiparticle amplitudes drop out. We are then led to
consider the following bilinears:

�̄3�1 = ei(q3−q1)ei π
2 (p1+p3+2p2+2p4)ei(φ1−φ3) e−i π

2 g,

�̄4�2 = ei(q4−q2)ei π
2 (−p2−p4)ei(φ2−φ4) ei π

2 g,
(17)

�̄3�2 = ei(q3−q2)ei π
2 (p3+p2)ei(φ2−φ3) e−i π

2 g,

�̄4�1 = ei(q4−q1)ei π
2 (p1+p4)ei(φ1−φ4) e−i π

2 g.

In deriving these relations, we made use of the commutation
relations

eis π
2 pi eis ′qi = eis ′qi eis π

2 pi eiss ′ π
2 g, (18)

where s,s ′ = ±1. These bilinears enter the problem through
the scattering action

Ss[�̄,�] ≡ Sv[�̄,�] + Sh[�̄,�],

Sv[�̄,�] =
∫

dτ (γ13�̄3�1 + γ24�̄4�2 + H.c), (19)

Sh[�̄,�] =
∫

dτ (γ23�̄3�2 + γ14�̄4�1 + H.c).

Another observable relevant to our discussion is the charge on
the dot. Defining the charge density as si∂xϕi = √

2πρi , we
get for the charge

Qi = 1√
2π

∫ L

0
dx si∂xϕi = −pi

2
− si√

2π
φi(0), (20)
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Abbreviating as φi(0) = φi , we thus obtain

Q = −1

2
(p1 + p2 + p3 + p4) − 1√

2π
(φ1 + φ2 − φ3 − φ4)

(21)

for the charge on the dot. (The mnemonic behind the different
sign configuration is that in ϕ ∼ px + φ, the zero-mode p

comes with a spatial coordinate. That one changes sign when
we effectively count x → −x on the outgoing wires).

We finally note that away from the scattering points xi the
action is quadratic, implying that the field amplitudes φi(xi �=
0) can be integrated out. As a result, we obtain a standard
dissipative action

Sdiss[φ] = T

πg

4∑
i=1

∑
n

|ωn| |φi,n|2. (22)

C. Effective action

Equations (17), (21), and (B15) describe the basic con-
stituents of the problem, the scattering operators, the charge
operator, and the dissipative action in terms of the twelve fields
φi,qi , and pi . Throughout, we will assume that the charging
energy Ec = e2/C is the largest energy scale in the problem.
Focusing on smaller scales, we may assume fluctuations of
the charge Q to be strongly suppressed, which removes one
degree of freedom from the problem. Assuming Q to be locked,
eight more linear combinations of the above variables may be
integrated out without further approximation, by a procedure
detailed in Appendix B. To define the resulting effective action,
we define the new set of variables,

�0 = 1
2 (φ1 + φ2 + φ3 + φ4),

�1 = 1
2 (φ1 − φ2 + φ3 − φ4),

(23)
�2 = 1

2 (φ1 − φ2 − φ3 + φ4),

�3 = 1
2 (φ1 + φ2 − φ3 − φ4).

�3 ∝ Q couples to the Coulomb charging action and is gapped
out at energy scales lower than the charging energy, while �0

is a zero mode with free action

S̃0[�0] ≡ T

2πg

∑
n

|ωn||�0,n|2. (24)

The remaining two fields �1,2 are the nontrivial degrees of
freedom of the model and their effective action is given by

S[�1,�2] = S0[�1,�2] + Sv[�2] + Sh[�1],

S0[�1,�2] = T

2πg

∑
n

�T
n

(|ωn| −ωn

ωn |ωn|
)

�−n,

(25)

Sv[�2] = γv

∫
dτ cos(

√
2�2),

Sh[�1] = γh

∫
dτ cos(

√
2�1).

Here, γv = |γ13 + e−iπg γ24| and γh = |γ23 + γ14| are effective
scattering amplitudes characterizing the backward and forward
strength, respectively, cf. Eq. (B18). To understand the struc-
ture of this result, first notice that our problem conserves global

charge. This is equivalent to the statement that it is invariant
under a uniform static shift of all variables φi → φi + θ . Such
shifts leave the fields �1,2,3 manifestly invariant, while the
zero-mode action for �0 does not change provided θ = const.

Turning to the action of the remaining two fields �1,2

it is straightforward to verify that in the absence of Klein
factors, i.e., for c-number valued scattering coefficients tij ,
the scattering Hamiltonian (6) becomes separable once Q =
const. is frozen out. The action would then decouple into
two independent actions of fields �1,2, describing forward
(γ13,γ24) and backscattering (γ14,γ23), resp. These actions are
obtained from S, Eq. (25), if one ignores the off-diagonal terms
in the kernel of S0.

The Klein factors account for the noncommutativity of
the scattering operators. In the reduced representation, after
integration over all auxiliary fields, their heritage is the
canonical contribution to the action (the off-diagonal terms
in the matrix kernel), i.e., a term ∼ ∫

dτ �1∂τ�2 stating
noncommutativity of the forward and the backward scattering
field.

What are the commutation relations between the fields?
Usually, the commutator between two conjugate variables
[q,p] = iα is related to an action 1

α

∫
dtpq̇. Combining the

two off-diagonal elements in the action (25), this would lead
to [�1,�2] = iπg. However, this result is incorrect. As usual
in a functional integral based approach, operator commutation
relations are obtained by analyzing the effects of time ordering
in the integral, i.e., by subtracting the expressions 〈�1(±ε)�2〉
from each other. The evaluation of these terms must take the
presence of the diagonal dissipative contributions to the action
into account. We then obtain, with ε → 0+,

〈�1(ε)�2(0)〉 − 〈�1(−ε)�2(0)〉

=
∫ ∞

−∞

dω

2π
(eiωε − e−iωε)

πg

2ω

= ig

2

∫ ∞

−∞
dω

sin ω

ω
= i

πg

2
. (26)

This implies the commutation relation

[�1,�2] = i
πg

2
, (27)

which will play an important role throughout.
Before ending this section, let us comment on a point that

will play a role in the interpretation of our results below: the
effective action (25) describes the physics of the so-called
dissipative Hofstadter model introduced by Callan and Freed
[27]. Recall that the Hofstadter model describes the physics of
a rectangular lattice subject to a perpendicular magnetic field.
Describing nearest-neighbor hopping on the lattice in terms of
two operators p12 as cos(p1,2), the action of the system contains
a sum of two cos operators, where different coupling constants
may account for anisotropy. The presence of a magnetic field
implies the lack of commutativity, [px,py] �= 0, i.e., a term
∼ ∫

dτ p1∂τp2 in the action, whose coupling constant is a
measure of the field strength. Finally, dissipation may be in-
troduced by including operators ∼ ∑

n |ωn|(|p1,n|2 + |p2,n|2).
Adding everything up, we arrive at an action equivalent to (25)
(an identification pi ↔ �i understood). More specifically,
Eq. (25) describes the DHM fine tuned to a configuration
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where field and dissipation strength balance each other. What
motivated Callan and Freed to generalize the nondissipative
Hofstadter to the presence of dissipation was the expectation
that the fractal structure of its single particle spectrum might
turn into a fractal pattern of phase transitions. Their analysis
indeed confirmed that the phase plane spanned by field and
dissipation strength is covered by a fractal network of phase
transition lines separating phases of localization (cos-coupling
constants scaling to zero) from phases of delocalizatoin
(diverging cos amplitudes.) They arrived at that conclusion
within a nonperturbative analysis resting on an approximate
and an exact self-duality symmetry of the model. The above-
mentioned balancing of field and dissipation strength in our
context means that we are cutting through this pattern along
a line parameterized by the Luttinger interaction strength
g. Later on, we will confirm within an instanton approach
generalizing that of Ref. [27] that for repulsive interactions,
g � 1, we are generically in a “delocalized” sector of the phase
plane, which is another way of saying that the intermediate
scattering fixed point is approached.

IV. THE WEAK-WEAK FIXED POINT:
PERTURBATIVE ANALYSIS

In this section, we will analyze how initially small coherent
tunneling terms Sh, Sv will grow under the RG, depending on
the value of the Luttinger parameter g. To leading order in the
couplings γh and γv , only one of the fields �1 or �2 enters the
analysis, and hence we only need the correlation functions

〈�i,n�i,−n〉 = πg

2

1

|ωn| . (28)

This information allows us to work out the flow equations for
γh, γv . Decomposing the fields �i as usual into slow and fast
modes and performing a RG transformation, one sees that the
exponential of the field is renormalized by a factor

ei
√

2�i → bei
√

2�i e−T
∑

n,f 〈�i,n�i,−n〉. (29)

Here, the factor b in front of the exponential is due to the
rescaling of the integration measure dτ in the action (25), and
the

∑
f runs over fast frequencies �/b < |ωn| < �. Using the

correlation function (28), we find

T
∑
n,f

〈�i,n�i,−n〉 = πTg

2

∑
n,f

1

|ωn|

= g

2

∫ �

�/b

dω

ω
= g

2
ln b. (30)

Taking everything together, we find that the scattering op-
erators scale up with dimension 1 − g/2, the result obtained
earlier by us [11]. The reason for the deviation from KF scaling
with dimension 1 − g is that fluctuations in the incoming
and outgoing chiral are partially correlated with each other.
This is due to the fact that for energies below the charging
energy of the dot, every incoming charge fluctuation is split
equally between the two outgoing chirals, such that the amount
of independent fluctuations is effectively halved. Thus the
presence of dissipation makes the quadratic action unstable
with respect to coherent scattering even for the hypothetical
case of chiral edges with an “attractive” interaction 1 < g < 2.

The analysis described above relates to the point “1” in
close vicinity of the Gaussian fixed point with γh = 0, γv = 0,
denoted as (0,0) in Fig. 5. Due to the scaling dimension 1 −
g/2 of coherent tunneling terms, the Gaussian fixed point (0,0)
(WWFP) is unstable in the physical regime of g � 1. We want
to emphasize that the variables γh, γv are not conductances for
tunneling in horizontal or vertical direction, but are instead the
tunneling amplitudes, which act as mass terms for the fields
�1 and �2 in the regime of strong coupling.

V. THE WEAK-STRONG FIXED POINT (WSFP): PHASE
SLIP-INSTANTON MECHANISM

We now want to assume that one of the two tunnel couplings
is much larger than the other one, say � ≡ γv � γ ≡ γh. To
heuristically understand what is happening in this limit, let us
temporarily go back to a Hamiltonian description in which we
have two tunneling operators

� cos(
√

2�2), γ cos(
√

2�1),

where the phase operators obey the commutation re-
lations [�1,�2] = igπ/2. To leading order in γ , the
interaction-picture time evolution of the exponential
exp ( − � cos(

√
2�2)) under the action of the perturbing

operator ∝γ is governed by the commutators of the type
[γ cos(

√
2�1), exp ( − � cos(

√
2�2))]. The noncommutativ-

ity of �1 and �2 implies that the exponential of �1 acts as a
translation operator for �2 by an amount gπ . How does the
system respond to such a translation? A naive and incorrect
argument suggests that such a phase flip by π (in the case
g = 1) of

√
2�2 will cost a large amount of energy due to the

large magnitude of �, hence it should be accompanied by a
second, almost immediate instanton that will add up −π or
+π to the first one, taking the field configuration of �2 back
to a minimum. This argument suggests that the lowest terms
effectively contributing to the perturbation expansion will be
of order γ 2. The less naive and correct heuristic argument takes
into account that the argument of cos(

√
2�2) contains finite

k modes besides the zero-modes generating the commutation
relations of �2 relative to �1. For this reason, the original phase
change by gπ due to the Klein factors can be compensated by
a kink in the finite momentum part of �2. This secondary
kink enables the field �2 to settle back into an energetically
favorable configuration without the help of another tunneling
event, but it does cost a finite amount of dissipative action.
The more quantitative analysis to be detailed momentarily
shows that the primary effect of the added action contribution
is a change of the scaling dimension of γ to 1 − g, which
should be compared to the dimension 1 − g/2 characterizing
the weak-weak fixed point discussed in the previous section.

On a more formal level, we will will apply an instanton
analysis in �2. The complementary operator introduced
within the duality transformation is assumed to be pertur-
batively weak. The instanton approach assumes that the
relevant field configurations are rare phase slips φ2 = 1√

2
(2l +

1)π → 1√
2
(2(l ± 1) + 1)π between 2π -consecutive minima

of cos
√

2�2. Assuming that these events occur at times τi , the
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phase profile is best described by its time derivative

∂τ�2 =
N∑

i=1

√
2πsiδ(τ − τi) ,

(31)

iωn�2,n =
N∑

i=1

√
2πsie

−iωnτi ,

where δ is a broadened δ function, and si = ±1 denote
the direction (the charge) of the phase slip. To facilitate
the evaluation of the instanton functional integral, we use a
Hubbard-Stratonovich with a field �n to partially decouple
the quadratic term |ωn|�2,n�2,−n according to

T
∑

n

(
1

2πg
�i,n�i,−n|ωn| + 1

πg
�1,n�2,−nωn

)
→

→ T
∑

n

(
1

πg
�1,n�1,−n|ωn| + πg

2
�n�−n|ωn|

+�n�1,−n|ωn| − �n�2,−nωn

)
. (32)

Doing the Gaussian integral over �, one gets from the second
to the first line. We note that � and �2 are a canonical pair.
Denoting the instanton action by Si , the functional integral
now becomes

Z =
∫

D�1D�e−S0[�,�1]−Sγ [�1]

×
∑
N

1

N !

∑
{si }

∫ ∏
dτie

−NSi ei
√

2π
∑N

i=1 siT
∑

n �ne
iωnτi

=
∫

D�1D�e−S0[�,�1]+e−Si
∫

dτ cos(
√

2π�)−Sγ [�1]. (33)

Here, Sγ [�1] = γ
∫

dτ cos(
√

2�1), and

S0[�,�1] = T
∑

n

(
1

πg
�1,n�1,−n|ωn|

+πg

2
�n�−n|ωn| + �n�1,−n|ωn|

)

= T

2

∑
n

(�1,n,�n)

( 2
πg

1
1 πg

)
|ωn|

(
�1,−n

�−n

)
. (34)

We are now in a position to explore scaling dimensions. Due to
the assumed weakness of both exp(−Si) and γ , we can treat the
two operators independently of each other. The basic formula
we use is that for a field φ with correlation 〈φnφ−n〉 = κ

T |ωn| ,
we have

eicφ → eicφb1− κc2

2π

in an RG step. In our particular case, 〈XnX−n〉 = 1
T |ωn|M

−1,
where M is the matrix controlling the free action:

〈�1,n�1,−n〉 = 1

T |ωn|πg ⇒ κ = πg,c =
√

2,

(35)

〈�n�−n〉 = 1

T |ωn|
2

πg
⇒ κ = 2

πg
,c =

√
2π.

4

FIG. 6. (Color online) Description of the RG flow in terms of
masses γh and γv , which denote the strength of elating tunneling in
horizontal and vertical direction, respectively. Near the RG-unstable
weak-weak fixed point 1, there are perturbative corrections to the
Gaussian (1/2,1/2) conductance in both γh and γv , which grow under
the RG. In the vicinity of the weak-strong fixed point 2, instantons
in the strong scattering term γv are irrelevant, constituting a stable
direction in parameter space, while the weak scattering amplitude
γh grows under the RG and thus constitutes an unstable direction.
The conductance is close to unity in the vertical direction, and
perturbatively small in the horizontal direction. In the vicinity of the
strong-strong fixed point 3, both vertical and horizontal tunnelings
are strong, with RG irrelevant instanton corrections. The conductance
is (1/2,1/2), and the fixed point is stable under RG scaling.

We then find that the two coupling constants scale as

e−Si → e−Si b
1− 2

g , γ → γ b1−g. (36)

Thus, in the regime g < 1, the weak coupling γ is a relevant
perturbation, while the exponential of the instant on action
scales to zero, indicating that instantons in the strongly coupled
scattering channel are irrelevant. The weak-strong FP has an
unstable direction corresponding to the growth of the “weak”
scattering channel, while the irrelevance of instantons in the
“strong” channel indicates that the channel stays at strong
coupling. This situation corresponds to point “2” (and similarly
to point “4”) in the phase diagram Fig. 6.

VI. THE STRONG-STRONG FIXED POINT (SSFP):
INSTANTON ANALYSIS

We now want to discuss the situation when both the vertical
and horizontal tunneling terms are strong, such that none can
be discussed perturbatively anymore. In the ground state of the
system both fields �1 and �2 then occupy one of the minima
of the cos-terms, and elementary excitations above the ground
state are jumps from one such minimum to the neighboring
minimum, see Fig. 7. In this way, the field configurations
move on a lattice of ground states, which are connected by
instantons (jumps) in the fields. The scaling dimension for
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FIG. 7. Square lattice for instantons in the (�1,�2) fields. Jumps
in the horizontal and vertical directions have equal length, and
instantons in diagonal direction are less relevant than horizontal and
vertical ones.

such a jump can be obtained by computing the action for the
instanton due to the quadratic dissipative term in the fields, as
described in the section above. In this way, we establish that
the strong-strong fixed point (SSFP, denoted by the point 3 in
Fig. 5) is indeed stable. In the following, we will present a
more formal derivation of this result.

If both γv,h > 0 are strong, we may subject the problem
to an instanton duality mapping. In this regime, the relevant
excitations are rare phase slips �i = (2li + 1)π → (2(li ±
1) + 1)π between consecutive minima of the cos potentials.
Assuming these events to occur at times τi,a , the phase profiles
are best described by their time derivative,

∂τ�i =
Ni∑

a=1

2πsi,aδ(τ − τi,a),

(37)

iωn�i,n =
Ni∑

a=1

2πsi,ae
−iωnτi,a ,

where δ is a broadened δ function, and si,a = ±1 denote
the direction (the charge) of the phase slip. To facilitate the
evaluation of the instanton functional integral we Hubbard-
Stratonovich decouple the quadratic dependence in ∂τ�i

or iωn�i,n. Writing the free Gaussian action as S0[�] =
T
2

∑
n �T

n ωnX
−1
n �−n, where the matrix X is defined through

Eq. (25) as Xn = πg(sgn(n) 1
−1 sgn(n)). We complete the square in

terms of a dual integration variable � as

S0[�] → S0[�,�]

≡ T

2

∑
n

�nωnXn�−n + T
∑

n

�T
n ωn�−n. (38)

The second term tells us that � and � are canonical variables.
We denote the instanton actions as Si,i and, keeping in

mind their exponential smallness in the coupling constants,

γv,h, write down a double expansion:

Z =
∫

D�e− T
2

∑
n �nωnXn�−n

∑
Ni

1

N1!N2!

×
∑
{si,a}

∫ ∏
dτi,a e− ∑

i (NiSi,i+i2π
∑

a si,aT
∑

n eiωnτi,a �i,n)

=
∫

D�e
− T

2(2π)2

∑
n �nωnXn�−n−

∑
i e−Si ,i

∫
dτ cos(�i )

. (39)

In the last step, we scaled � by a factor π for convenience.
Substituting the form of the X matrix, we arrive at an action

S[�] = T

2

g

4π

∑
n

�T
n

( |ωn| ωn

−ωn |ωn|
)

�−n

+
∑

i

e−Si,i

∫
dτ cos(�i). (40)

dual to (25). The differences are in the coupling constants:
g → 2/g and γv/h → e−Si,2/1. This means that for very large
and nearly equal coupling constants γi , the coupling constants
of the dual theory can be renormalized by first-order RG
analysis where the reasoning of the foregoing section obtains
the scaling

e−Si,i → e−Si,i b
1− 1

g . (41)

At first sight, this result looks surprising: for g < 1, the
instanton insertions are irrelevant, and the system flows to
strong coupling, while for 1 < g < 2, the instanton operators
are relevant, and the weak potential perturbation addressed
in the previous section is also relevant. This suggests the
existence of an intermediate fixed point. Finally, for g = 1,
the instanton operators are marginal, a situation which seems
inconclusive at first.

In order to clarify this situation in more depth, we follow
Callan and Freed [27] and generalize the matrix Xn as

X−1
n → 1

2π

(
α sgn(n) β

−β α sgn(n)

)
, (42)

i.e., we allow for independent coefficients of dissipation (α)
and canonical term (β). Our current situation is recovered
by setting α = β = 1

g
. With this generalization, we have

〈�i,n�i,−n〉 = 2π
T

1
|ωn|

α
α2+β2 , and the perturbative scaling di-

mension becomes 1 − α
α2+β2 . This tells us that the weak

scattering operators are relevant if α < α2 + β2. Defining
z = α + iβ, we realize that z must lie outside a circle in the
complex plane centered around (1/2,0) and with radius 1/2
(cf. Fig. 8). In our case, we are sitting on a line z = 1

g
(1 + i),

and for g < 2 we are outside that circle, i.e., we are dealing
with relevant operators. We note that for β = 1, the condition
collapses to g < 1, corresponding to the standard KF case.

In the dual case, we have the same situation, only that

X−1
n gets replaced by X−1

n → 2π
α2+β2 (α sgn(n) −β

β α sgn(n)). Defining

z̃ = α
α2+β2 − i

β

α2+β2 , we realize that the instanton duality

amounts to a mapping z → z̃ = z−1. The instanton operators
are irrelevant, provided z̃ lies inside the circle above. In our
present setting, this requires that 1/(g−1(1 + i) = g

2 (1 − i) lie
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FIG. 8. (Color online) Relevancy of perturbations as a function
of the two parameters α,β defined in the text. The white disk/shaded
area is the region of the phase diagram where scattering terms are
irrelevant/relevant. At the weak coupling fixed point, α = β = g−1

and the region of relevant perturbation (shaded) is reached as g ↘ 2
(line departing from origin corresponding to lowering g). At strong
coupling, α = −β = g/2 and the region of irrelevant perturbation
(circle) is reached for g ↘ 1 (on the line β = −α). The line β =
0 corresponds to the KF model, where perturbations around weak
coupling become relevant at g = 1. This means that for repulsive
lead interactions, g < 1, perturbations at weak (strong) coupling are
relevant (irrelevant) implying the stability of the stability of the strong
coupling fixed point.

inside the circle. For g < 1 this is the case. In the hypothetical
case of attractive lead interactions, g > 1 we are outside and
the instanton operators are relevant, while the weak scattering
operators are also relevant.

For g = 1, we are borderline. We note that backscattering is
a relevant perturbation in the weak-weak limit—with a scaling
dimension of the backscattering probability equal one. This is
in line with reference [28] (cf. Eq. (346) with Nch = 2, see
also Ref. [10]). In the strong-weak and in the strong-strong
limits, the flow of the backscattering probability is marginal.
This is indeed verified in the next section (cf. also Fig. 10).
For this behavior to hold, we have utilized in our analysis
the instantaneous character of backscattering. Reference [28]
allows for more general scenarios which may lead to truncation
of the scaling flows [cf. Eq. (348) there].

In the next section, we treat the model for the specific
value g = 1 of the Luttinger parameter by using the method of
fermionization, and find agreement with the scenario discussed
here. Even if we consider noninteracting leads, yet, there is
still interaction in the model: the electrostatic charging energy,
which couples the four chirals among each other. It is clear
from the scaling obtained above that the flows in the vicinity
of both the WSFP/SWFP and the SSFP are marginal. This
nicely reproduces the expectation that for Fermi liquid leads,
scattering should be marginal in the low-energy limit, and
that arbitrary ratios between forward and backward scattering
strength can be realized.

VII. GENERAL COMMENTS ON THE ANALYSIS

We would like to discuss some subtleties of the anal-
ysis presented above: (i) We assume a cutoff (voltage or
temperature), which may be small, yet larger than the level
spacing � of the QD (which for a typical quantum Hall
geometry may be exceedingly small). Had we pursued the
RG all the way down to �, the character of the model
would have changed: there are no inelastic excitations then,
hence the inelastic channel is frozen. In that case, in the
presence of only elastic scattering, we are driven to either
full transmission or full reflection, in agreement with the
Kane-Fisher result. In the present analysis, we formally take
the limit of an infinite QD, before pursuing our RG procedure
all the way down to zero temperature or zero voltage. (ii) In
the absence of forward scattering channels (γ14 = γ23 = 0),
our model and the results obtained for its scaling reduce to
those considered by Furusaki and Matveev. (iii) Except for
the highly degenerate points of perfect scattering amplitude
cancellation γ13 + e−iπgγ24 = 0 or γ23 + γ14 = 0, our analysis
holds regardless of scattering phase shifts and strengths (at
the degenerate point, the model collapses to a variant of
the Kane-Fisher problem). However, these points require fine
tuning and are nongeneric. The specific conditions for perfect
scattering amplitude cancellations are related to the choice of
the Aharonov-Bohm phase enclosed by the the corresponding
tunneling path. Here we have followed special choice, that
of a zero Aharonov-Bohm flux. We note that OCA Ref. [26]
(in their three lead geometry) have allowed the freedom of
choosing the Aharonov-Bohm flux. (iv) An extension of our
analysis from FQHE to interacting Luttinger wires is presented
in Appendix.

VIII. REFERMIONIZATION FOR THE CASE g = 1

We consider a special model, where there are only two
nonzero scattering amplitudes γ14 ≡ γh and γ24 ≡ γv , see
Fig. 9, and where the leads are noninteracting. The model
has an intereting dynamics all the same, since at low energies

γ
h

γv

FIG. 9. (Color online) Setup with two competing scattering am-
plitudes γ14 ≡ γh and γ24 ≡ γv . We consider the special case of
noninteracting leads g = 1, and denote the probability for elastic
scattering from segment 1 to segment 4 by P14, and the probability
for elastic scattering from segment 2 to segment 4 by P24.
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the mode �3 describing charge fluctuations in the quantum
dot is already frozen. In this limit, the tunneling amplitudes
γh and γv are both relevant perturbations. Using a mapping
onto noninteracting fermions, we derive an exact solution
of the model, which describes the competition between the
competing scattering processes γh and γv . We find that at high
temperatures and small γh and γv , both γh and γv increase
∝ T −1/2, in agreement with a weak coupling perturbative RG
in Sec. IV. The asymptotic value for T → 0 is nonuniversal
and depends on the ratio of initial values of γh and γv . This
finding complements the results of Secs. V and VI, where it
was found that noninteracting leads with g = 1 separate two
different regimes of RG flow.

The starting point for our discussion are the tunneling terms
and the dissipative term in Eq. (25). Due to the off-diagonal
terms in S0, the fields �1 and �2 satisfy the commutation
relation [�1,�2] = iπ

g

2 . In this Appendix, we specialise to
noninteracting leads with g = 1. Due to the presence of
the charging energy on the dot, the diagonal entries of S0

describing dissipative processes are given by |ωn|/2π . We
compare this value with the dissipative action |ωn|/4πν for the
charge density field describing backscattering of quasiparticles
(in the absence of a QD) between two counterpropagating
fractional quantum Hall edges with Luttinger parameter ν.
We find that noninteracting leads with a QD charging energy
have a dissipative action equivalent to that of interacting
ν = 1/2 LL edges in the absence of a QD. The special
case of backscattering between ν = 1/2 LL edge states is
can be solved exactly by the method of refermionization
[29], which we will adapt to our problem of two competing
scattering processes in the following. In order to achieve
this goal, we undo the shift Eq. (B17), such that in the
following the fields �1 and �2 contain finite frequency
modes only. The noncommutativity between the fields is
now described by Majorana operators η1, η3, and η4 with
{ηi,ηj } = 2δij . Switching to a Hamiltonian formalism suitable
for refermionization, the tunneling Hamiltonian is given by

Htun = iη1η4γh[ei
√

2�1(0) + e−i
√

2�1(0)]

+ iη2η4γv[ei
√

2�2(0) + e−i
√

2�2(0)]. (43)

Here, we have absorbed a factor 1/2 into the tunneling
amplitudes γh and γv as compared to Eq. (25). Taking into
account that the dissipative actions of �1,�2 are equal to that
of an infinite chiral Luttinger liquid, the operators ei

√
2�1/2 can

be interpreted as the operator �1/2 of free chiral electrons.
However, to make this equivalence more precise, we need to
introduce Majorana fermions f1/2 as a Klein factor for the new
electrons [29], and define

ei
√

2�1/2(0) =
√

2πa �1/2(0) f1/2. (44)

Here, a denotes the short distance cutoff of the theory, which
is needed to make sure that the fermion fields �1/2 have the
proper dimension of one over square root of length. In this
way, we obtain the fermionized tunnel Hamiltonian

Htun = iη2η4γv

√
2πa[�2(0) f2 + f2 �

†
2(0)]

+iη1η4γh

√
2πa[�1(0) f1 + f1 �

†
1(0)]. (45)

In addition, the fermions have a kinetic term (the velocity is
taken to be unity)

H0 =
∫

dx[�†
1(x)(−i∂x)�1(x) + �

†
2(x)(−i∂x)�2(x)].

(46)

Since the leads are noninteracting, we can discuss transport
through the QD in terms of a scattering formalism. For an
incoming particle on edge 1, we define the probability P14

to scatter onto the outgoing edge mode 4. Similarly, for an
incoming particle on edge 2, we denote the probability to
scatter onto the outgoing edge mode 4 by P24. Then, in
Appendix D, we derive the result

P14 = �h

�
F

(
T

�

)
, (47a)

P24 = �v

�
F

(
T

�

)
, (47b)

with

�h = 4πaγ 2
h , �v = 4πaγ 2

v , � = �h + �v, (48)

and

F (x) = 2

x
arctan

x

2
. (49)

The scaling function has the limiting behaviors F (x) =
1 − 1

3 (x/2)2 for small x, and F (x) = 2
x

for large x. Using
these asymptotics, we find

P14 =
{

2�h

T
for T � �

�h

�
for T

�
→ 0

, (50)

and similarly for P24, with �h and �v interchanged. In the
high-temperature limit, this result agrees with the perturbative
analysis presented in Sec. IV. Since P14 ∝ γ 2

h in the high-
temperature limit, the flow of P14 is representativ for the flow
of the tunneling amplitude γh, and similarly for P24 and γv .
The flow of P14 and P24 is shown in Fig. 10. For weak bare
values of γh, γv with �h/T � 1, �v/T � 1, the flow starts
in the vicinity of the unstable weak-weak fixed point. In terms
of the variables P14 and P24, the flow occurs along straight
line trajectories, which stop at the line of fixed points defined
by P14 + P24 = 1. The end point of the flow on this fixed
line is determined by the ratio of initial couplings γh/γv . In
particular, in the weak-strong limit with, say, γv � γh, the flow
is truncated at a temperature T ≈ �v , and the weak coupling
γh is marginal. This situation is intermediate between the case
g > 1, where the weak coupling is irrelevant, and the case
g < 1, where the weak coupling is relevant. Thus the exact
solution for the case of noninteracting leads with g = 1 is
in full agreement with the perturbative analysis presented in
Sec. V. We find that for g = 1 there is no strong-strong fixed
point, which again is in agreement with the analysis in Sec. VI,
in which it was found that g = 1 separates the case of a stable
strong-strong fixed point for repulsive lead interactions with
g < 1 from the case of an unstable strong-strong fixed point
for g > 1.
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P14

P24
1

10

0

FIG. 10. (Color online) Description of the RG flow in terms of
scattering probabilities P14 and P24, which in the weak coupling
limit are proportional to the square of tunneling amplitudes γ 2

h and
γ 2

v , respectively. Near the RG-unstable weak-weak fixed point (red
circle), there are perturbative corrections to the Gaussian (1/2,1/2)
conductance in both γh and γv , which grow under the RG. The
RG flow terminates on a line of fixed points (red line), which are
characterized by scattering probabilities and a conductance which
depend on the ratio γv/γh of bare scattering amplitudes.

IX. SUMMARY

In summary, we have considered a model of scattering
between one-dimensional chiral leads in the presence of both
inelastic and elastic scattering channels. We have found that
this combination of scattering can stabilize a new 1

2 - 1
2 fixed

point, with probability 1/2 for the transmission and probability
1/2 for the reflection of an incoming particle. This 1

2 - 1
2 fixed

point is intermediate between the 1 - 0 and 0 - 1 fixed points
in the presence of only elastic scattering channels. In order
to establish the existence of this fixed point, we employed a
nonperturbative instanton analysis in either one or both of the
scattering channels. Our main result is that the intermediate
fixed point is stable for Luttinger parameters g < 1 in the leads.
This conclusion is backed up by a refermionization analysis
for the special value g = 1. For noninteracting fermions with
g = 1, we recover the well-known marginal relevance of
scattering.

In general, even the cases with large γv (or large γh) that
resemble the KF flow, are not identical to the KF model
given the fact that there is an additional inelastic term in the
Hamiltonian. This can be seen from the action (34) in Sec. V,
where the prefactor of the dissipative term is twice that of
KF due to the extra dissipation in our model. The fact that we
recover the KF scaling is only due to the coupling to instantons
in the field with the strong elastic term. We note that in those
cases the stable fixed point one flows into, namely, point 3 in
Fig. 6, differs from the KF stable fixed point by the presence
of an extra dissipative channel. In short, our starting point is
different from that of KF, even if certain parts of our RG flow
diagram give rise to a scaling which is identical to that of KF.

While this 1/2 − 1/2 fixed point is the main result of
the present analysis, we recall that our previous paper [11]
pointed out novel results concerning noise and current-current
correlations. One possible realization of our inelastic puddle is
to define some region of a quantum Hall strip at a compressible
filling factor. That may be achieved with (inter alia) low density
filling fractions. The latter have been shown to be achievable in
the experiments of Rodarro et al. [30]. A conductance plateau
at 1/2, which is predicted for the stable fixed point discussed
in this manuscript, has been observed by Nakaharai et al. [31].
Thus the experiment [31] on inhomogeneous n-type and p-
type graphene may be a manifestation of our model, although
further quantitative studies of that system are needed. The
experimentally obtained transmission coefficients scale (with
temperature) towards intermediate values, a phenomenon that
has been interpreted as plateaux formation in the original
paper. This is consistent with the simultaneous relevance of all
scattering channels and the ensuing equilibration of transport
coefficients found in our paper, although for g = 1 we do not
predict the termination of the flow at a universal (1/2,1/2)
beam splitter configuration. While the present paper focuses
on dc conductance, we recall that our theory provides smoking
gun predictions vis a vis shot noise in such systems [11].
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APPENDIX A: PROOF OF EQ. (16)

As usual, the path integral fixes operator ordering through
time order. Consider, for example, two quasiparticle operators:

�i(τ + δτ )�j (τ ) → ei( π
2

∑
i′ αii′ pi′ (τ+δτ )−qi (τ+δτ ))

× ei( π
2

∑
j ′ αjj ′pj ′ (τ )−qj (τ ))

× ψ̃i(τ + δτ )ψ̃i(τ ). (A1)

The expression we want to compare with looks the same,
except for an exchange of time arguments (τ − δτ ) ↔ τ . Now,
imagine this expression inserted in the functional integral.
We may always integrate over {qi}, as these fields enter the
action linearly (assuming a perturbative approach, where all
�k are expanded out of the exponent). Integration over the q ′s
generates the step function profiles

pk(τ ) = pk,0 + g
∑

a

sa�(τ − τa),

where pk,0 is the initial value, the sum runs over all appearances
of qk in the exponents, τa are the respective times, and sa = 1
for a −iq and −1 for a +iq factor. Now, with these structures
in place, we can explore the behavior of the exponent above.
Denoting by �̃ij the cumulative phase which will not respond
to an exchange of the time arguments, we have

�i(τ + δτ )�j (τ ) → ei�̃ij +i
πg

2 αij ,

�i(τ )�j (τ + δτ ) → ei�̃ij +i
πg

2 αji ,
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where the phase in the first line reflects the fact that at time τ

pj jumped by g/
√

2 and this phase change is read out by the
contribution αijpj (τ + δτ ) to the first phase. Similarly for the
second line. The relative phase is given by

ei
πg

2 (αij −αji ) = eiπgαij ,

as required.

APPENDIX B: DERIVATION OF THE EFFECTIVE
ACTION (25)

In this section, we derive the effective three-variable action
(25) from the original description in terms of twelve fields,
φi,qi,pi . We start by casting the orthogonal transformation
(23) into the more compact notation

� = Mφ, M = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

⎞
⎟⎠.

This transformation is orthogonal, MT = M−1, and thus the
inverse transformation is given by φ = M−1� = MT �. For
the zero modes, this allows to define p = M−1P and q =
M−1Q as above to obtain

Q = −2P0 −
√

2

π
�3. (B1)

Then, the zero-mode part of the scattering operators assumes
the form

�̄3�1 = ei(−Q2−Q3)ei π
2 (−P1+3P0)ψ̄3ψ1e

−i π
2 g,

�̄4�2 = ei(+Q2−Q3)ei π
2 (+P1−P0)ψ̄4ψ2e

i π
2 g,

(B2)
�̄3�2 = ei(+Q1−Q3)ei π

2 (−P2+P0)ψ̄3ψ2e
−i π

2 g,

�̄4�1 = ei(−Q1−Q3)ei π
2 (+P2+P0)ψ̄4ψ1e

−i π
2 g.

The transformation (q,p) → (MQ,MP ) is orthogonal, which
means that the canonical piece of the action remains unaltered,
as

i

g

∫
dτPidτQi. (B3)

In principle, there is also the zero-mode charging term H ∼∑
i P

2
i to consider, however, it does not play any role due to

the prefactor of inverse contour length, which becomes zero
in the thermodynamic limit.

We note that the scattering terms do not couple to Q0.
This means that we may do the integral over Q0 to conclude
that dtP0 = const.: the total charge on the system is constant.
Without loss of generality, we may call this constant 0. Our
scattering terms thus simplify to

�̄3�1 = ei(−Q2−Q3)e−i π
2 P1ψ̄3ψ1e

−i π
2 g,

�̄4�2 = ei(+Q2−Q3)e+i π
2 P1ψ̄4ψ2e

i π
2 g,

(B4)
�̄3�2 = ei(+Q1−Q3)e−i π

2 P2ψ̄3ψ2e
−i π

2 g,

�̄4�1 = ei(−Q1−Q3)e+i π
2 P2ψ̄4ψ1e

−i π
2 g.

Next, ignoring the overall charging term, we observe that P3

does not appear in the scattering operators, nor in the dot

charging term. This leads to the constraint dtQ3 = 0, and we
may set Q3 = 0 without loss of generality. As a result, we have
the further simplification, down to

�̄3�1 = e−iQ2e−i π
2 P1ψ̄3ψ1e

−i π
2 g, (B5a)

�̄4�2 = e+iQ2e+i π
2 P1ψ̄4ψ2e

i π
2 g, (B5b)

�̄3�2 = e+iQ1e−i π
2 P2ψ̄3ψ2e

−i π
2 g, (B5c)

�̄4�1 = e−iQ1e+i π
2 P2ψ̄4ψ1e

−i π
2 g. (B5d)

We note that the zero-mode sectors of the scattering
operators in Eqs. (B5a), (B5b) and Eqs. (B5c), (B5d) now
pairwise commute among themselves. However, those in
Eqs. (B5a), (B5b) and Eqs. (B5c), (B5d) do not commute.
This structure suggests a further simplification: from the
commutation relation

[Qi,Pj ] = giδij (B6)

we compute [
Q2 + π

2
P1,Q1 − π

2
P2

]
= −igπ. (B7)

Now this relation motivates the canonical transformation

X = Q2√
π

+
√

π

2
P1, Y = − Q1√

π
+

√
π

2
P2,

(B8)

X′ = Q1√
π

+
√

π

2
P2, Y ′ = − Q2√

π
+

√
π

2
P1.

The new variables obey the relations [X,Y ] = ig and the same
for X′,Y ′. The primed and unprimed variables are mutually
commutative. All this means that the canonical piece of the
action remains invariant. In particular, we have a contribution

S[X,Y ] = i

g

∫
dτ YdtX. (B9)

The scattering operators assume the form

�̄3�1 = e−i
√

πXψ̄3ψ1e
−i π

2 g,

�̄4�2 = ei
√

πXψ̄4ψ2e
i π

2 g,
(B10)

�̄3�2 = e−i
√

πY ψ̄3ψ2e
−i π

2 g,

�̄4�1 = ei
√

πY ψ̄4ψ1e
−i π

2 g,

which means that we do not need the variables X′,Y ′, and do
not consider them in the following.

Using the canonical representation (23) and assuming
locking of the charge mode we have

�̄3�1 ∼ ei(−√
πX+√

2�2),
(B11)

�̄3�2 ∼ ei(−√
πY−√

2�1),

where we have absorbed the exp(±i
√

π/2g) factors in the
scattering phases γ13 and γ23.
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The structure of the scattering operators suggests a shift

�2 → �2 +
√

π

2
X,

(B12)

�1 → �1 −
√

π

2
Y,

whereupon the scattering operators simplify to

�̄3�1 ∼ ei
√

2�2 ,
(B13)

�̄3�2 ∼ e−i
√

2�1 .

As a result of this shift, the fields �1 and �2 no longer commute
with each other, and we have

[�2,�1] = ig
π

2
. (B14)

Now we are in a position to express the local effective
action in terms of variables which allow an efficient analysis
of the competing scattering processes. The dissipative part of
the action, obtained by integrating out the finite wave vector
modes of the bosonic fields, is given by

Sdiss[�] = T

πg

2∑
i=0

∑
n

|ωn| |�i,n|2, (B15)

where �i,n denotes the nth Matsubara component of the field
�i . The sum runs only up to i = 2, on account of the locking
of the field �3. The i = 0 contribution to the sum defines
the zero-mode action (24), and will be ignored throughout.
Introducing the shorthand notation

� = (�1,�2)T , � = (X,Y )T , (B16)

the quadratic part of the action then assumes the form

S0[X,�] = T

πg

∑
n

�T
n �−n|ωn| − T

g

2

π

∑
n

�T
n σ3�−n|ωn|

+ T

2g

∑
n

�T
n

( |ωn| ωn

−ωn |ωn|
)

�−n. (B17)

The coupling between � and � makes sure that the commuta-
tion relation Eq. (B14) is reproduced in correlation functions
of the �i . Since the vector variable � no longer appears in the
scattering part of the action, it can be integrated out. Doing the
Gaussian integral, we obtain the action S0[�1,�2] as given in
Eq. (25).

We finally note that the two “vertical” scattering operators
∼�̄3�1/�̄4�2 (and similarly for the horizontals) may couple
at arbitrary strength/scattering phase. This leads us to S[�] =
S0[�1,�2] + Sv[�2] + Sh[�1], where the scattering action
reads [cf. Eq. (19)]

Sv[�2] =
∑

x=13,24

∫
dτ |γx| cos(

√
2�2 + φx),

(B18)

Sh[�1] =
∑

x=14,23

∫
dτ |γx| cos(

√
2�1 + φx).

Here, the phases φij absorb the phase of the complex scattering
amplitudes γij , the phases exp(iπg/2) appearing in (B17), and

the relative sign change of the field variables in 13 versus 24
[cf. Eq. (B10)].

Without loss of generality, we can use an addition theorem
for trigonometric functions followed by a constant shift of
the fields �1 and �2 to transform the scattering actions into
the form given in Eq. (25), with γv = |γ13 + e−iπg γ24| and
γh = |γ23 + γ14|.

APPENDIX C: NONCHIRAL LUTTINGER LIQUIDS

Throughout the analysis presented in this paper, we have
assumed a setup consisting of a quantum dot connected to
four chiral wires, which are geometrically separated from
each other. These chiral wires talk to each other through the
tunneling to the QD (and the charging interaction thereon),
and through elastic tunneling terms between the incoming
and the outgoing channels. Such channels can be realized,
for example, as the edges of a fractional quantum Hall strip;
the most relevant tunneling operators are those of fractionally
charged quasiparticles (the latter possess fractional statistics
as well), and we have assumed that such tunneling terms
are allowed. While intra(chiral)channel interaction is allowed,
interchannels interaction is excluded.

When it comes to realizing our theory with nonchiral
Luttinger liquid wires, the situation is trickier. There are
two main issues that should be noted. First, throughout our
analysis, we have assumed that forward and backward (elastic)
scattering are treated on equal footing. There is no concrete
significance associated with forward or backward. When it
comes to nonchiral Luttinger wires, unless special conditions
are specified, forward (elastic) scattering is irrelevant, and is
clearly distinct from backward scattering. Second, as was
noted above, in the case of chiral edges supported by an
incompressible fractional quantum Hall electron gas, it is clear
that tunneling of quasiparticles is allowed. The situation with
nonchiral Luttinger wires is different, however. In the analysis
depicted below we allow only for electron tunneling; in
general the results of the ensuing analysis will be qualitatively
different. However, for a specific choice of the interaction
[compare Eq. (C10)], our beam splitter can be realized using
nonchiral Luttinger liquid wires.

Let us briefly review these two types of processes. We
briefly repeat the analysis of Ref. [32]. Consider the Luttinger
liquid Hamiltonian

H = v

2π
[K(∂xφ)2 + K−1(∂xθ )2], (C1)

where the bosonic fields satisfy a Kac-Moody algebra

[φ(x),θ (x ′)] = iπ

2
sgn(x − x ′). (C2)

Here, K is the Luttinger liquid interaction parameter. One
can define left and right moving chiral fields, �R/L =
φ ± θ , and respective electronic field operators ψR/L =
e±ikF xei�R/L , with commutation relations [�R(x),�R(x ′)] =
−[�L(x),�L(x ′)] = iπsgn(x − x ′). In terms of these chrial
modes, the Hamiltonian reads

H = πv0
[
ρ2

R + ρ2
L + 2λρRρL

]
, (C3)
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x x1 2

FIG. 11. (Color online) It is not possible to realize a beam splitter
with two standard nonchiral LLs because backscattering between
left- and right-moving electrons in the same LL (short blue lines) is
relevant, whereas forward scattering across the dot (dashed red lines)
is irrelevant. The part of the wires inside the dashed box constitutes
the quantum dot with a nonlocal charging interaction.

with an inter-channel interaction (between the two chiral
modes). Here,

ρR/L(x) = ± 1

2π
∂x�R/L. (C4)

One can define other modes, ϕR/L = Kφ ± θ , in terms of
which the Hamiltonian decouples into “left” and “right”
sectors. These new modes have commutation relations
[ϕR(x),ϕR(x ′)] = −[ϕL(x),ϕL(x ′)] = iπK sgn(x − x ′). The
operators eiϕR/L are field operators of chiral quasiparticles
that carry charge Ke. However, experimentally realizable
tunneling processes can only involve electrons, and in the
following, we will discuss the RG relevance of such processes.

1. Interactions within one LL only

A sketch of a possible realization is shown in Fig. 11. It is
well known that that a local potential (or, in the microscopic
model, a weak bond) gives rise to backscattering and is a
relevant perturbation in the RG sense. More problematic is the
microscopic realization of an RG-relevant forward scattering
term, which coherently transfers electrons across the quantum
dot (dashed red lines in Fig. 1). In order to compute the scaling
dimension of such a forward scattering term, we describe the
LL by chiral bosonic eigenstates ϕ± with imaginary time action

SL/R = u

4πK

∫
dxdτ ∂xϕR/L(±i∂τ + ∂x)ϕR/L. (C5)

Here, u denotes the renormalized velocity, K the LL parameter,
and the smooth part of the total electron density is given by
ρ(x) = 1

2π
(∂xϕR + ∂xϕL). In this basis, right and left moving

electrons (i.e., electronic states at the left and right Fermi point
of the noninteracting system) have the bosonized form

ψR/L(x) = 1√
2πa

ei[K±ϕR (x)−K∓ϕL(x)], (C6)

with K± = (K−1 ± 1)/2. Thus a local backscattering operator
is given by

Ô(x1) = ψ
†
R(x1)ψL(x1)

= 1

2πa
ei(K+−K−)[ϕR(x1)+ϕL(x1)]. (C7)

Using K+ − K1 = 1, we reproduce the well known result
that the correlation function 〈Ôback(t)Ôback(0)〉 ∼ t−2K , which

makes backscattering a relevant perturbation for a repulsive
interaction with K < 1. On the other hand, a forward scattering
term involves electron operators at two different spatial
positions:

Ôf(x1,x2) = ψ
†
R(x2)ψR(x1)

= 1

2πa
eiK+[ϕR(x1)−ϕR(x2)]−iK−[ϕL(x1)−ϕL(x2)]. (C8)

Since positions x1 and x2 are separated by an “infinitely long”
dot region, correlation functions between fields at positions x1

and x2 vanish. As a consequence, the correlation function in
time of the forward scattering operator factorizes according to

〈Ôf(t)Ôf(0)〉
∝ e− 1

2 K2
+〈[ϕR(x1,t)−ϕR(x1,0)]2〉− 1

2 K2
+〈[ϕR(x2,t)−ϕR(x2,0)]2〉

× e− 1
2 K2

−〈[ϕL(x1,t)−ϕL(x1,0)]2〉− 1
2 K2

−〈[ϕL(x2,t)−ϕL(x2,0)]2〉

∝ t−K(2K2
++2K2

−)

∝ t−(K−1+K). (C9)

Since the function f (K) = K−1 + K has its minimum value
2 at K = 1, the forward scattering operator Eq. (C8) seems
is irrelevant for all values of K . As a consequence, finding a
microscopic description of an RG relevant forward scattering
operator requires a modification of the interaction term.

2. Local interactions between both nonchiral Luttinger liquids

Here, we want to allow for the possibility that there is
local interaction term including both LL wires as shown in
Fig. 12. Following the notation of Wen [33], we describe the
system by a K matrix with K = diag(1,−1,1,−1), where we
imagine that the first two branches belong to the first LL with
fields ϕ1R,0 and ϕ1L,0, and the second two branches belonging
to the second LL. These are eigenmodes in the absence of
interactions. A local charging term acting on both LL wires,
i.e., equally on all four modes is described by the velocity

x1

U

FIG. 12. (Color online) In order to realize a beam splitter with a
nonchiral setup, two LLs with a local charging interaction which does
not discriminate between the two wires is needed (indicated by green
oval, strength U > 0). In this setup, both intrawire backscattering
(short blue lines) and interwire backscattering (dashed red lines)
are relevant, whereas interwire forward scattering (not shown in the
figure) is irrelevant. The part of the wires inside the dashed boxed
constitutes the quantum dot with a nonlocal charging interaction.
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matrix

V =

⎛
⎜⎝

1 + U U U U

U 1 + U U U

U U 1 + U U

U U U 1 + U

⎞
⎟⎠. (C10)

We now diagonalize the real symmetric velocity matrix by
an orthogonal transformation according to V → V1 = AV AT

with

A =

⎛
⎜⎜⎝

1/2 1/2 1/2 1/2
1/

√
2 −1/

√
2 0 0

0 0 1/
√

2 −1/
√

2
1/2 1/2 −1/2 −1/2

⎞
⎟⎟⎠. (C11)

We obtain V1 = diag(1 + 4U,1,1,1). In the following, we
introduce the charge mode velocity

u = 1 + 4U. (C12)

Next, we rescale fields such that the velocity matrix be-
comes equal to the unit matrix, i.e., V2 = �V1� with � =
diag(1/

√
u,1,1,1). With the help of these transformations, we

find K2 = �AKAT � with

K2 =

⎛
⎜⎜⎝

0 1/
√

2u 1/
√

2u 0
1/

√
2u 0 0 1/

√
2

1/
√

2u 0 0 −1/
√

2
0 1/

√
2 −1/

√
2 0

⎞
⎟⎟⎠. (C13)

Since K2 is real symmetric, it can be diagonalized by an
orthogonal transformation according to Kd = BK2B

T with

B =

⎛
⎜⎜⎝

−1/
√

2 1/2 1/2 0
1/

√
2 1/2 1/2 0

0 −1/2 1/2 1/
√

2
0 1/2 −1/2 1/

√
2

⎞
⎟⎟⎠, (C14)

and we obtain Kd = diag(−1/
√

u,1/
√

u,−1,1). The entries
of Kd are the inverse of the scaling dimensions of the
new fields. Through this series of transformations, the new
fields φ1,φ2,φ3,φ4 are related to the original fields according
to the transformation φ = B�−1Aϕ. In order to compute
scaling dimensions of tunneling operators, we need the inverse
transformation, which is given by

C ≡ (B�A)−1 = AT �BT

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1+√
u

2
√

2u

1+√
u

2
√

2u
0 1√

2

− 1+√
u

2
√

2u

1−√
u

2
√

2u

1√
2

0

−1+√
u

2
√

2u

1+√
u

2
√

2u
0 − 1√

2

− 1+√
u

2
√

2u

1−√
u

2
√

2u
− 1√

2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C15)

Using the matrix C, we can express the original fields in terms
of the new ones according to

ϕ = Cφ. (C16)

In order to compute the scaling dimension of the operator for
backscattering a right mover in wire one into a left mover in

wire two, we use the expression

ϕ1R + ϕ2L = − 1√
2u

φ1 + 1√
2u

φ2 − 1√
2
φ3 + φ4, (C17)

and find for this tunneling operator the scaling dimension

g1R,2L = 1

2

(√
u

1

2u
+ √

u
1

2u
+ 1

2
+ 1

2

)

= 1

2

(
1√
u

+ 1

)
. (C18)

In the presence of a repulsive interaction U > 0, the charge
mode velocity u > 1, and hence g1R,2L < 1 makes interwire
backscattering relevant. Similarly, we find that intra-wire
backscattering is relevant with g1R,1L = g1R,2L. Thus this
model allows to realize the intermediate fixed point discussed
in the main text in the framework of nonchrial LL wires.

APPENDIX D: SOLUTION OF THE REFERMIONIZED
MODEL FOR g = 1

In this Appendix, we discuss the derivation of the scattering
probabilities Eqs. (47a) and (47b).

1. Solution for a single scattering amplitude

We first consider the simple situation where γv = 0 and only
γh �= 0. In order to construct scattering states as eigenstates
of the Hamiltonian, we need to make assumptions about the
commutators of η1η4 with f1 and �1. If η1η4 commutes with
both f1 and �1, we will arrive at the standard solution of
refermionization [29]. As there is no reason to expect that our
result should differ from the standard one, we will make this
assumption. Then, we define the new Majorana operator f̃1 =
iη1η4f1, and with H = H0 + Htun find the following equations
of motion:

− i∂t�1(x) = [H,�1(x)]

= i∂x�1(x) +
√

2πa γh f̃1δ(x) (D1a)

−i∂t�
†
1(x) = [H,�

†
1(x)]

= i∂x�
†
1(x) −

√
2πa γh f̃1 δ(x) (D1b)

−i∂t f̃1 = [H,f̃1]

= 2
√

2πa γh[�1(0) − �
†
1(0)]. (D1c)

Away from x = 0, �1(x) satisfies the free fermion equation
and has plane waves as a solution. At x = 0, the field is
discontinuous and acquires a phase shift. As a consequence, in
the above equations of motion, �(0) needs to be interpreted as
1
2 [�1(0+) + �1(0−)]. We solve the equations of motions by
using the most general expression for scattering eigenstates:

A
†
1,ε =

∫
x

(ϕ11,ε�
†
1 + ϕ∗

14,ε�1 + a11,ε f̃1). (D2)

For the wave functions, we make the ansatz

ϕ11,ε(x) = θ (−x)eiεx + θ (x)eiδ11eiεx, (D3a)

ϕ∗
14,ε(x) = θ (x)eiδ14eiεx . (D3b)
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Following Ref. [29], we interpret the scattering states in the
following way: the region x < 0 corresponds to the incoming
wave packet, the region x > 0 the scattered components of the
wave packet. The wave function ϕ11 multiplying the creation
operator ψ† describes the amplitude for forward scattering,
i.e., is associated with the component of the scattering state
which continues to propagate along segment 1 of the edge,
in the interior of the QD. The wave function ϕ∗

14 multiplying
the annihilation operator ψ1 on the other hand is interpreted
as the amplitude for scattering onto the outgoing part of edge
segment 4. Clearly, unitarity demands that the sum of the
probabilities for forward and backwards scattering is equal to
one, |ϕ11|2 + |ϕ14|2 = 1.

Using the ansatz Eq. (D3b) in the equations of motion
Eqs. (D1a)–(D1c), we find

i[1 − eiδ11 ] − 2
√

2πaγha11 = 0, (D4a)

−ieiδ14 + 2
√

2πaγha11 = 0, (D4b)

εa11 =
√

2πa

2
γh[−(1 + eiδ11 ) + eiδ14 ], (D4c)

and finally the solutions

eiδ11 = iε

iε − 4πaγ 2
h

, (D5a)

eiδ14 = −4πaγ 2
h

iε − 4πaγ 2
h

. (D5b)

We note that, different from the case of truly noninteracting
fermions, |ϕ11,ε |2 and |ϕ14,ε |2 cannot be interpreted as scatter-
ing probabilities for each value of energy separately. Instead,
in order to obtain the scale dependent scattering probability,
they need to be integrated over the derivative of the Fermi
function to obtain

P14 =
∫

dω( − f ′(ω))|ϕ14,ω|2

≈ 2�h

T
arctan

T

2�h

. (D6)

In the last step, the derivative of the Fermi function
was approximated as a box function of width temperature
T and height 1/T . Identifying the width of the reso-
nance as �h = 4πaγ 2

h , and introducing the scaling function
F (x) = 2

x
arctan x

2 , this result can be written in a more compact
form as P14 = F (T/�). The scaling function has the limiting

behaviors F (x) = 1 − 1
3 (x/2)2 for small x and F (x) = 2

x
for

large x. Using these asymptotics, we find

P14 =
{ 2�h

T
for T � �h

1 − T 2

12�2
h

for T � �h

. (D7)

This result agrees with the standard perturbative analysis of a
single scatterer in a LL.

We now discuss a complementary scenario, in which γh = 0
and γv �= 0. By symmetry, it is clear that the solution can be
found in an analogous way as discussed above. For future
reference, the solution for the scattering eigenstate is given by

A
†
2,ε =

∫
x

(ϕ22,ε�
†
2 + ϕ∗

44,ε�2 + a22,ε f̃1). (D8)

Now, for x < 0, the operator ψ
†
2 describes an incoming state

along contour 2. For x > 0, the operator ψ
†
2 creates a state

which is forward scattered into the interior of the QD along
contour 2, whereas ψ2 describes a partial wave which is
scattered onto the outgoing part of edge 4. In what follows,
it will be important that both ψ1(x) and ψ2(x) create an
outgoing wave on edge 4.

2. Solution for two competing scattering amplitudes

We now consider the interesting case in which both γh

and γv are nonzero. Due to the Klein factors represented by
products of Majorana fermions η1η4 and η2η4, the two different
scattering operators do not commute with each other, and the
respective equations of motion are coupled. In addition to
f̃1 = iη1η4f1, we now introduce f̃2 = iη2η4f1. Now we need
to take into account the nontrivial anticommutator

{f̃1,f̃2} = −2η1f1η2f2 ≡ −2 Ĉ, (D9)

where we have made the assumption that f1 and f2 commute
with each other and with η1η4 and η2η4. Since Ĉ is a product
of an even number of Majoranas, it trivially commutes with
�1, �

†
1, �2, and �

†
2. In addition,

[f̃1,Ĉ] = 0, and [f̃2,Ĉ] = 0 ⇒ [Htun,Ĉ] = 0.

(D10)

As Ĉ commutes with all operators, it commutes with
the Hamiltonian and hence does not have any dynamics. In
addition, it squares to one Ĉ2 = 1. With this in mind, we find
the following equations of motion for the full system:

− i∂t�1(x) = [H,�1(x)] = i∂x�1(x) +
√

2πa γh f̃1 δ(x), (D11a)

−i∂t�
†
1(x) = [H,�

†
1(x)] = i∂x�

†
1(x) −

√
2πa γh f̃1 δ(x), (D11b)

−i∂t f̃1 = [H,f̃1] = 2
√

2πa [γh�1(0) − γh�
†
1(0) − Ĉ γv�2(0) + Ĉ γv�

†
2(0)], (D11c)

−i∂t�2(x) = [H,�2(x)] = i∂x�2(x) +
√

2πa γv f̃2 δ(x), (D11d)

−i∂t�
†
2(x) = [H,�

†
2(x)] = i∂x�

†
2(x) −

√
2πa γv f̃2 δ(x), (D11e)

−i∂t f̃2 = [H,f̃2] = 2
√

2πa [γv�2(0) − γv�
†
2(0) − Ĉ γh�1(0) + Ĉ γ ∗

h �†(0)]. (D11f)
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In the following, we will derive scattering states as a
solution of these equations by using the fact that Ĉ2 = 1. We
make the most general ansatz for operators

A
†
1,ε =

∫
x

(ϕ11,ε�
†
1 + ϕ∗

14,ε�1 + ϕ12,ε�
†
2 + ϕ̃∗

14,ε�2

+ a11,ε f̃1 + a12,ε f̃2), (D12a)

A
†
2,ε =

∫
x

(ϕ22,ε�
†
2 + ϕ∗

24,ε�2 + ϕ21,ε�
†
1 + ϕ̃∗

24,ε�1

+ a22,ε f̃2 + a21,ε f̃1) (D12b)

creating eigenstates of the Hamiltonian H and satisfying

εA
†
1,ε = [H,A

†
1,ε], εA

†
2,ε = [H,A

†
2,ε]. (D13)

In the following, we only discuss the expression for A
†
1,ε , as the

corresponding expression for A
†
2,ε is obtained by interchanging

γh with γv . Specifically, we make the ansatz

ϕ11,ε(x) = θ (−x)eiεx + θ (x)eiδ11eiεx, (D14a)

ϕ∗
14,ε(x) = θ (x)eiδ14eiεx, (D14b)

ϕ12,ε(x) = θ (x)eiδ12eiεx, (D14c)

ϕ̃∗
14,ε(x) = θ (x)eiδ̃14eiεx . (D14d)

Imposing the condition (D13), the equations

i[1 − eiδ11 ] − 2
√

2πa γh[a11,ε − Ĉa12,ε] = 0, (D15a)

− ieiδ14 + 2
√

2πa γh[a11,ε − Ĉa12,ε] = 0, (D15b)

− ieiδ12 − 2
√

2πa γv[a12,ε − Ĉa11,ε] = 0, (D15c)

− ieiδ̃14 + 2
√

2πa γv[a12,ε − Ĉa11,ε] = 0, (D15d)

ε a11,ε =
√

2πa

2
[−(1 + eiδ11 )γh + eiδ14γh], (D15e)

ε a12,ε =
√

2πa

2
[−eiδ12γv + eiδ̃14γv] (D15f)

are found. Using Ĉ2 = 1, we see that the first four equations
only depend on the combination a11,ε − Ĉa12,ε , and if we take

an appropriate linear combination of Eqs. (D15e) and (D15f),
we can solve for

eiδ11 = iε − 4πaγ 2
h

iε − 4πa
(
γ 2

h + γ 2
v

) , (D16a)

eiδ14 = −4πaγ 2
h

iε − 4πa
(
γ 2

h + γ 2
v

) , (D16b)

eiδ12 = −4πaγhγv

iε − 4πa
(
γ 2

h + γ 2
v

) , (D16c)

eiδ̃14 = 4πaγhγv

iε − 4πa
(
γ 2

h + γ 2
v

) . (D16d)

The probability for forward scattering is given by |eiδ11 |2,
the probability for scattering onto lead 2 is given by |eiδ12 |2,
and the probability for scattering onto lead 4 is given by
|eiδ14 |2 + |eiδ̃14 |2. There are two contributions for scattering
onto lead 4, one due to the operator ψ1 in the scattering state
Eq. (D12a), and a second one due to the operator ψ2 in the
same scattering state. We will see in a moment that indeed
both these contributions are needed in order to reproduce the
perturbative result for the tunneling probability from lead 1
onto lead 4.

Integrating over the derivative of the Fermi function as in
the case of a single scatterer, we obtain the probabilities for
transmission:

P11 = �2
v

�2
F

(
T

�

)
, (D17a)

P14 = �h

�
F

(
T

�

)
, (D17b)

P12 = �h�v

�2
F

(
T

�

)
. (D17c)

We now argue that these results agree with a perturbative
calculation in γh and γv . In the limit of large T/�, one finds
P14 = 2�h/T , exactly the same result as in the case γv = 0
discussed previously. This is to be expected, since corrections
due to γv can enter only in an additive fashion, and have to be
of order O(γ 2

h γ 2
v ). On the other hand, in the same limit, one

finds P12 = 2�h�v/�T , which is again to be expected since
scattering from lead 1 into lead 2 has to be a two-step process
and has to be proportional to γ 2

h γ 2
v .

[1] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik,
Bosonization in Strongly Correlated Systems (University Press,
Cambridge, 1998); M. Stone, Bosonization (World Scientific,
Singapore, 1994); T. Giamarchi, Quantum Physics in One
Dimension (Oxford University Press, Oxford, 2004); D. L.
Maslov, in Nanophysics: Coherence and Transport, edited by H.
Bouchiat, Y. Gefen, G. Montambaux, and J. Dalibard (Elsevier,
Amsterdam, 2005), p. 1; J. von Delft and H. Schoeller, Annalen
Phys. 7, 225 (1998).

[2] O. M. Auslaender, A. Yacoby, R. de Picciotto, K. W. Baldwin, L.
N. Pfeiffer, and K. W. West, Science 295, 825 (2002); E. Levy,
A. Tsukernik, M. Karpovski, A. Palevski, B. Dwir, E. Pelucchi,

A. Rudra, E. Kapon, and Y. Oreg, Phys. Rev. Lett. 97, 196802
(2006).

[3] E. Slot, M. A. Holst, H. S. J. van der Zant, and S. V. Zaitsev-
Zotov, Phys. Rev. Lett. 93, 176602 (2004); L. Venkataraman, Y.
S. Hong, and P. Kim, ibid. 96, 076601 (2006).

[4] A. N. Aleshin, H. J. Lee, Y. W. Park,
and K. Akagi, Phys. Rev. Lett. 93, 196601
(2004); A. N. Aleshin, Adv. Mat. 18, 17 (2006).

[5] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley,
L. Balents, and P. L. McEuen, Nature (London) 397, 598 (1999);
Z. Yao, H. W. Ch. Postma, L. Balents, and C. Dekker, ibid. 402,
273 (1999).

085124-18

http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
http://dx.doi.org/10.1126/science.1066266
http://dx.doi.org/10.1126/science.1066266
http://dx.doi.org/10.1126/science.1066266
http://dx.doi.org/10.1126/science.1066266
http://dx.doi.org/10.1103/PhysRevLett.97.196802
http://dx.doi.org/10.1103/PhysRevLett.97.196802
http://dx.doi.org/10.1103/PhysRevLett.97.196802
http://dx.doi.org/10.1103/PhysRevLett.97.196802
http://dx.doi.org/10.1103/PhysRevLett.93.176602
http://dx.doi.org/10.1103/PhysRevLett.93.176602
http://dx.doi.org/10.1103/PhysRevLett.93.176602
http://dx.doi.org/10.1103/PhysRevLett.93.176602
http://dx.doi.org/10.1103/PhysRevLett.96.076601
http://dx.doi.org/10.1103/PhysRevLett.96.076601
http://dx.doi.org/10.1103/PhysRevLett.96.076601
http://dx.doi.org/10.1103/PhysRevLett.96.076601
http://dx.doi.org/10.1103/PhysRevLett.93.196601
http://dx.doi.org/10.1103/PhysRevLett.93.196601
http://dx.doi.org/10.1103/PhysRevLett.93.196601
http://dx.doi.org/10.1103/PhysRevLett.93.196601
http://dx.doi.org/10.1002/adma.200500928
http://dx.doi.org/10.1002/adma.200500928
http://dx.doi.org/10.1002/adma.200500928
http://dx.doi.org/10.1002/adma.200500928
http://dx.doi.org/10.1038/17569
http://dx.doi.org/10.1038/17569
http://dx.doi.org/10.1038/17569
http://dx.doi.org/10.1038/17569
http://dx.doi.org/10.1038/46241
http://dx.doi.org/10.1038/46241
http://dx.doi.org/10.1038/46241
http://dx.doi.org/10.1038/46241


INTERMEDIATE FIXED POINT IN A LUTTINGER . . . PHYSICAL REVIEW B 92, 085124 (2015)

[6] A. M. Chang, Rev. Mod. Phys. 75, 1449 (2003); R. de Picciotto,
M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D.
Mahalu, Nature (London) 389, 162 (1997); M. Dolev, M.
Heiblum, V. Umansky, A. Stern, and D. Mahalu, Nature 452,
829 (2008); W. Kang, H. L. Stormer, L. N. Pfeiffer, K. W.
Baldwin, and K. W. West, ibid. 403, 59 (2000); M. Grayson,
L. Steinke, D. Schuh, M. Bichler, L. Hoeppel, J. Smet, K. von
Klitzing, K. D. Maude, and G. Abstreiter, Phys. Rev. B 76,
201304 (2007); Y. Ji, Y. C. Chung, D. Sprinzak, M. Heiblum, D.
Mahalu, and H. Shtrikman, Nature (London) 422, 415 (2003); I.
Neder, M. Heiblum, Y. Levinson, D. Mahalu, and V. Umansky,
Phys. Rev. Lett. 96, 016804 (2006); I. Neder, F. Marquardt, M.
Heiblum, D. Mahalu, and V. Umansky, Nat. Phys. 3, 534 (2007);
E. Bieri, M. Weiss, O. Goktas, M. Hauser, C. Schonenberger,
and S. Oberholzer, Phys. Rev. B 79, 245324 (2009).

[7] S. Hofferberth et al., Nature (London) 449, 324 (2007); S.
Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer,
and A. Aspect, Phys. Rev. Lett. 91, 010405 (2003); Y. Sagi, M.
Brook, I. Almog, and Nir Davidson, ibid. 108, 093002 (2012).

[8] A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974); D. C.
Mattis, J. Math. Phys. 15, 609 (1974).

[9] C. L. Kane and M. P. A. Fisher, Phys. Rev. B. 46, 15233 (1992).
[10] A. Furusaki and K. A. Matveev, Phys. Rev. Lett. 75, 709 (1995);

,Phys. Rev. B 52, 16676 (1995).
[11] A. Altland, Y. Gefen, and B. Rosenow, Phys. Rev. Lett. 108,

136401 (2012).
[12] C. Nayak, M. P. A. Fisher, A. W. W. Ludwig, and H. H. Lin,

Phys. Rev. B 59, 15694 (1999); see also I. Affleck and J. Sagi,
Nucl. Phys. B 417, 374 (1994).

[13] S. Chen, B. Trauzettel, and R. Egger, Phys. Rev. Lett. 89, 226404
(2002); R. Egger et al., New J. Phys. 5, 117 (2003).
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