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Chiral triplet superconductivity on the graphene lattice
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Motivated by the possibility of superconductivity in doped graphene sheets, we investigate superconducting
order in the extended Hubbard model on the two-dimensional graphene lattice using the variational cluster
approximation (VCA) and the cellular dynamical mean-field theory (CDMFT) with an exact diagonalization
solver at zero temperature. The nearest-neighbor interaction is treated using a mean-field decoupling between
clusters. We compare different pairing symmetries, singlet and triplet, based on short-range pairing. VCA
simulations show that the real (nonchiral), triplet p-wave symmetry is favored for small V , small onsite interaction
U , or large doping, whereas the chiral combination p + ip is favored for larger values of V , stronger onsite
interaction U , or smaller doping. CDMFT simulations confirm the stability of the p + ip solution, even at
half-filling. Singlet superconductivity (extended s wave or d wave) is either absent or subdominant.
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I. INTRODUCTION

Following the production of graphene sheets in 2004 [1],
many have speculated about the theoretical possibility of su-
perconductivity in doped graphene. The theoretical discussion
has been enlarged to include models of interacting electrons
on the graphene (honeycomb) lattice, without necessarily
focusing on parameter values relevant to graphene, as other
systems based on this geometry exist: for a recent review see,
e.g., Ref. [2]. A constant source of excitement is the general
conclusion that superconductivity, if it occurs, should be chiral,
i.e., should break time-reversal symmetry. This implies the
possibility of unidirectional transport along the sample edge
and, with the added effect of spin-orbit coupling, the presence
of Majorana fermions along the edge, with potential applica-
tions to robust quantum computing. In particular, certain vortex
excitations in p + ip superconductors have zero-energy Majo-
rana modes [3] in their cores, which endow these vortices with
non-Abelian statistics [4]. A p + ip superconductivity is not
even necessary for vortices to have some internal structure [5].

Many studies predict a superconducting order parameter
with d + id symmetry, i.e., a chiral state based on singlet
pairing [6–12]. But, many of those have excluded triplet
pairing from the outset. A recent quantum Monte Carlo
study [13] compares singlet and triplet states and predicts
that the favored state would have p + ip (triplet) symmetry,1

but it is performed at low density (∼20%), whereas we are
interested in the vicinity of half-filling. Such comparisons
between triplet or singlet pairing have also been made using
other methods or different theoretical models [14,15] and the
favored pairing state is not strikingly obvious.

In this work, we add the perspective of two differ-
ent methods: the variational cluster approximation (VCA)
[16–19] and the cellular dynamical mean field theory
(CDMFT) [20–23]. General reviews on dynamical quantum

1There is some variation in the literature on the use of p- and d-
wave terminology and their relation to triplet versus singlet pairing.
Strictly speaking, one should use conventional notation for the D6h

point group. See Ref. [14].

cluster methods can also be found in Refs. [24–26]. VCA is
a dynamical variational method: it identifies the best possible
electron self-energy �(ω) in a restricted space of self-energies
that are the physical self-energies of a small cluster of atoms.
CDMFT is based on the same principle, except that the
best possible self-energy is determined self-consistently in an
Anderson impurity problem where the small cluster plays the
role of the impurity. We apply these methods to the extended
Hubbard model on the graphene lattice, from half-filling to
about 20% doping and compare various pairings: singlet and
triplet, chiral and nonchiral. The dominant pairing symmetry
found by VCA, i.e., the one with the smallest free energy
at zero temperature, is p + ip: a chiral, spin-triplet pairing.
This solution is also found using CDMFT. The range of
parameters studied, in particular for the onsite repulsion U and
the nearest-neighbor repulsion V , contains accepted values for
graphene sheets. Both methods find that the strength of p + ip

superconductivity increases with V .
The paper is organized as follow: In Sec. II, we define the

model and the various pairing symmetries from the mean-field
point of view. In Sec. III, we review the VCA and its application
to systems with extended interactions, before presenting our
results in Sec. IV. In Sec. V, the CDMFT is applied to the
same problem. A discussion follows in Sec. VI.

II. MODEL AND MEAN-FIELD DESCRIPTION

A. Model

We consider the extended, one-band Hubbard model
defined on the graphene (or honeycomb) lattice, which
contains two sublattices A and B as illustrated in Fig. 1. The
Hamiltonian can be expressed as

H = −t
∑

r∈A,σ,j

(c†r,σ cr+ej ,σ + H.c) − μ
∑

r

nr

+U
∑

r

nr,↑nr,↓ + V
∑

r∈A,j

nrnr+ej
, (1)

where c
(†)
r,σ destroys (creates) an electron of spin σ in a Wannier

orbital at site r, nr,σ = c
(†)
r,σ cr,σ is the number of electrons of
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FIG. 1. (Color online) Tiling of the graphene lattice by six-site
clusters (gray shading) used in VCA. The A and B sublattices are
indicated, as well as the three elementary vectors e1,2,3.

spin σ at site r, and nr = nr,↑ + nr,↓. The three vectors e1,2,3

link a site of sublattice A with its three nearest neighbors (NN)
on sublattice B, and are oriented at 120◦ of each other. The first
and last sums run over sites of the A sublattice only and contain,
respectively, all hopping terms and extended interactions. The
other sums run over all sites: μ is the chemical potential and
U the onsite repulsion.

This model constitutes an approximate description of
graphene sheets, wherein longer-range Coulomb interactions
and hopping are neglected. In pure graphene, the band is
half-filled and t is estimated at 2.8 eV, the onsite Coulomb
repulsion U is expected to be around 9.3 eV ≈ 3.3t , and the
nearest-neighbor Coulomb repulsion at V = 5.5 eV ∼ 2t [27].
In the rest of this paper, we will set t = 1, thus defining the
unit of energy, and we will work at zero temperature. We are
concerned with electronic degrees of freedom only, and neglect
all phonon-related effects.

B. Pairing symmetries

We start by providing a description of superconducting (SC)
order in the mean-field picture. Reference [14] provides a
complete classification of pairing operators in terms of low-
degree polynomials of momentum, according to the irreducible
representations of D6h in momentum space. Here, we will
follow a different approach, based on a real-space description
of pairing operators defined on adjacent sites; we neglect the
possibility of onsite (singlet) pairing because of the onsite
repulsion U . In momentum space, this amounts to using basis
functions that are aware of the Brillouin zone, i.e., complex
exponentials of wave vectors times nearest-neighbor vectors.
The relevant pairing operators defined on the links between
adjacent sites are

singlet: Si,r = cr,↑cr+ei ,↓ − cr,↓cr+ei ,↑,

triplet: Ti,r = cr,↑cr+ei ,↓ + cr,↓cr+ei ,↑.
(2)

Given the three elementary directions on the graphene lattice,
this makes a total of six operators per site, which can be

TABLE I. Irreducible representations (irreps) of D6h associated
with the six pairing operators defined on nearest-neighbor sites. Sj and
Tj are the singlet and triplet pairing along the directions ej indicated
on Fig. 1. The last four rows show the chiral representations, which
are complex combinations of the real operators defined under E1

and E2.

Irrep Symbol Operators

A1 s �̂s =
∑

r

(S1,r + S2,r + S3,r)

B1 f �̂f =
∑

r

(T1,r + T2,r + T3,r)

E1 d �̂d,1 =
∑

r

(S1,r − S2,r)

�̂d,2 =
∑

r

(S1,r − S3,r)

E2 p �̂p,1 =
∑

r

(T1,r − T2,r)

�̂p,2 =
∑

r

(T1,r − T3,r)

Chiral representations

E1 d + id �̂d+id =
∑

r

(S1,r + e2πi/3S2,r + e4πi/3S3,r)

d − id �̂d−id =
∑

r

(S1,r + e−2πi/3S2,r + e−4πi/3S3,r)

E2 p + ip �̂p+ip =
∑

r

(T1,r + e2πi/3T2,r + e4πi/3T3,r)

p − ip �̂p−ip =
∑

r

(T1,r + e−2πi/3T2,r + e−4πi/3T3,r)

combined into operators of well-defined symmetry as

�̂singlet =
∑

r

(�1S1,r + �2S2,r + �3S3,r),

�̂triplet =
∑

r

(�1T1,r + �2T2,r + �3T3,r),
(3)

where the relative amplitudes (�1,�2,�3) define the symme-
try of each operator. These may be classified according to
the irreducible representations (irreps) of D6h (or C6v , which
is equivalent for a purely two-dimensional system). These are
given in Table I, and illustrated on Fig. 2. Note that the irreps A2

and B2 do not exist in this six-dimensional space of operators.
Representations E1 and E2 are two dimensional, and only one
of their components is illustrated on Fig. 2. This allows for
the existence of complex representations d ± id and p ± ip

expressed in the last four rows of Table I.

C. Mean-field description

The goal of this section is to develop a physical or geometric
sense for the superconducting order parameter through the
mean-field description. We are not performing self-consistent
mean-field computations, which are not possible in the frame-
work of the Hubbard model. The more powerful variational
cluster approximation (VCA) and cellular dynamical mean-
field theory (CDMFT) will be used instead, in the next sections.

The BCS Hamiltonian in momentum space is expressed in a
Nambu description by arranging the creation and annihilation
operators for the two sublattices and the two spins into a four-
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FIG. 2. (Color online) Representation of singlet and triplet pair-
ing amplitudes in real space. Blue means positive, red means negative.
Only one component out of two is illustrated for the E1 and E2

representations: �̂d,2 and �̂p,2. Upon rotating by 60◦, the two
sublattices A and B are interchanged, which changes the sign of
the triplet pair (because of the anticommutation relations) but not that
of the singlet pair.

component object:

Ck = (cA,k,↑,cB,k,↑,c
†
A,−k,↓,c

†
B,−k,↓). (4)

The Hamiltonian then takes the form

HBCS =
∑

k

C †
k HkCk (5)

with the 4 × 4 Hermitian matrix

Hk =

⎛
⎜⎜⎜⎝

−μ γk 0 −η∗
k

γ ∗
k −μ ζη−k 0

0 ζη∗
−k μ −γk

−ηk 0 −γ ∗
k μ

⎞
⎟⎟⎟⎠, (6)

where μ is the chemical potential and where

γk = −t
∑

j=1,2,3

eik·ej and ηk =
∑

j=1,2,3

�je
ik·ej . (7)

The symbol ζ in (6) is 1 and −1 for triplet and singlet pairing,
respectively. The pairing amplitudes �i may be read from the
definition of the operators of Table I. For instance, in the case
of a p + ip or d + id symmetry, they are

(�1,�2,�3) = �(1,e2πi/3,e4πi/3), (8)

where � is a global pairing amplitude.
It is not difficult to show that the dispersion relation derived

from the mean-field Hamiltonian (6) is

Ek = ±
√

bk ±
√

b2
k − Bk, (9)

where

bk = μ2 + |γk|2 + 1
2 |ηk|2 + 1

2 |η−k|2 (10)

and

Bk = μ4 + |γk|4 + |ηk|2|η−k|2 − 2Re
(
ξηkη−kγ

2
k

)
+μ2(|ηk|2 + |η−k|2 − 2|γk|2). (11)

If the amplitudes �i are real, i.e., for the real representations
s, p, d, and f , then η−k = η∗

k, but this is not true for the chiral
representations. In the normal case (ηk ≡ 0), Eq. (9) reduces
to the graphene dispersion Ek = μ ± |γk|.

The Dirac points K = (2π/3,2π/3
√

3) and K′ = (2π/3, −
2π/3

√
3), located on the Brillouin zone corners, are special

since γ (K) = γ (K′) = 0. At half-filling (μ = 0), the normal-
state dispersion vanishes at these points and the low-energy
dispersion is made of cones issuing from them. The gap func-
tion ηk also vanishes at the Dirac points if all three amplitudes
�i have the same phase, i.e., for s and f symmetries. This
implies that s- and f -wave superconductivity is gapless at
half-filling, so is chiral superconductivity (d + id and p + ip).
Indeed, in the right-handed case (8) one has ηK′ = 0 and
η−K′ �= 0. Nevertheless, BK′ = 0 at half-filling and the gap
vanishes. The same is true at the other Dirac point since ηK �= 0
and η−K = 0. Thus, superconductivity may be “hidden” or
gapless at half-filling [6].

D. Order parameter

The momentum-dependent superconducting order param-
eter 
ab(k) is defined as the integral over frequency of the
Gorkov function (the anomalous part of the Green function):


ab(k) =
∫ ∞

−∞

dω

2π
Fab(k,iω). (12)

Here, (a,b) are sublattice indices taking two possible values.
The Gorkov function Fab is the top-right block of the
Nambu Green function Gμν(k,ω) defined as follows at zero
temperature:

Gμν(k,ω) = 〈�|Cμ(k)
1

ω − H + E0
C †

ν (k)|�〉

+ 〈�|C †
ν (k)

1

ω + H − E0
Cμ(k)|�〉, (13)

where ω is a complex-valued frequency, |�〉 is the many-body
ground state, and E0 the ground-state energy. The indices μ,ν

take the four possible values defined in (4). For a two-band
model, Fab = Ga,b+2. In the special case of the noninteracting
BCS Hamiltonian (5), the Nambu Green function is

Gμν(k,ω) =
(

1

ω − Hk

)
μν

(14)

and the order parameter 
ab(k) is readily calculated from the
negative eigenvalues of Hk and the corresponding eigenvec-
tors. We illustrate on the left panel of Fig. 3 the supercon-
ducting order parameter of type p + ip with � = 0.3 at 10%
doping. Note how the phase of the order parameter �11 circles
once around the Dirac points K and K′. By contrast, the phase
of �12 circles twice around K and does not circle around K′,
whereas the opposite would be true for p − ip or for �21.

It is difficult to encapsulate the “amount” of SC order in
a simple number. The best choice for that is the root-mean-
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FIG. 3. (Color online) Color representation of the superconducting order parameter 
ab(k), as a function of wave vector, for a p + ip

symmetry. Left half of the figure: a BCS state; right half: a solution found in VCA. Panels labeled (a) and (c) represent the amplitude (red
is maximum, blue means zero). Panels labeled (b) and (d) represent the phase (the phase color map is shown in the middle; white means an
amplitude lower than some cutoff value). The top panels [(a) and (b)] represent the intrasublattice component 
11(k). The bottom panels [(c)
and (d)] represent the intersublattice component 
12(k). The Brillouin zone is indicated, as well as the Fermi surface around one of the Dirac
points K (dashed curve). Doping was set at 10%. The VCA solution was obtained at (U,V ) = (3,0.4).

square SC order parameter


2
rms =

∑
a,b

∫
d2k

(2π )2
|
ab(k)|2. (15)

This definition has the advantage of being invariant under
changes of basis affecting the sublattice (or band) indices.

III. VARIATIONAL CLUSTER APPROXIMATION

A. Method

The variational cluster approximation (VCA) [16] can be
used to investigate the possibility of superconductivity in
model (1). VCA has been used extensively, in particular
to study the emergence of d-wave superconductivity in a
simple description of the high-Tc cuprates based on the
square-lattice, one-band Hubbard model [17,18]. It is based on
Potthoff’s self-energy functional approach [28] (for a review,
see Ref. [29]). In VCA, the lattice is tiled into an infinite
collection of identical clusters, such as the six-site cluster used
in this work and illustrated on Fig. 1. We must distinguish the
original Hamiltonian H , defined on the infinite lattice, from a
reference Hamiltonian H ′, obtained from H by (1) severing
the intercluster hopping terms and (2) adding a small number
of Weiss field in order to probe certain broken symmetries.
Any one-body term can also be added to H ′; in particular, the
chemical potential μ′ of H ′ may be different from the one
appearing in H . The basic requirement is that H and H ′ share
the same interaction term. Even though H ′ is defined on an
infinite set of disconnected clusters, in practice we work on its
restriction to a single cluster, since all clusters are identical.

The self-energy �(ω) associated with H ′ is used as a
variational self-energy, in order to construct the Potthoff
self-energy functional:

�[�(h)] = �′[�(h)] + Tr ln
{ − [

G−1
0 − �(h)

]−1}
− Tr ln[−G′(h)], (16)

where G′ is the physical Green function of the reference
system, G0 is the noninteracting Green function of the original
system, and h denotes collectively the coefficients of all the
adjustable one-body terms added to H ′. The symbol Tr stands
for a functional trace, i.e., a sum over frequencies, momenta
and bands. �′ is the ground-state energy (chemical potential
included) of the cluster which, along with the associated Green
function G′, is computed numerically, in our case via the exact
diagonalization method at zero temperature. Equation (16)
provides us with an exact, nonperturbative value of the Potthoff
functional �[�(h)], albeit on a restricted space of self-energies
�(h) which are the physical self-energies of the reference
Hamiltonian H ′. Expression (16) is computed numerically
in order to look for stationary points of that functional, for
instance via Newton’s method. The resulting value of h defines
the best possible self-energy � for that parameter set; it is then
combined with G0 to form an approximate Green function
G for the original Hamiltonian H , from which any one-body
quantity, for instance the order parameters associated with
broken symmetries, can be computed.

When confronted with competing solutions, obtained for
instance via different sets of Weiss fields, the one with the
lowest value of the Potthoff functional is selected. VCA retains
the correlated character of the model since the local interaction
is not factorized in any way. The approximation may be
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controlled in principle by varying the size of the cluster and
the number of variational parameters used.

Since one of the goals of this work is to identify the sym-
metry of the superconducting order parameter in model (1),
we will use the six-site ring cluster depicted on Fig. 1 because
it is the most symmetric we can use, even though it is not the
largest. A 10-site cluster will also be used in order to assess
the robustness of our predictions. For all calculations involving
superconductivity, we used the Nambu formalism, in which a
particle-hole transformation is performed on the spin-down
orbitals. The pairing operators then have the appearance of
hopping terms; two of the three components of the triplet pair-
ing operator cannot be easily described that way, but rotation
invariance allows us to concentrate on the Sz = 0 component.

B. Extended interactions

The VCA approximation as summarized above only applies
to systems with onsite interactions since the Hamiltonians H

and H ′ must differ only by one-body terms, i.e., they must
have the same interaction part. This is not true if extended
interactions are present, as they are truncated when the lattice
is tiled into clusters. To treat the extended Hubbard model,
one must, in addition, perform a Hartree approximation on
the extended interactions. We call this the dynamical Hartree
approximation (DHA), as the onsite and extended interactions
are treated exactly within the cluster. It has been used in
Ref. [30] in order to assess the effect of extended interactions
on strongly correlated superconductivity.

The extended interaction in the model Hamiltonian (1) is
replaced by

1

2

∑
r,r′

V c
r,r′nrnr′ + 1

2

∑
r,r′

V ic
r,r′ (n̄rnr′ + nrn̄r′ − n̄rn̄r′ ), (17)

where V c
r,r′ denotes the extended interaction between sites

belonging to the same cluster, whereas V ic
r,r′ those interactions

between sites belonging to different clusters. Both the first
term (V̂ c) and the second term (V̂ ic), which is a one-body
operator, are part of the lattice Hamiltonian H and of the cluster
Hamiltonian H ′. The mean fields n̄r must be determined self-
consistently via a repeated application of the VCA method or
even, more simply, of cluster perturbation theory (CPT) [31].

In practice, the symmetric matrix V ic
r,r′ is diagonalized and

the problem is expressed in terms of eigenoperators mμ:

V̂ ic =
∑

μ

Dμ

[
m̄μmμ − 1

2
m̄2

μ

]
. (18)

For the six-site cluster used in this work, the two eigenopera-
tors considered correspond to a uniform shift of the chemical
potential and a charge-density-wave operator:

m1 =
∑

r

nr, m2 =
∑
r∈A

nr −
∑
r∈B

nr (19)

with the appropriate coupling constants D1 = 1
6 and D2 = − 1

6 .

IV. RESULTS FROM THE VCA

A. Antiferromagnetism and charge order at half-filling

It is well established that the Hubbard model on the
graphene lattice with nearest-neighbor hopping has an an-
tiferromagnetic ground state beyond a certain value of the
onsite interaction U at V = 0 [32–38]. We mapped the
antiferromagnetic transition line on the U − V plane at half-
filling, with VCA, in the dynamical Hartree approximation
described in Sec. III B with the mean field m1 of Eq. (19). The
Weiss field added to the cluster Hamiltonian in order to probe
antiferromagnetism in VCA is

HAF = hAF

{∑
i∈A

(ni↑ − ni↓) −
∑
i∈B

(ni↑ − ni↓)

}
. (20)

The phase boundary between the antiferromagnetic (AF) and
normal phases found in this way is indicated in green on Fig. 4.
This is a continuous (second-order) transition. At V = 0,
the critical value of U for antiferromagnetism is Uc ∼ 3.86,
identical to 2 decimal places to the value obtained from large-
scale quantum Monte Carlo simulations [35], and close to
Uc ∼ 3.6 from the dynamical cluster approximation [39]. The
antiferromagnetic phase is bound to extend somewhat away
from half-filling. Ideally, we would want to avoid clashing
with this phase in our study of superconductivity.

At larger values of V , a charge density wave (CDW)
instability is bound to occur. We determined the phase
boundary between the CDW and normal phases by applying
the dynamical Hartree approximation with the mean fields m1

and m2 of Eq. (19), and by comparing the energies � of the
two competing solutions: a normal state (NS) with m2 = 0
and a CDW with m2 �= 0. No Weiss field was added in this
case, in order to simplify the computation: thus CPT was used
instead of VCA, but the functional (16) was computed as a best
estimate of the free energy. The phase boundary is indicated in
blue on Fig. 4, and tends asymptotically towards the line V =
U/3 (dashed line), as expected in the strong coupling limit.
For sufficiently large U , the two phase boundaries (AF-NS
and CDW-NS) will cross and a competition between CDW
and AF phases would need to be examined. The NS-CDW
phase boundary is basically identical with the one found with

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

N

CDW

AF

V

U

FIG. 4. (Color online) Half-filling phase diagram of the U − V

extended Hubbard model, obtained through VCA. The critical U for
the appearance of antiferromagnetism at V = 0 is Uc = 3.86. The
three phases are a charge-density wave (CDW), a normal semimetal
(N), and an antiferromagnet (AF).
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the dynamical cluster approximation (DCA) on large clusters
[39]. At U = 0, the NS-CDW transition is continuous, but
becomes discontinuous beyond some value of U . This is in fact
an important test of the dynamical Hartree approximation used
in the rest of this work. In particular, the constant correction
added to the energy [the last term of Eq. (17)] is crucial if the
phase boundary is to tend towards the line V = U/3.

Curiously, the values (U,V ) = (3.3,2.0) computed
in Ref. [27] lie within the CDW phase. But, adding a
second-neighbor Coulomb interaction V ′ would push the
CDW phase boundary further up: the phase boundary
in the strong-coupling limit is easily seen to be the line
V = U/3 + 2V ′, and the value of V ′ computed in Ref. [27]
for graphene is more than enough to push that phase boundary
beyond the proposed values of (U,V ).

B. Superconductivity

In VCA, the possible presence of superconductivity is
probed by adding to the cluster Hamiltonian H ′ one of the
pairing operators appearing in Table I. The VCA computations
for superconductivity use two Weiss fields: the overall pairing
amplitude � and the cluster chemical potential μ′. Treating
the latter as a variational parameter guarantees thermodynamic
consistency [40]. These computations are carried for different
pairing symmetries, and, when in the presence of extended in-
teractions, by performing an extra self-consistency loop for the
cluster Hartree approximation, as described in Sec. III B above.

In order to compare solutions obtained with Weiss fields
of different pairing symmetries, we compute their energy
densities E = � + μn, as a function of electron density
n. More precisely, we compare their condensation energies
EN − ESC, the difference between the energy of the normal
solution, obtained by using only the chemical potential μ′ as a
variational parameter, and that of the superconducting solution,
obtained by using both μ′ and � as variational parameters.
Figure 5 shows the condensation energy as a function of
doping for (U,V ) = (3,0), (3,0.4), and (6,0). In the latter case,
two cluster sizes (6 and 10 sites) were used (see following).
Different pairing symmetries were studied, but triplet pairing
is dominant always. The value U = 3 on the left panels was
chosen because of the absence of antiferromagnetism.

The first striking result is the existence of triplet-pairing
solutions (f , p and p + ip) even at half-filling. Singlet-pairing
solutions do not exist at V = 0, but arise in the presence of
the extended interaction. However, their condensation energy
is either too small to appear on the graph, or is smaller than
that of triplet-pairing solutions. In particular, a d-wave solution
was not found: the Potthoff functional was stationary only for a
vanishing value of the corresponding Weiss field. A chiral, d +
id solution is found at (U,V ) = (3,0.4), but its condensation
energy is negligible and would be barely visible if shown
on Fig. 5. An extended s-wave solution is found at (U,V ) =
(3,0.4), but is never the most stable solution. That title goes
to the p-wave or to the chiral p + ip solution, depending on
doping and on V . At (U,V ) = (3,0), the dominant solution has
p-wave symmetry, but already at V = 0.4 the chiral, p + ip

solution dominates.
The left panel of Fig. 6 shows the condensation energy for

the lowest-energy solution as a function of doping for different
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FIG. 5. (Color online) Condensation energy in units of t of the
various triplet and singlet superconducting solutions found in VCA
as a function of doping δ = 1 − n. Top left: stable solutions at U = 3
and V = 0. Bottom left: stable solutions at U = 3 and V = 0.4.
Top right: stable solutions at U = 6 and V = 0. Bottom right, the
same, but computed on a larger, 10-site cluster made of two edge-
sharing hexagons. The d-wave solution was not stable, and the s-wave
solution was only stable for (U,V ) = (3,0.4) among the solutions
found, and was never the lowest-energy solution.

values of the extended interaction V , at U = 3. The lowest two
values of V (0 and 0.2) prefer a real, p-wave solution, whereas
higher values of V favor the p + ip solution. According to
these results, V has a favorable effect on superconductivity.
The right panel of Fig. 6 shows a phase diagram on the V − δ

plane: lower doping and higher values of V favor the chiral
p + ip state compared to the nonchiral p-wave state.

We now move to stronger coupling. The two panels on
the right of Fig. 5 show the condensation energy for the
different SC solutions (all triplet) at U = 6. In principle, the
solution should be antiferromagnetic for a range of doping
around half-filling for this value of U . Here, antiferromag-
netism was suppressed in order to simplify computations:
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FIG. 6. (Color online) Left panel: condensation energy in units of
t for the preferred superconducting solutions at U = 3 as a function of
doping δ, for different values of V . Dashed curves: p-wave solutions;
full curves: p + ip solutions. Right panel: phase diagram on the
V − δ plane at U = 3. There is a transition between p and p + ip

solutions.
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we are concerned here with the preferred SC pairing, not
the possible coexistence with antiferromagnetism. The top
right panel shows the condensation energy as a function of
doping computed from the six-site cluster illustrated on Fig. 1
and used in most of this work. The bottom panel shows
the corresponding results on a 10-site cluster made of two
hexagonal cells. Using a larger cluster provides a check on the
robustness of VCA results, even though a finite-size analysis
is rarely possible. Our results still stand, except that the 10-site
cluster does not have the full symmetry of the lattice, and
therefore a Weiss field of one symmetry (for instance p + ip)
will lead to a nonzero average of the f -wave pairing operator as
well, which would not happen for the hexagonal, 6-site cluster.

V. CLUSTER DYNAMICAL MEAN-FIELD THEORY

We use cellular dynamical mean-field theory (CDMFT)
to confirm the appearance of triplet superconductivity by an
independent method. CDMFT, like VCA, proceeds by tiling
the lattice with clusters and by computing an optimized self-
energy for each cluster. Unlike VCA, the space of self-energies
is not explored by adding Weiss fields on the cluster, but rather
by coupling each cluster to a bath of uncorrelated, auxiliary
orbitals that represent the effect of the cluster’s environment
[20–23]. The cluster Hamiltonian is supplemented by bath-
cluster hybridization and bath energy terms

Hhyb =
∑
μ,α

θαμa†
μcα + H.c.,

Hbath =
∑
μ,ν

εμνa
†
μaν,

(21)

where aμ denotes the annihilation operator for the bath orbital
labeled μ. Again, we use the Nambu formalism, wherein
a particle-hole transformation is applied to the spin-down
orbitals. Hence, the matrices θαμ and εμν may contain off-
diagonal blocks associated with pairing, contributing to the
anomalous Green function.

The Hamiltonians (21), together with the restriction of the
Hubbard Hamiltonian (1) to the cluster, define an Anderson
impurity model. The cluster Green function, when traced over
the bath orbitals, takes the following form as a function of
complex frequency ω:

G′−1(ω) = ω − t − �(ω) − �(ω), (22)

where the hybridization matrix �(ω) is

�(ω) = θ (ω − ε)−1θ † (23)

in terms of the matrices θαμ and εμν . In practice, the cluster
Green function is computed from an exact diagonalization
technique using variants of the Lanczos method (just like in
VCA) and the self-energy is extracted from Eq. (22).

The Green function G(k̃,ω) for the lattice model is then
computed from the cluster’s self-energy as

G−1(k̃,ω) = G−1
0 (k̃,ω) − �(ω). (24)

Here, k̃ denotes a reduced wave vector, belonging to the
Brillouin zone associated with the superlattice of clusters that
defines the tiling, and G0 is the noninteracting Green function.
All Green function related quantities are 2Nc × 2Nc matrices,

Nc being the number of sites in the unit cell of the superlattice,
which is made of one or more distinct clusters (the factor of 2
is there because of spin, or more precisely Nambu space).

The bath and hybridization parameters (εμν,θαμ) are deter-
mined by the self-consistency condition

G′(ω) =
∫

d2k

2π

∑
k̃

G(k̃,ω), (25)

where the integral is carried of the reduced Brillouin zone
(the domain of k̃). In other words, the local Green function
G′(ω) should coincide with the Fourier transform of the full
Green function at the origin of the superlattice. This condition
should hold at all frequencies, which is impossible in a
zero-temperature implementation of CDMFT because of the
finite number of bath parameters at our disposal. Therefore,
condition (25) is only approximately satisfied, through the
use of a merit function. Details can be found, for instance, in
Refs. [23,41,42].

In the presence of extended interactions, the dynamical
Hartree approximation is used in conjunction with CDMFT,
but in that case the mean-field parameters are converged at the
same time as the bath parameters, which makes the method
more efficient than its VCA counterpart.

In the zero-temperature formalism used here, the size of the
bath is limited by the use of the Lanczos method to solve the
Anderson impurity problem. We used the bath-cluster system
illustrated on Fig. 7. The cluster has four sites. Together with its
inverted image, it forms a periodically repeated “supercluster”
that tiles the lattice. The six bath orbitals are assigned fictitious
positions that represent the neighboring sites of the cluster.
They each have a bath energy εi and a hybridization θi with
the cluster. In addition, the superconducting pairing takes place
only between the bath orbitals, along the links indicated in
red on Fig. 7. The triplet pairing amplitudes di are defined
in the order shown, and may be constrained into parameters

12
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ε2
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ε4

ε5

ε6

θ2

θ4

θ6

θ1

θ3

θ5

d2 d3

d4

d5d6

d1

I

12

3

4
1 2

3

4

FIG. 7. (Color online) Left: cluster-bath system used in CDMFT.
The cluster sites are black circles, the bath orbitals red squares. The
bath parameters are orbital energies εi , hybridizations θi , and intrabath
triplet pairing di (the arrows indicate the conventional sign of that
pairing, which is odd under spatial inversion). The chiral supercurrent
I is measured along the green dotted triangle. The four-site cluster by
itself does not tile the lattice, but can be combined with its inverted
image to tile the lattice (right panel).
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representing various pairing symmetries. For instance, two
independent f -wave bath parameters d

(f )
1,2 could be introduced

such that

d1 = d3 = d5 = d
(f )
1 , d2 = d4 = d6 = d

(f )
2 , (26)

whereas two p + ip-wave parameters d
(p+ip)
1,2 would be intro-

duced such that

d1 = e−2iπ/3d3 = e2πi/3d5 = d
(p+ip)
1 ,

d2 = e−2iπ/3d4 = e2πi/3d6 = d
(p+ip)
2

(27)

and p − ip bath parameters would be defined by complex
conjugation of the prefactors. Using bath parameters with the
proper symmetries helps confirming that the converged values
do indeed represent solutions with well-defined symmetry-
breaking patterns, as some of these parameters, of a given
symmetry, will converge to nonzero values whereas all others
will converge to zero.

In order to facilitate convergence, we have set all θi to
a common value and arranged the bath energies into two
groups: ε1 = ε3 = ε5 = ε and ε2 = ε4 = ε6 = ε′. In studying
p + ip pairing, we thus have a total of 3 + 4 = 7 variational
parameters (the 4 come from the real and imaginary parts
of d

(p+ip)
1 and d

(p+ip)
2 ), plus an optional 6 others if other

superconducting channels are put in competition with the
p + ip channel, to check stability.

Figure 8 shows the results of CDMFT computations
performed on the cluster-bath system depicted on Fig. 7 for
U = 3 and several values of the the nearest-neighbor repulsion
V , as a function of doping δ. The top panel shows the absolute
value of the expectation value 〈�̂p+ip〉 of the p + ip pairing
operator defined in Table I. The bottom panel shows the chiral
current I , defined on Fig. 7, that circulates around the cluster,
as a function of doping. This is a direct measure of the chiral
character of superconductivity on the cluster. The current
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FIG. 8. (Color online) Top panel: expectation value of the p + ip

pairing operator �̂p+ip in the solutions found by CDMFT for U = 3
and different values of the nearest-neighbor Coulomb interaction V ,
as a function of doping. Bottom panel: corresponding value of the
chiral current I circulating along the triangle defined by the sites 2,
3, and 4 of the cluster.

actually flows from site 2 to site 3 via the bath sites, and
so on, in a circular manner, back to site 2. This can only be
measured on the cluster: physically, it would vanish in the bulk
and only appear as an edge effect.

The chiral p + ip solution is indeed found, in preference to
nonchiral solutions. In other words, when the six anomalous
bath parameters are allowed to vary in both their real and
imaginary parts, the p + ip-wave solution is found, the
operator �̂p+ip has a nonzero expectation value and the other
operators �̂p−ip and �̂f have zero expectation value. Of
course, initial values of the bath parameters determine whether
the p + ip or the p − ip solutions emerge in the end. Like in
the VCA solutions, the nearest-neighbor repulsion V favors
superconductivity.

As the chemical potential μ is varied towards half-filling,
the p + ip order parameter decreases, but does not vanish
at half-filling. Thus, there is a superconducting solution at
half-filling, at the particle-hole-symmetric point, like in VCA.

Similar calculations were attempted for s-, d-, and d + id-
wave superconductivity, with the bath operators di of Fig. 7
replaced by singlet pairing operators, but were not successful:
either the trivial (normal) solution was found, or the CDMFT
procedure did not converge.

VI. DISCUSSION

Our approach is based on a real-space analysis and is not
confined to the neighborhood of the Fermi surface. Short-range
correlations are taken into account exactly, and retardation
effects may be important: we go well beyond mean-field
theory, even though long-range fluctuations are not taken into
account. We also study, on the same footing and without bias,
all possible pairing symmetries.

Our conclusions are to be contrasted with those of other
studies that use different methodologies, and that conclude that
the preferred SC solution has d + id symmetry: For instance,
in Ref. [10], a renormalization-group analysis based on a small
number of k points and repulsive interactions is performed. In
Ref. [12], renormalized mean-field theory is applied on the
t-J model (thus in the strong coupling limit, not the same
regime as ours). A functional renormalization-group analysis
is also performed, with the same conclusions, even though
the approach is usually applied at lower coupling. In Ref. [7],
a variational Monte Carlo method is applied, but a d-wave
symmetry is assumed at the outset. The constrained path Monte
Carlo analysis of Ref. [8] necessitates an initial wave function,
and thus may be biased towards a singlet-pairing solution as
well.

On the other hand, the mean-field analysis of Ref. [6]
concludes that triplet, p + ip superconductivity is preferred
if the onsite interaction is repulsive and the nearest-neighbor
interaction is attractive. But, retardation effects from a strong
onsite interaction, not visible in a mean-field treatment, may
lead to an effective, nearest-neighbor attraction. As demon-
strated in Ref. [30], an additional, repulsive nearest-neighbor
interaction V does not necessarily suppress this effect. This is a
complicated dynamical question, especially in the intermediate
coupling regime.

Many authors have argued that antiferromagnetic spin fluc-
tuations provide the pairing “glue” in high-Tc superconductors.
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In particular, within the Hubbard model, the energy scale
associated with short-range spin fluctuations has been shown
to correlate with features of the anomalous self-energy [43].
Triplet pairing, on the other hand, would require ferromagnetic
spin fluctuations or charge-density wave fluctuations.

Models of interacting spinless fermions on the graphene
lattice have also been studied, with applications to ultracold
atom systems, at the mean-field level [44]. In that context, the
distinction between singlet and triplet pairing obviously makes
no sense. The mean-field solution changes its symmetry as a
function of interaction strength (always negative in that case),
but time-reversal symmetry is never broken.

We have neglected the possibility of superconducting states
that break translation symmetry. This includes in particular
the so-called Kekulé state proposed in Ref. [45], which is
based on triplet pairing and on a bond-order wave with a
Kekulé-type pattern. At the mean-field level, this state requires
attractive nearest-neighbor interactions, but one may speculate
that a proper treatment of correlations could reveal it in the
presence of repulsive interactions. It would be interesting to
see how such a state compares with the spatially homogeneous
solutions found in this work.

VII. CONCLUSION

We have shown that triplet, p-wave superconductivity
emerges as the dominant channel for superconductivity in

the extended Hubbard model on the graphene lattice at
weak to moderate coupling for dopings ranging from zero to
20%, using the variational cluster approximation (VCA) and
cellular dynamical mean-field theory (CDMFT) with an exact
diagonalization solver at zero temperature. In the presence
of an extended interaction V , we performed a mean-field
decoupling of the intercluster interaction, a method we call the
dynamical Hartree approximation (DHA), used in conjunction
with VCA or CDMFT.

VCA simulations show that the real (nonchiral) p-wave
symmetry is favored for small V , small onsite interaction U ,
or large doping, whereas the chiral combination p + ip is
favored for larger values of V , stronger onsite interaction U ,
or smaller doping. In this regime, superconductivity exists even
at half-filling, even though the order weakens on approaching
half-filling.

A study of the pairing dynamics similar to that of
Refs. [30,43,46] would be of interest.
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Katsnelson, and S. Blügel, Phys. Rev. Lett. 106, 236805 (2011).

[28] M. Potthoff, Eur. Phys. J. B 32, 429 (2003).
[29] M. Potthoff, in Theoretical Methods for Strongly Correlated

Systems, Springer Series in Solid-State Sciences, Vol. 171,
edited by A. Avella and F. Mancini (Springer, Berlin, 2012),
Chap. 9.

085121-9

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1088/0953-8984/26/42/423201
http://dx.doi.org/10.1088/0953-8984/26/42/423201
http://dx.doi.org/10.1088/0953-8984/26/42/423201
http://dx.doi.org/10.1088/0953-8984/26/42/423201
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevB.44.9667
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1088/0031-8949/2012/T146/014019
http://dx.doi.org/10.1088/0031-8949/2012/T146/014019
http://dx.doi.org/10.1088/0031-8949/2012/T146/014019
http://dx.doi.org/10.1088/0031-8949/2012/T146/014019
http://dx.doi.org/10.1103/PhysRevLett.98.146801
http://dx.doi.org/10.1103/PhysRevLett.98.146801
http://dx.doi.org/10.1103/PhysRevLett.98.146801
http://dx.doi.org/10.1103/PhysRevLett.98.146801
http://dx.doi.org/10.1103/PhysRevB.81.085431
http://dx.doi.org/10.1103/PhysRevB.81.085431
http://dx.doi.org/10.1103/PhysRevB.81.085431
http://dx.doi.org/10.1103/PhysRevB.81.085431
http://dx.doi.org/10.1103/PhysRevB.84.121410
http://dx.doi.org/10.1103/PhysRevB.84.121410
http://dx.doi.org/10.1103/PhysRevB.84.121410
http://dx.doi.org/10.1103/PhysRevB.84.121410
http://dx.doi.org/10.1103/PhysRevB.86.020507
http://dx.doi.org/10.1103/PhysRevB.86.020507
http://dx.doi.org/10.1103/PhysRevB.86.020507
http://dx.doi.org/10.1103/PhysRevB.86.020507
http://dx.doi.org/10.1038/nphys2208
http://dx.doi.org/10.1038/nphys2208
http://dx.doi.org/10.1038/nphys2208
http://dx.doi.org/10.1038/nphys2208
http://dx.doi.org/10.1103/PhysRevB.86.115426
http://dx.doi.org/10.1103/PhysRevB.86.115426
http://dx.doi.org/10.1103/PhysRevB.86.115426
http://dx.doi.org/10.1103/PhysRevB.86.115426
http://dx.doi.org/10.1103/PhysRevB.87.094521
http://dx.doi.org/10.1103/PhysRevB.87.094521
http://dx.doi.org/10.1103/PhysRevB.87.094521
http://dx.doi.org/10.1103/PhysRevB.87.094521
http://dx.doi.org/10.1103/PhysRevB.90.245114
http://dx.doi.org/10.1103/PhysRevB.90.245114
http://dx.doi.org/10.1103/PhysRevB.90.245114
http://dx.doi.org/10.1103/PhysRevB.90.245114
http://dx.doi.org/10.1103/PhysRevB.90.054521
http://dx.doi.org/10.1103/PhysRevB.90.054521
http://dx.doi.org/10.1103/PhysRevB.90.054521
http://dx.doi.org/10.1103/PhysRevB.90.054521
http://dx.doi.org/10.1103/PhysRevB.88.155112
http://dx.doi.org/10.1103/PhysRevB.88.155112
http://dx.doi.org/10.1103/PhysRevB.88.155112
http://dx.doi.org/10.1103/PhysRevB.88.155112
http://dx.doi.org/10.1103/PhysRevB.70.245110
http://dx.doi.org/10.1103/PhysRevB.70.245110
http://dx.doi.org/10.1103/PhysRevB.70.245110
http://dx.doi.org/10.1103/PhysRevB.70.245110
http://dx.doi.org/10.1103/PhysRevLett.94.156404
http://dx.doi.org/10.1103/PhysRevLett.94.156404
http://dx.doi.org/10.1103/PhysRevLett.94.156404
http://dx.doi.org/10.1103/PhysRevLett.94.156404
http://dx.doi.org/10.1103/PhysRevB.74.235117
http://dx.doi.org/10.1103/PhysRevB.74.235117
http://dx.doi.org/10.1103/PhysRevB.74.235117
http://dx.doi.org/10.1103/PhysRevB.74.235117
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevB.78.165123
http://dx.doi.org/10.1103/PhysRevB.78.165123
http://dx.doi.org/10.1103/PhysRevB.78.165123
http://dx.doi.org/10.1103/PhysRevB.78.165123
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1063/1.2199446
http://dx.doi.org/10.1063/1.2199446
http://dx.doi.org/10.1063/1.2199446
http://dx.doi.org/10.1063/1.2199446
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1140/epjb/e2003-00121-8
http://dx.doi.org/10.1140/epjb/e2003-00121-8
http://dx.doi.org/10.1140/epjb/e2003-00121-8
http://dx.doi.org/10.1140/epjb/e2003-00121-8


J. P. L. FAYE, P. SAHEBSARA, AND D. SÉNÉCHAL PHYSICAL REVIEW B 92, 085121 (2015)
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