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We study interaction effects on the topological crystalline insulators protected by time-reversal (T ) and
reflection symmetry (R) in two and three spatial dimensions. From the stability analysis of the edge states
with bosonization, we find that the classification of the two-dimensional symmetry-protected topological (SPT)
phases protected by Z2 × [U(1) � T ] symmetry is reduced from Z to Z4 by interactions where the Z2 symmetry
denotes the reflection whose mirror plane is the two-dimensional plane itself. By extending the approach recently
proposed by Isobe and Fu, we show that the classification of the three-dimensional SPT phases (i.e., topological
crystalline insulators) protected by R × [U(1) � T ] symmetry is reduced from Z to Z8 by interactions.
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I. INTRODUCTION

Recently, topological structures of gapped quantum states
have attracted much attention. The topologically nontrivial
phases are many-body states with gapped excitation spectra in
the bulk and characterized by nontrivial topological structure
of wave functions. A remarkable property of topological
phases is the existence of stable gapless boundary modes,
which is a source of various exotic properties; the boundary
modes are the origin of quantization of the Hall conductivity
in integer quantum Hall systems [1] and topological magneto-
electric effects in three-dimensional topological insulators [2].
One of the important questions in this field is classification
of topological phases, i.e., to count how many topologically
distinct phases exist under given symmetry. The first answer to
this question is obtained for free-fermion systems, for which
classification is summarized in the so-called periodic table
of topological insulators and superconductors [3–5]. Free-
fermion systems are categorized into 10 Altland-Zirnbauer
symmetry classes [6] in terms of time-reversal, particle-hole,
and sublattice symmetry. The periodic table tells us that, in
every spatial dimension, 3 and 2 of the 10 Altland-Zirnbauer
symmetry classes have topological insulators/superconductors
characterized by topological indices from Z and Z2, respec-
tively. The periodic table of topological insulators provides
helpful information for searching for topological materials.

The notion of topological insulators and superconductors
is extended to systems of interacting fermions or bosons.
The symmetry-protected topological (SPT) phases [7] are
many-body ground states with short-range entanglement
which have gapped excitations in the bulk and gapless
excitations on the boundary which are stable against any
symmetry-preserving perturbation. The Haldane gap phase
of integer-spin chains [8,9] and bosonic integer quantum
Hall states [10,11] are examples of bosonic SPT phases
in one and two dimensions. As for fermionic SPT phases,
topologically nontrivial phases are also expected in several
4f - or 5d-electron systems, and the Kondo insulator SmB6 is a
candidate of a topological insulator of correlated electrons [12–
15]. However, it was shown by Fidkowski and Kitaev that
interactions can change the topological classification (periodic
table) of free-fermion systems [16]. They demonstrated that
interchain interactions in eight Kitaev chains gap out all

Majorana zeromodes without symmetry breaking. This implies
that topological classification of one-dimensional topological
insulators/superconductors in class BDI (or chiral orthogonal
class) is changed from Z to Z8 by interactions. Such a
collapse of topological classification is also observed in two
dimensions [17–20] and three dimensions [21–24]. Several
theoretical frameworks for classification of SPT phases in
interacting systems have been developed. For example, theory
based on group cohomology [7,8,25] or cobordisms [26–28]
classifies possible topological actions for the bulk states, while
a theoretical approach using the Chern-Simons theory [29,30]
or nonlinear sigma models [21–24,31] examines the stability
of gapless boundary modes.

In many cases SPT phases are protected by local symmetry
such as time-reversal and other internal symmetries. However,
spatial symmetry (e.g., reflection, rotation, etc.) can also
protect topological phases, as pointed out by Fu [32] and
realized in the topological crystalline insulator SnTe [33,34].
This compound respects the time-reversal and reflection sym-
metries and has four Dirac cones on the (0,0,1) surface [34].
Having a trivial strong Z2 index, SnTe is a trivial band insulator
as the four gapless Dirac cones are not protected from opening
of a gap by time-reversal symmetry. However, the reflection
symmetry about the (1,1,0) plane prohibits any Dirac mass
term that could gap out Dirac cones, and the stability of
surface Dirac cones is guaranteed by mirror Chern numbers
defined on mirror planes in the Brillouin zone; the topological
classification is thus Z [34–37]. Besides SnTe, there are
other candidate materials theoretically proposed as topological
crystalline insulators in strongly correlated electron systems: a
heavy-fermion compound YbB12 [38] and a d-electron system
Sr3PbO [39].

Recently, effects of interactions on topological crystalline
insulators have been addressed by Isobe and Fu [40]. Motivated
by first-principles calculations [41,42] predicting that thin
films of SnTe become two-dimensional topological insulators
(i.e., quantum spin Hall insulators), they studied stability of
gapless edge states with internal Z2 symmetry that comes from
reflection symmetry about the two-dimensional plane; they ob-
tained Z4 classification for thin films. Furthermore, they have
developed a theoretical approach to classify three-dimensional
topological crystalline insulators which utilizes the stability
analysis of the gapless edge states. This approach led to
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Z8 classification for three-dimensional topological crystalline
insulators. Strictly speaking, however, the symmetry of the
models studied in Ref. [40] is U(1)×Z2, where the U(1)
symmetry denotes charge conservation [43]. In general, the
gapless edge states are chiral under the U(1)×Z2 symmetry.
The time-reversal symmetry of topological crystalline insu-
lators is taken into account in the assumption of nonchiral
gapless edge structure in Ref. [40].

In this paper we study interaction effects on topological
crystalline insulators protected by time-reversal and reflection
symmetries. That is, we classify fermionic SPT phases
under Z2 × [U(1) � T ] symmetry in two dimensions and
R × [U(1) � T ] symmetry in three dimensions, where T

and R denote time-reversal and reflection. Using the models
studied by Isobe and Fu, we carefully derive transformation
laws of fields under symmetry transformations and examine
the stability of gapless edge modes under symmetry-preserving
perturbations and interactions. We obtain Z4 classification for
two dimensions and Z8 classification for three dimensions, in
agreement with Isobe and Fu.

The rest of this paper is organized as follows. In Sec. II, we
consider a two-dimensional model respecting the reflection
symmetry whose reflection plane is parallel to the two-
dimensional plane. We elucidate the collapse of topological
classification from Z to Z4 due to interactions. In Sec. III, by
extending the argument of Ref. [40] to time-reversal-invariant
systems, we show the collapse of topological classification
from Z to Z8 in three-dimensional topological crystalline
insulators. This means that eight Dirac cones on the surface of a
topological crystalline insulator can be gapped out. In addition,
in Sec. IV we point out that two Dirac cones can be gapped
out without symmetry breaking by attaching a fractionalized
quantum spin Hall insulator with topological order. In Sec. V
we summarize our results.

II. TWO-DIMENSIONAL TOPOLOGICAL CRYSTALLINE
INSULATOR

Recent first-principles calculations predict that quantum
spin Hall states can be realized in the (111) thin films of
the SnTe class of three-dimensional topological crystalline
insulators [41,42]. The surface Dirac fermions on the top
and bottom surfaces of the (111) thin films are gapped
by intersurface coupling and turn into a topological state.
Following Ref. [41], we take the effective Hamiltonian for
the Dirac fermions on the top and bottom surfaces of a thin
film with an odd number of layers,

H2D =
∫

d2xψ†(x)[(i∂xσ
y − i∂yσ

x) ⊗ τ z + mτx]ψ(x),

(1)

where x = (x,y), ψ† = (ψ†
1↑,ψ

†
1↓,ψ

†
2↑,ψ

†
2↓), and the velocity

is set equal to unity. Here ψ†
ασ is the creation operator of Dirac

fermions with spin σ = ↑, ↓ on the top (α = 1) or the bottom
(α = 2) surface. The Pauli matrices σ i and τ i (i = x,y,z) act
on the spin and surface indices, respectively. The coupling
of the top and bottom surface Dirac fermions gives the mass
term mτx .

Notice that the Hamiltonian (1) respects the time-reversal
(T ) symmetry and the local Z2 symmetry (g) arising from
the reflection symmetry with respect to the two-dimensional
plane. Transformations of ψ under the symmetry operations
are described by

T = −iσ yK, g = iσ zτ x, (2)

where K is the operator for complex conjugation.
The presence of the Z2 symmetry promotes the topological

index characterizing the two-dimensional Hamiltonian from
Z2 (Z2 index of time-reversal invariant insulators) to Z (a
mirror Chern number). To understand this, we first note that the
Chern number is defined for each eigenspace of g. The opera-
tors T and g commute with each other, [−iσ yK,iσ zτ x] = 0,
and the time-reversal symmetry interchanges the eigenspaces
of g. For example, if |+〉 and |−〉 are eigenstates of g

with the eigenvalues +i and −i, respectively, then T |±〉 are
eigenstates with the eigenvalues ∓i, respectively. Thus, the
Hamiltonian is block diagonalized into eigenspaces of g which
are related by the time-reversal symmetry and characterized
by the Chern numbers with opposite signs [44]. Having the
integer topological number, N0 copies of H2D can have N0

pairs of helical edge modes protected by time-reversal and
reflection symmetries.

To describe a Kramers pair of helical edge modes of the
two-dimensional topological insulator, we introduce smooth
spatial modulation in the mass term in Eq. (1). This generates
gapless states moving along a line where the sign of the mass
changes. Let us replace mτx by m(x)τ x , where m(x) takes a
positive (negative) value for x > 0 (x < 0). This yields helical
edge states localized at the kink (x = 0); solving the Dirac
equation for the zero mode,

[i∂xσ
y ⊗ τ z + m(x)τ x] |±y〉 = 0, (3)

we obtain a Kramers pair of gapless modes |+y〉 and |−y〉
propagating to the +y and −y directions, respectively:

〈x|±y〉 = exp

[
±ikyy −

∫ x

0
dx ′m(x ′)

]
|±y〉0, (4a)

with

|±y〉0 =
(

1
i

)
σ

⊗
(

1
i

)
τ

± i

(
1
−i

)
σ

⊗
(

1
−i

)
τ

, (4b)

where |x〉 is the eigenstate of x and ky denotes the momentum
along the y direction. These states are transformed as

T

(|+y〉
|−y〉

)
=

( |−y〉
−|+y〉

)
, g

(|+y〉
|−y〉

)
=

(
i |+y〉

−i |−y〉
)

. (5)

In order to examine the stability of the gapless helical
edge modes in the presence of interactions, we bosonize the
fermionic gapless edge modes [29,30,45,46]. The Lagrandian
for the bosonic fields representing the helical edge modes is
given by

L =
∫

dx

4π
[KI,J ∂tφI (x)∂xφJ (x) − ∂xφI (x)∂xφI (x)], (6a)

with K = ρz, where ρi (i = x,y,z) are the Pauli matrices
and summation over the repeated indices I,J is assumed (this
is assumed throughout this paper). The bosonic fields, φ =
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(φ1,φ2) = (φ+,φ−), describe the edge modes propagating to
the +y and −y directions, respectively. More specifically, the
vertex operators :eiφ+

: and : eiφ−
: create fermions in the |+y〉

and |−y〉 states, respectively. The fields φI are defined modulo
2π . The commutation relations of these fields are given by

[φI (x),φJ (y)] = iπρz
I,J sgn(x − y) + iπ sgn(I − J ). (6b)

Here, sgn(x) equals +1, 0, and −1 for x > 0, x = 0, and
x < 0, respectively. The second term on the right-hand side of
Eq. (6b) accounts for the anticommutation relation of fermions
from different edge modes. Symmetry transformations of the
bosonic fields φI can be deduced from Eq. (5), which should be
compared with G : eiφ1,2 :G−1 (G = T̂ ,ĝ,ûθ ). We thus obtain
the following transformation rules for the bosonic fields:

T̂ φ(x)T̂ −1 = −σxφ(x) + πe2, (7a)

ĝφ(x)ĝ−1 = φ(x) + π

2
(e1 − e2), (7b)

ûθφ(x)û−1
θ = φ(x) + θ (e1 + e2), (7c)

where eI is the unit vector whose I th entry is one and the
other entries are zero. The operators T̂ , ĝ, and ûθ denote the
time-reversal, the local reflection, and the charge U(1) rotation,
respectively. The minus sign in Eq. (7a) is due to the antiunitary
nature of T̂ . The symmetry group of the system is denoted as
Z2 × [U(1) � T ] in the notation of Ref. [29].

We will examine whether interactions can gap out N0

copies of the gapless helical modes defined above without
symmetry breaking for N0 = 1, . . . ,4. The Lagrangian for
the 2N0-component bosonic field φ = (φ1, . . . ,φ2N0 )T , which
describes the N0 copies of helical edge modes, is given by
Eq. (6a) with the K matrix

K = ρz ⊗ 1lN0 , (8a)

where 1lN0 is the N0 × N0 unit matrix. The I th component of
the bosonic field φI corresponds to the edge mode propagating
to the +y (−y) direction for odd I (even I ), respectively.
The commutation relations of the bosonic fields φI (I =
1, . . . ,2N0) are given by

[φI (x),φJ (y)] = iπ (K−1)I,J sgn(x − y) + iπ sgn(I − J ).

(8b)

The transformation rules in Eq. (7) hold if we replace
e1 and e2 with the following 2N0-dimensional vectors: e1 =
(1,0,1,0, . . . ,1,0) and e2 = (0,1,0,1, . . . ,0,1).

The N0 pairs of helical edge modes are gapped out if there
exist potential

Lint =
∑

α

Cα

∫
dx : cos(lα · φ + aα) : (9)

with N0 linearly independent vectors lα satisfying the Hal-
dane’s null vector condition [47]

lT
α K−1lβ = 0, (α,β = 1, . . . ,N0) (10)

so the fields satisfy [lα · φ(x),lβ · φ(y)] = 0 up to 2πin (n ∈
Z) for α,β = 1, . . . ,N0. The coupling constants Cα and the
phases aα are real numbers. As indicated by the colons in

Eq. (9), the vertex operators are normal ordered,

:eil·φ : = ei π
2

∑
I<J lI lJ :eil1φ1 ::eil2φ2 : · · · :eil2N0 φ2N0 :, (11)

where the phase factor exp( iπ
2

∑
I<J lI lJ ) is in accordance

with the second term in the commutator in Eq. (8b). It makes
:e−il·φ : the Hermitian conjugate of : eil·φ :.

There are cases when the symmetry is broken sponta-
neously, even when Lint in Eq. (9) is invariant under the
symmetry transformations. The occurrence of spontaneous
symmetry breaking can be judged by finding elementary
bosonic variables as follows. The N0 linearly independent
vectors {l1, . . . ,lN0} form a N0-dimensional lattice as R =
j1l1 + j2l2 + · · · + jN0 lN0 , where jα are arbitrary integers
(α = 1, . . . ,N0). From the integer vectors in the lattice, we
find a set of linearly independent vectors {l̃1,l̃2, . . . ,l̃N0}, from
which we define a primitive lattice vectors {v1, . . . ,vN0},

vα = 1

gcd(l̃α,1, . . . ,l̃α,2N0 )
l̃α, (12)

where gcd denotes the greatest common divisor of the
integers in the parentheses. The vectors {v1, . . . ,vN0} form
a primitive cell of the smallest volume (see examples below).
Finally, elementary bosonic variables [29] are given by vα · φ

(α = 1, . . . ,N0). The set of elementary bosonic variables
{v1 · φ, . . . ,vN0 · φ} are pinned to constant values, when the
fields {l1 · φ, . . . ,lN0 · φ} are pinned by the potentail in Lint.
We see that the gapless edge modes can be gapped out without
symmetry breaking if and only if the set {v1 · φ, . . . ,vN0 · φ}
is invariant,

G{v1 · φ, . . . ,vN0 · φ}G−1 = {v1 · φ, . . . ,vN0 · φ}, (13)

modulo 2π under the symmetry transformations in Eq. (7),
where G = T̂ ,ĝ,ûθ .

Here two comments on the symmetry transformations
of the cosine terms are in order. First, the vector l0 =
K−1(1,1, . . . ,1)T = (1, − 1, . . . ,1, − 1) is in the lattice gen-
erated by the elementary vectors {v1, . . . ,vN0} when the cosine
terms with {l1, . . . ,lN0} in Lint respect the symmetry and gap
out all the edge modes. In other words, the field l0 · φ is pinned
when all the edge modes are gapped out. This is understood
by noting that : cos(2l0 · φ): is invariant under the symmetry
transformations. Second, it is important to take into account
additional phase shifts coming from the Klein factors [the
second term in Eq. (8b)] when we examine the invariance of
the cosine terms in Lint, in particular, under the time-reversal
transformation, which changes the direction of propagation of
edge modes.

We show below that four copies of the helical edge
modes (6a) can be gapped out without symmetry breaking. We
begin with the case of N0 = 1. A gapping potential respecting
the symmetry is given by

Lint = C

∫
dx: cos[2v · φ(x)]: (14a)

with

v = (1, − 1)T . (14b)
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This potential is invariant under the operations of T̂ , ĝ,
and ûθ . Indeed, the invariance under ĝ and ûθ can be seen
as

ĝ(2v · φ)ĝ−1 = 2v · φ + 2π, (15a)

ûθ (2v · φ)û−1
θ = 2v · φ. (15b)

To verify the invariance under T̂ , we note from Eqs. (7a)
and (11) that

T̂ :e2iv·φ :T̂ −1 = T̂ :e2iφ1 : :e−2iφ2 :T̂ −1

= :e2iφ2 : :e−2iφ1 :

= :e−2iv·φ : (16a)

and vice versa and hence

T̂ : cos(2v · φ):T̂ −1 = : cos(2v · φ):. (16b)

It turns out, however, that the ground state breaks the symmetry
as the elementary bosonic variable v · φ is transformed as

ĝ v · φ ĝ−1 = v · φ + π. (17)

The vector v in Eq. (14b) is the elementary bosonic variable
respecting the U(1) symmetry. Hence, it is impossible to gap
out edge modes by any symmetry-preserving potential without
spontaneous symmetry breaking when N0 = 1.

For N0 = 2, an example of pinning potentials allowed by
the symmetry is given by

Lint = C
∑

α=1,2

∫
dx: cos[2vα · φ(x)]: (18a)

with

v1 = (1,0 | 0, − 1), v2 = (0,1 | − 1,0), (18b)

where C is an arbitrary real number and the vertical lines in
v1,2 are inserted between the copies of helical edge modes.
The invariance under ĝ and ûθ can be checked directly as
in the N0 = 1 case. The time-reversal transformation of φ =
(φ1,φ2,φ3,φ4)T ,

T̂ φT̂ −1 = −σx ⊕ σxφ + π (e2 + e4), (19)

yields

T̂ : cos(2v1 · φ):T̂ −1 = : cos(2v2 · φ):, (20a)

T̂ : cos(2v2 · φ):T̂ −1 = : cos(2v1 · φ):, (20b)

where we have used Eq. (11). However, the spontaneous
symmetry breaking occurs once the elementary bosonic
variables {v1 · φ,v2 · φ} are pinned by Lint, as these variables
are not invariant under ĝ [in a similar way to Eq. (17)]. We
note that this observation holds for arbitrary l’s of the pinning
potentials respecting the U(1) symmetry. For example, if the
cosine terms with

l1 = (1, − 1 | 1, − 1)T , (21a)

l2 = (1,1 | − 1, − 1)T , (21b)

are used to gap out the edge modes, then the elementary
bosonic fields {v1 · φ,v2 · φ} are also pinned (because l1 +

l2 = 2v1 and l1 − l2 = −2v2), which gives rise to sponta-
neous symmetry breaking. Thus, we cannot gap out edge
modes without symmetry breaking.

Let us move on to the case of N0 = 3. When all the helical
edge modes are gapped out, the field

l0 · φ = φ1 − φ2 + φ3 − φ4 + φ5 − φ6 (22)

necessarily takes a classical value (i.e., 〈l0 · φ〉 = const).
This implies that the ground state spontaneously breaks the
symmetry, as l0 · φ is not invariant under ĝ,

ĝ l0 · φ ĝ−1 = l0 · φ + 3π. (23)

For N0 = 4, we can gap out all the edge modes while
respecting the symmetry by taking the following cosine terms:

L(4)
int = C

4∑
α=1

∫
dx: cos[vα · φ(x)]: (24a)

with

v1 = (1,0 | 1,0 | 0, − 1 | 0, − 1)T , (24b)

v2 = (0,1 | 0,1 | − 1,0 | − 1,0)T , (24c)

v3 = (1, − 1 | − 1,1 | 0,0 | 0,0)T , (24d)

v4 = (0,0 | 0,0 | 1, − 1 | − 1,1)T . (24e)

The time-reversal invariance can be seen as follows:

T̂ : cos(v1 · φ):T̂ −1 = : cos(v2 · φ):, (25a)

T̂ : cos(v2 · φ):T̂ −1 = : cos(v1 · φ):, (25b)

T̂ : cos(v3 · φ):T̂ −1 = : cos(v3 · φ):, (25c)

T̂ : cos(v4 · φ):T̂ −1 = : cos(v4 · φ):. (25d)

Invariance under the transformations of ĝ and ûθ can be seen
by straightforward calculations:

ĝ vα · φ ĝ−1 = vα · φ (mod 2π ), (26a)

ûθvα · φ û−1
θ = vα · φ, (26b)

for α = 1, . . . ,4. When elementary bosonic variables vα ·
φ (α = 1, . . . ,4) are pinned at some constant values such that
〈v1 · φ〉 = 〈v2 · φ〉, the edge modes are completely gapped
out without symmetry breaking. Hence, we conclude that
two-dimensional SPT phases form a Z4 group, which is
reduced from Z of the noninteracting fermions.

III. THREE-DIMENSIONAL TOPOLOGICAL INSULATOR

In this section, we discuss three-dimensional topological
insulators with the time-reversal and reflection symmetries.
In Ref. [40], Isobe and Fu studied interaction effects on
topological crystalline insulators characterized by mirror
Chern numbers. They introduced a spatially varying mass term
to the surface Dirac Hamiltonian and examined the stability
of one-dimensional gapless modes propagating along domain
walls where the sign of the Dirac mass changes. We note
that the topological crystalline insulating phase in SnTe is
an SPT phase protected by both reflection and time-reversal
symmetries. In Ref. [40], however, the time-reversal symmetry
is not explicitly considered and is used only in the assumption
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of the nonchiral structure of boundary (domain wall) states
[48]. Here we improve on their approach by keeping time-
reversal symmetry intact at every step of calculations and show
that topological classification collapse from Z to Z8.

Let us start with discussion on the topological invariant in
the noninteracting case. As is well known, topological phases
of class AII in three dimensions form a Z2 group. In the
presence of additional reflection symmetry, the group structure
of the topological phases is promoted to Z [34]. When the
reflection plane is the yz plane, the reflection operator is given
by

R = iσ xP, (27)

where σx acts on the electron spin and P changes the
sign of x coordinate, P :(x,y,z) → (−x,y,z). The relevant
symmetry group is denoted as Z2 × [U(1) � T ] in the notation
of Ref. [29]. The topological invariant for insulating phases
under this symmetry group is the mirror Chern number nM =
(n+ − n−)/2 ∈ Z, where n± are the Chern numbers defined
in the eigenspaces of R on the two-dimensional fixed plane
under the reflection in the momentum space. The time-reversal
symmetry T = −iσ yK is not closed in each eigenspace of R

on the fixed plane.
Following Ref. [40], we classify the correlated topological

crystalline insulators by introducing a spatially varying Dirac
mass term to the surface Hamiltonian. We will show below
that the gapless modes from eight copies of Dirac cones can be
gapped out without symmetry breaking. The classification of
three-dimensional topological crystalline insulators is reduced
from Z to Z8 by interactions.

The Hamiltonian of a single Dirac cone on the surface of a
topological crystalline insulator is given by

Hsurf =
∫

d2xψ†(x)(i∂xσ
y − i∂yσ

x)ψ(x), (28)

where ψ† = (ψ†
↑,ψ

†
↓). Without reflection symmetry, two

copies of the surface Dirac cones are gapped out without
breaking the time-reversal symmetry by introducing a mass
term in the Hamiltonian,

H
(2)
surf =

∫
d2x ψ†(x)[(i∂xσ

y − i∂yσ
x) ⊗ τ0

+m0σ
z ⊗ τ y]ψ(x). (29)

Here τ acts on the pseudospin space in which the eigenvalues
±1 of τ z distingsuish the two Dirac cones and ψ† is a four-
component vector, ψ† = (ψ†

1↑,ψ
†
1↓,ψ

†
2↑,ψ

†
2↓), where ψ†

α,σ is
the creation operator of a Dirac fermion with spin σ = ↑, ↓
and pseudospin α = 1,2. The instability of two Dirac cones
is consistent with the Z2 classification of symmetry class AII.
However, when the reflection symmetry is imposed, the mass
term is not allowed by the symmetry (R m0σ

z ⊗ τ yR−1 =
−m0σ

z ⊗ τ y), and the two Dirac cones remain gapless; the Z
classification follows.

One possible way to respect both time-reversal and reflec-
tion symmetries while introducing a mass to Dirac fermions
is to modulate the sign of the mass in space. This gives rise to
one-dimensional gapless modes at the domain wall where the
mass changes its sign. To see this, let us consider the following

x

y
z

(a)

(c)

m(x)

x
0

-m0

m0

(b)

FIG. 1. (Color online) (a) Sketch of a spatially varying Dirac
mass introduced to surface Dirac fermions of a three-dimensional
topological crystalline insulator. The green dashed square denotes
the reflection plane. We introduce a positive (negative) mass in the
region where the red (violet) thin rectangle is attached. (b) Spatial
dependence of the mass in Eq. (30). (c) Top view of panel (a). Helical
edge modes are localized at the kink x = 0.

simple model:

H̃
(2)
surf =

∫
d2x ψ†(x)[(i∂xσ

y − i∂yσ
x) ⊗ τ0

+m(x)σ z ⊗ τ y ]ψ(x), (30)

where m(x) takes a positive (negative) value for x > 0 (x < 0),
respectively. A sketch of the model is shown in Fig. 1. When
the mass changes its sign as drawn in Fig. 1(b), a Kramers
pair of gapless states propagating along the y direction are
present at the domain wall at x = 0 [see Fig. 1(c)]. Their wave
functions are written as

〈x| ±y〉 = exp

[
±ikyy −

∫ x

0
dx ′m(x ′)

]
| ±y〉0, (31a)

with

| +y〉0 = i

(
1
1

)
σ

⊗
(

1
i

)
τ

, (31b)

| −y〉0 = i

(
1

−1

)
σ

⊗
(

1
−i

)
τ

, (31c)

where | +y〉 and | −y〉 propagate to the +y and −y directions,
respectively. Again, |x〉 denotes the eigenstate of x.

Under the operations of the time-reversal and reflection
symmetries, these states are transformed as follows:

T |+y〉 = |−y〉, T |−y〉 = −|+y〉, (32a)

and

R |+y〉 = i|+y〉, R |−y〉 = −i|−y〉. (32b)

Hence, introducing the bosonic fields φ± for the gapless
modes propagating along the ±y directions, we obtain the
transformation laws of φ± which are identical to Eqs. (7) with
φ = (φ+,φ−)T . Thus, proceeding in the same way as in the
previous section, we see that four copies of gapless modes
in Eq. (31) can be gapped out without symmetry breaking
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by introducing cosine potentials similar to Eq. (24) that pin
the gapless bosonic fields. Since the helical edge modes in
Eq. (31) are obtained by introducing a domain wall in the
Dirac mass that couples two Dirac cones, we conclude that
the SPT phases of three-dimensional topological crystalline
insulators protected by time-reversal and reflection form a Z8

group, which is reduced from theZ group of the noninteracting
fermions.

IV. INSTABILITY FROM COUPLING TO TOPOLOGICAL
ORDERED PHASES

So far, we have discussed the possibility of gapping out
boundary modes of two- and three-dimensonal topological
crystalline insulators without symmetry breaking by inter-
actions among themselves. In this section, we consider a
different situation in which gapless edge modes of a two-
dimensional topological crystalline insulator are interacting
with edge modes of a fractionalized quantum spin Hall
insulator (QSHI∗) [49]. In this case we find that even a single
Kramers pair of edge modes in Eq. (4) can be gapped out,
without spontaneous breaking of time-reversal and reflection
symmetry. This result implies that two copies of Dirac cones
on the surface of a three-dimensional topological crystalline
insulator can also be gapped out without symmetry breaking
by the coupling to edge modes of a QSHI∗. In fact, gapped
edge states between a QSHI and a QSHI∗ are discussed by Lu
and Lee in Ref. [49]. Here we show that the same symmetric
gapped states are obtained in the presence of additional
reflection symmetry.

The QSHI∗ is obtained by gauging the symmetry of the
fermion number parity from a QSHI; see the Appendix. The
Lagrangian of edge modes of a QSHI∗ is given by

L =
∫

dx

4π

( − 2ρx
I,J ∂tφI ∂xφJ − VI,J ∂xφI ∂xφJ

)
, (33a)

with

φ = (φs,φc)T , (33b)

where V is a symmetric and positive definite matrix. The
bosonic fields φc and φs describe chargeon and spinon,
respectively. These bosonic fields are transformed as follows:

T̂

(
φs

φc

)
T̂ −1 =

(
φs

−φc

)
+ π

2

(−1
1

)
, (34a)

ĝ

(
φs

φc

)
ĝ−1 =

(
φs

φc

)
+ π

2

(
1
0

)
, (34b)

ûθ

(
φs

φc

)
û−1

θ =
(

φs

φc

)
+ θ

(
0
1

)
. (34c)

Thus, the total Lagrangian of the helical edge modes at the
interface of a two-dimensional topological insulator (with a
mirror Chern number) and a QSHI∗ is found from Eqs. (6a)
and (33) to be given by

L =
∫

dx

4π
[KI,J ∂tφI ∂xφJ − V ′

I,J ∂xφI ∂xφJ ], (35a)

with

K = (−2ρx) ⊕ ρz, V ′ = V ⊕ (v1l2), (35b)

and

φ = (φs,φc,φ+,φ−)T , (35c)

where 1l2 is the two-dimensional identity matrix and v is
the velocity. We seek cosine potentials of the bosonic fields
: cos(l · φ + αl ): that can gap out the edge modes. The cosine
potentials should satisfy the Haldane’s null vector condition
in Eq. (10). In addition, their l vectors should be of the form
K l ′ with l ′ ∈ Z4, since the cosine potentials are composed of
bosonic or fermionic vertex operators. The following potential
terms satisfy these conditions:

Lint = C

∫
dx[: cos(2φc − φ+ − φ−):

− : cos(2φs − φ+ + φ−):], (36)

where C is a negative constant. These terms respect all
the symmetry we impose: time-reversal, reflection, and U(1)
charge. Invariance under ĝ or ûθ operation can be seen by
straightforward calculations, and the time-reversal invariance
can be seen as follows:

T̂ :ei(2φc−φ+−φ−):T̂ −1 = :ei(2φc−φ+−φ−):, (37a)

T̂ :ei(2φs−φ++φ−):T̂ −1 = :e−i(2φs−φ++φ−):. (37b)

In contrast to the N0 = 2 case discussed in Sec. II,
spontaneous symmetry breaking does not occur in the present
case. The elementary vectors associated with the l vectors of
the cosine potentials in Eq. (36) are given by

v1 = (−1, − 1,1,0)T , (38a)

v2 = (1, − 1,0,1)T . (38b)

Applying the operator T̂ transforms the vertex operators as

T̂ :eiv1·φ :T̂ −1 = −:eiv2·φ :, (39a)

T̂ :eiv2·φ :T̂ −1 = −:eiv1·φ :, (39b)

which implies that time-reversal symmetry is preserved as long
as the pinned fields satisfy the relation

〈v1 · φ〉 − 〈v2 · φ〉 = π. (40)

This is indeed the case with the cosine potentials with C < 0 in
Eq. (36). The invariance of the elementary bosonic variables
vi · φ under ĝ or ûθ can also be verified easily. Thus, we
conclude that the helical edge modes between a QSHI and
a QSHI∗ are gapped without symmetry breaking even in the
presence of reflection symmetry.

In Sec. III we have considered a Kramers pair of gapless
mode induced at a domain wall of a spatially varying Dirac
mass that couples two Dirac cones on the surface of a three-
dimensional topological crystalline insulator. As a corollary of
the above result, we conclude that a gapless helical domain-
wall mode is gapped out without symmetry breaking when
coupled to a helical edge mode of a QSHI∗.

V. CONCLUSION

Motivated by theoretical proposals of topological crys-
talline insulators in correlated electron systems, we have
studied fermionc SPT phases which respect the time-reversal
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and reflection symmetry by employing the Chern-Simons
approach. For two-dimensional systems respecting the re-
flection symmetry whose reflection plane is parallel to the
two-dimensional plane, our analysis elucidates that the SPT
phases form Z4 group, while topological classification in the
noninteracting case is Z. Furthermore, we have addressed
classification of three-dimensional topological crystalline in-
sulators by extending the argument proposed in Ref. [40] with
keeping time-reversal symmetry intact. Our analysis revealed
that eight Dirac cones on the surface are completely gapped
out without symmetry breaking by two-particle backscattering
of gapless modes on the domain wall of varying Dirac mass.
This leads to collapse of topological classification from Z to
Z8. Finally, we have pointed out the instability of gapless
boundary modes through coupling to topological ordered
phases.
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APPENDIX: GAUGING FERMION PARITY SYMMETRY
TO FERMIONIC SPT PHASES

In this Appendix we review the QSHI∗, which is obtained
by gauging the symmetry of the fermion number parity Pf of
a QSHI [49,50]. The effective action of the QSHI is written as

LCS =
∫

d2x
(

εμνρ

4π
KI,J aI

μ∂νa
J
ρ − jμlI a

I
μ

)
, (A1)

with K = −ρz. Here εμνρ is the antisymmetric tensor (ε012 =
1, μ,ν,ρ = 0,1,2), ∂: = (∂t ,∂x,∂y), x: = (x,y). The internal
Chern-Simons gauge fields aIμ (I = 1,2) describe the bulk
low-energy excitations in the QSHI. Summation over repeating
indices is assumed. The integer vector l ∈ Z2 characterizes
quasiparticles, whose equation of motion is given by

lI j
μ = εμνρ

2π
KI,J ∂νa

J
ρ . (A2)

Equation (A1) predicts gapless modes at the boundary, which
is set to be at y = 0. The Lagrangian of the boundary modes
is given by

Ledge =
∫

dx

4π
(KI,J ∂tφI ∂xφJ − vF ∂xφI ∂xφI ), (A3)

with φ: = (φ↑,φ↓)T [I,J = 1,2 and (↑,↓) = (1,2)]. Here φ↑
and φ↓ are the bosonic fields describing gapless modes of
up-spin and down-spin quasiparticles and vF denotes the Fermi
velocity. The commutation relations of these fields are given
by

[φI (x),φJ (y)] = −iπρz
I,J sgn(x − y) + iπ sgn(I − J ).

(A4)

The transformation laws of these fields under T̂ ,ĝ,ûθ are given
by Eq. (7) with (φ+,φ−) replaced by (φ↑,φ↓). Let us gauge
the symmetry of fermion number parity. The corresponding

operator P̂f transforms the bosonic fields as

P̂f φP̂ −1
f = φ + δφPf

, (A5a)

where

δφPf
=

(−π

−π

)
. (A5b)

Gauging this symmetry is carried out by extending the
action as follows:

(i) A vortex (symmetry flux) is attached to quasiparticles
such that a quasiparticle with l ∈ Z2 going around a vortex
acquires a phase shift l · δφPf

which is equal to the phase
shift from the symmetry transformation generated by P̂f . This
makes the l vectors of quasiparticles noninteger valued.

(ii) The action (A1) is extended so the quasiparticles with
noninteger l vectors become elementary excitations.

The symmetry flux introduced in step (i) is described by
the vector

lPf
=

(
1
2

− 1
2

)
. (A6)

We can see this by calculating from Eq. (A1) the phase acquired
by a quasiparticle with an l vector going around the symmetry
flux lPf

. The phase is 2π lT K−1lPf
, which should be compared

with l · δφPf
. With the flux contribution lPf

, quasiparticles are
effectively described by the following vectors:

l ′: = Mn, (A7a)

with

M: =
(

1
2 −1

− 1
2 0

)
, n ∈ Z2. (A7b)

In step (ii), we modify the action (A1) so all the quasiparticles
are described by integer vectors, which we identify with n in
Eq. (A7). The modified action then reads

Lg =
∫

d2x
εμνρ

4π
KgI,J

ãI
μ∂νã

J
ρ − nI j

μãI
μ, (A8a)

with

Kg =
(

4 2
2 0

)
, I = 1,2, (A8b)

where fields ãI
μ = MJ,I a

J
μ are the internal Chern-Simons

gauge fields of this gauged system. The K matrix for the
gauged system gives the mutual statistics of quasiparticles
with integer vectors (n,n′ ∈ Z2) as

2πnT K−1
g n′ = 2πnT MT K−1Mn′. (A9)

Without loss of generality, we can redefine the fields as ãI
μ =

XI,J ã′J
μ with X ∈ GL(2,Z). Choosing

X =
(

1 0
−1 1

)
, (A10)

we obtain the following action of the QSHI∗ phase:

Lg =
∫

d2x
(

εμνρ

4π
2ρxã′I

μ ∂νã
′J
ρ − n′

I j
μã′I

μ

)
. (A11)
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This action predicts gapless edge modes at the boundary y = 0,
which are described by the Lagrangian

Lg,edge =
∫

dx

4π

(
2ρx

I,J ∂tφI ∂xφJ − VgI,J
∂xφI ∂xφJ

)
,

(A12a)

with

φT = (φs, − φc). (A12b)

Here Vg is a positive-definite symmetric matrix. This edge
Lagrangian is equivalent to the Lagrangian in Eq. (33). The
bosonic fields (φs,φc) are related to (φ↑,φ↓) as follows:

(φs, − φc) ↔ (φ↑,φ↓)M(XT )−1 (A13)

or, equivalently, (
2φs

2φc

)
↔

(
φ↑ − φ↓

φ↑ + φ↓

)
. (A14)

From this correspondence, we obtain the transformation law of
fields φs and φc in Eq. (34). It follows from the correspondence
that

T̂ :e2iφs

:T̂ −1 ↔ −:e−i(φ↑−φ↓):, (A15a)

T̂ :e2iφc

:T̂ −1 ↔ −:ei(φ↑+φ↓):. (A15b)

One can see how the time-reversal operator transforms the
vertex operators in the pinning potentials in Eq. (36) in the
following way. With the correspondence

:ei(φ+−φ−−2φs ): ↔ :ei(φ+−φ−−φ↑+φ↓):, (A16a)

:ei(φ++φ−−2φc): ↔ :ei(φ++φ−−φ↑−φ↓):, (A16b)

applying the time-reversal operator yields

T̂ :ei(φ+−φ−−2φs ):T̂ −1 ↔ :ei(φ+−φ−−φ↑+φ↓):, (A17a)

T̂ :ei(φ++φ−−2φc):T̂ −1 ↔ :e−i(φ++φ−−φ↑−φ↓):, (A17b)

from which Eq. (36) follows. Here the bosonic fields φ+ and
φ− describe the helical modes of a QSHI. In a similar way,
we obtain Eq. (39) by noting that the vertex operators have the
following correspondence:

:eiv1·φ : ↔ :ei(φ+−φ↑): = −i:eiφ+
: :e−iφ↑

:, (A18a)

:eiv2·φ : ↔ :ei(φ−−φ↓): = −i:eiφ−
: :e−iφ↓

:, (A18b)

which implies the following relations:

T̂ :eiv1·φ :T̂ −1 ↔ −:ei(φ−−φ↓):, (A19a)

T̂ :eiv2·φ :T̂ −1 ↔ −:ei(φ+−φ↑):. (A19b)
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