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We study a system of weakly interacting electrons described by the energy dispersion ξ (k) = k2
x − k2

y − μ

in two dimensions within a renormalization group approach. This energy dispersion exhibits a neck-narrowing
Lifshitz transition at the critical chemical potential μc = 0 where a van Hove singularity develops. Implementing
a systematic renormalization group analysis of this system has long been hampered by the appearance of nonlocal
terms in the Wilsonian effective action. We demonstrate that nonlocality at the critical point is intrinsic, and the
locality of the effective action can be maintained only away from the critical point. We also point out that it is
crucial to introduce a large momentum cutoff to keep locality even away from the critical point. Based on a local
renormalization group scheme employed near the critical point, we show that, as the energy scale E is lowered, an
attractive four-fermion interaction grows as log2 E for E > μ, whereas it retains the usual BCS growth, − log E,
for E < μ. Starting away from the critical point, this fast growth of the pairing interaction suggests that the
system becomes unstable toward a superconducting state well before the critical point is reached.
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I. INTRODUCTION

Lifshitz transitions occur when two parts of a Fermi
surface collide (neck-narrowing Lifshitz transition) or a new
Fermi pocket appears/disappears in momentum space (pocket-
disappearing Lifshitz transition) as some parameter, such as
chemical potential, is tuned [1,2]. Such transitions are topolog-
ical in nature without involving any change in symmetry [3,4].
Near a neck-narrowing Lifshitz transition in two dimensions
(see Fig. [1]), the density of states (DOS) is proportional to
log K√|μ| , where K is the size of the Fermi surface and μ is the
chemical potential relative to the critical point. At the critical
point, the DOS is logarithmically divergent, indicating a van
Hove singularity.

The fate of van Hove singularities in the presence of
short-range interactions in two dimensions has been the focus
of many studies [5–24]. However, a systematic renormaliza-
tion group study is still lacking as usual perturbative local
renormalization group (RG) schemes cannot be applied when
nonlocal terms are generated in the effective action, as in this
system. The nonlocal nature of the system can be inferred from
the one-loop quantum effective action in the particle-particle
channel [see Fig. 6(d)], which is proportional to log2(�/E)
[7,9,13,14], where � is a UV energy cutoff and E is an external
energy. Here, one of the logarithms arises from the usual loop
corrections to the coupling that is marginal in two dimensions,
and the other originates from the divergent DOS [25]. This
log-squared term in the quantum effective action gives rise
to a four-fermion vertex proportional to −2 log(E/�) in the
Wilsonian effective action. Note that nonanalyticity in the
energy-momentum space translates into nonlocality of the ac-
tion in real space.

The nonlocality of the Wilsonian effective action poses a
serious problem to the implementation of a systematic RG
approach. Once a nonlocal term appears in the Wilsonian
effective action, infinitely many other nonlocal terms can

subsequently get generated as high-energy modes are further
integrated out. The proliferation of nonlocal terms makes
it impossible to constrain the form of the effective action
to a finite set of couplings based on a gradient expansion.
For instance, the appearance of a nonlocal density-density
interaction vertex of the form log(E/�) can, at later stages
of RG, give rise to new nonlocal vertices such as logn(E/�)
(with n > 1), resulting in a cascade of nonlocal terms. If the
form of nonlocal terms are constrained by some symmetry, the
proliferation of nonlocal terms can, in principle, be contained.
Nevertheless, this is not the case in the problem at hand. In
some of the previous studies [9,13], β functions were defined
in terms of derivatives of the quantum effective action with
respect to log2 �, however, this amounts to ignoring nonlocal
terms.

The nonlocal term −2 log(|ξq|/�) [where ξ (k) = k2
x −

k2
y − μ] in the Wilsonian effective action is not only nonlocal

(nonanalytic) but also singular in the small q limit. This IR
divergence in the Wilsonian effective action is puzzling as only
high-energy modes within a finite region in momentum space
are expected to contribute to the Wilsonian effective action
at each step of coarse graining. In fact, this IR singularity
is an artifact of using the dispersion relation ε(k) = k2

x − k2
y

not only near k = 0 but also for arbitrarily large momenta.
The energy dispersion ε(k) = k2

x − k2
y describes an infinitely

extended Fermi surface, which exhibits a divergent DOS even
away from the critical point due to the abundance of gapless
modes on the noncompact (unbounded) Fermi surface. More
specifically, as illustrated in Fig. 2, the one-loop effective
action exhibits the IR divergence in the particle-particle
channel due to enlarging phase space for the intermediate states
as the external momentum vanishes. However, real Fermi
surfaces are compact, and, therefore, their finite size should be
incorporated in order to avoid such a spurious singularity [26].
To implement this, we include a momentum cutoff K that
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(a) µ < 0 (b) µ = 0 (c) µ > 0

FIG. 1. (Color online) A neck-narrowing Lifshitz transition in
two dimensions for a noninteracting Fermion model with the
dispersion ε(k) = k2

x − k2
y + 1

K2 k4
y at (a) μ < 0, where the Fermi

surface is made up of two separate lobes, (b) the critical point,
μc = 0, where the two lobes first touch and a van Hove singularity is
developed, and (c) μ > 0 at which point a smooth monolithic Fermi
surface is formed.

suppresses contributions from modes with momenta greater
than K [see Eqs. (13), (14)]. Although the momentum cutoff
removes the singularity, we find that nonsingular yet nonlocal
terms persist in the effective action unless the chemical
potential is tuned away from the critical point as well. Thus,
the full locality of the effective action can be kept only
by introducing both a large momentum cutoff and a small
chemical potential.

In general there can be two distinct sources of nonlocality in
the Wilsonian effective action. nonlocality may originate from
the regularization scheme, such as when a sharp (nonanalytic)
cutoff in momentum space is imposed. Such nonlocalities are
the artifact of the choice of the regularization scheme and

(a) (b)

FIG. 2. (Color online) The (red and blue) shaded regions indicate
the phase space available for the intermediate states in the one-loop
particle-particle diagram �PP(q = qx̂) [see Fig. 6(d) and Eq. (7)] for
the dispersion relation ε(k) = k2

x − k2
y . The external momentum q,

denoted by arrows in the figures, in (a) is twice of that in (b). As |q|
decreases a larger region contributes to the one-loop particle-particle
diagram, resulting in a singular Wilsonian effective action in the small
|q| limit. Here, a sharp energy cutoff � = 25 is imposed.

can be removed by resorting to a smooth (analytic) cutoff. In
contrast, nonlocality can be intrinsic, in which case it cannot be
removed by choosing a smooth regularization scheme. As will
be shown later, nonlocality persists in the presence of the van
Hove singular point even with a smooth regularization scheme.
This suggests that nonlocality at the van Hove singular point
is intrinsic.

The main results of the paper are as follows. We first
show that nonlocality is intrinsic in the presence of a van
Hove singularity. To show this, we regularize the theory using
smooth energy and momentum cutoffs. The presence of the
momentum cutoff K is crucial to keep the locality of the
Wilsonian effective action. Treating K as a dimensionful
coupling constant, we capture the log2 L growth of the
attractive four-fermion contact interaction within a local RG
framework away from the critical point. Note that this is in
contrast with the usual log L growth of the pairing instability
of regular Fermi surfaces. Interestingly, such an enhancement
of superconductivity is known to appear when a Fermi surface
is coupled with a gapless boson in the context of non-Fermi
liquids [27,28]. The fast growth of the attractive interaction is
present within a finite energy window, which extends all the
way to the zero energy as the critical point is approached.
This suggests that the system becomes unstable toward a
superconducting state before the van Hove singularity is
reached. We emphasize that we reach this conclusion based
on a systematic local RG scheme.

The organization of this paper is as follows. We begin with
the details of the model that we consider in this paper in
Sec. II. In Sec. III we lay out our RG scheme and one-loop β

functions. Section IV contains the results of one-loop analysis,
the β functions, and their implications, which are summarized
in Sec. V.

II. MODEL

We begin by considering a lattice model that exhibits a van
Hove singularity at one point in momentum space, described
by the Hamiltonian,

HLattice =
∑
nx,ny

σ = ↑,↓

[{
− tx

2
c†nx,ny ,σ

cnx+1,ny ,σ

− ty

2
c†nx,ny ,σ

cnx,ny+1,σ + H.c.

}

−μc†nx,ny ,σ
cnx,ny ,σ

]
, (1)

where tx (ty) is hopping amplitude in the x (y) direction on
the square lattice in two dimensions and μ is the chemical
potential. Experimentally, such a system can be realized by
applying uniaxial pressure on an isotropic system, which
modifies the hopping matrix elements of the corresponding
tight-binding model. The above lattice Hamiltonian entails
the dispersion relation ε(K) = −2 cos Kx − cos Ky for tx = 2,
ty = 1 and μ = −1, where Kx and Ky are the components of
momentum measured from the center of the Brillouin zone.
The resulting Fermi surface, which is shown in Fig. 3, has
an isolated van Hove singularity at (0,±π ). Expanding the
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FIG. 3. (Color online) The Fermi surface of the lattice Hamil-
tonian in Eq. (1) with the chemical potential tuned to the critical
chemical potential μc = −1. The van Hove point appears at K =
(0,±π ).

dispersion relation near the singular point and rescaling the
y component of the momentum vector measured from the point
(0,±π ), k, as ky → √

2ky , we obtain the following quadratic
saddle-point dispersion near the van Hove singular point:

ε(k) = k2
x − k2

y + (μ − μc) + O
(
k4
x,k

4
y

)
. (2)

In fact, common van Hove singularities in two dimensions are
all described by the quadratic saddle-point dispersion relation
ε(k) = k2

x − k2
y near the singular point.

The dispersion ε(k) = k2
x − k2

y , however, suffers from a
major deficiency: it does not describe a compact Fermi
surface. This can be rectified either by retaining higher-order
terms as in the dispersion relation ε(k) = k2

x − k2
y + 1

K2 k
4
y

(see Fig. 1) or by imposing an explicit momentum cutoff K

while maintaining the quadratic dispersion near the van Hove
singular point (see Fig. 4). We choose the latter scheme for
the reason that, computationally, dispersions with quartic and
higher-order terms are more cumbersome to deal with. In the
remainder of this paper we exclusively focus on the dispersion
relation ε(k) = k2

x − k2
y together with a momentum cutoff K .

FIG. 4. (Color online) Depiction of the Fermi seas together with
energy and momentum cutoffs at (a) the critical point of the
neck-narrowing Lifshitz transition (μ = 0), and (b) away from the
transition point (0 < μ < �). In (b) the width of the neck is 2

√
μ.

FIG. 5. (Color online) Two regimes in lowering the energy cutoff
away from the critical point of the neck-narrowing transition: (a) when
μ < �, and (b) � < μ.

Our starting point is the following regularized action:

S = S0 + Sint

S0 =
∫

dk
(2π )2

∫
dω

2π
ψ̄σ (k,ω)G−1

0 (k,ω) ψσ (k,ω)

Sint = g

[
2∏

i=1

∫
dki

(2π )2

∫
dωi

2π

]
(3)

× ψ̄σ (k1,ω1)ψ̄σ ′(k2,ω2)ψσ ′(k3,ω3)ψσ (k4,ω4)

× δ(k1 + k2 − k3 − k4) δ(ω1 + ω2 − ω3 − ω4) ,

where the partition function is given by Z = ∫
DψDψ̄ e−S

and |g| � 1 is the coupling of the four-fermion contact
density-density interaction. Here,

G0(k,ω) = −e
− ξ (k)2

�2 e
− |k|2

K2

iω − ξ (k)
(4)

is the regularized propagator, which suppresses the contribu-
tions of modes with momenta greater than K [26] or energies
larger than �, and ξ (k) = k2

x − k2
y − μ. We choose to impose

smooth cutoffs to maintain locality in the regularized theory.
Note that, for a finite μ, there are two cases: μ < � [Fig. 5(a)]
and μ > � [Fig. 5(b)]. Here we focus on the former case
where, unlike in the latter, the conventional RG approach for
regular Fermi surfaces is inapplicable.

In general, the vertex of a quartic short-range interaction
term, �σ,σ ′(k1,k2,k3,k4) (σ,σ ′ = ↑,↓), is an analytic function.
A marked difference between the RG scheme that we employ
here (see Sec. III) and the more conventional RG approach
for regular Fermi surfaces (often referred to as Shankar’s
RG [29,30]) is in the way that the momenta are rescaled.
In Shankar’s RG, only the distance from the Fermi surface
is rescaled. Thus, for quartic short-range interactions, it is
�σ,σ ′(K1,K2,K3,K4) (Ki = kF ) that is taken as the marginal
interaction vertex. In contrast, in our RG scheme, the momen-
tum k, which is measured from the van Hove point, is rescaled.
Therefore, it is the leading term in the Taylor expansion of
�σ,σ ′(k1,k2,k3,k4) that gives the marginal quartic interaction
vertex in our RG scheme, i.e., g ≡ �σ,σ ′(0,0,0,0). Note that,
because of the anticommutativity of fermions the spin indices
should be dissimilar (σ 	= σ ′), as �σ,σ ′(0,0,0,0) for σ = σ ′
reduces to a chemical potential term.
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At zero chemical potential, the model described by
ε(k) = k2

x − k2
y possesses a pseudo-particle-hole symmetry:

invariance under particle-hole transformation together with
a π

2 rotation. In the limit K → ∞, this model manifests
O(1,1) symmetry that rotates kx into ky and vice versa with
signature (1, − 1) [14]. Despite the fact that the momentum
cutoff alone is enough to suppress high-energy and large-
momentum modes, one cannot omit the energy cutoff to treat
the momentum cutoff as an energy cutoff and lower it in the
course of RG. This is because lowering the momentum cutoff
requires integrating out zero-energy modes (portions of the
Fermi surface), which inevitably generates nonlocal terms in
the Wilsonian effective action. Therefore, we treat K as a
dimensionful coupling constant of the theory. The RG flow is
then generated by lowering �, which amounts to integrating
out high-energy modes away from the Fermi surface.

III. RG SCHEME

We outline the renormalization group scheme in this
section. Starting from the regularized action in Eq. (3), we
lower the energy cutoff � to �′ = �e−d. Then we add
counterterms to the action so that the theory with the lowered
energy cutoff reproduces the quantum effective action of the
original theory. For this purpose, we first compute the quantum
effective action, �(g,μ,K; �), as a function of the energy
cutoff � order by order in g. The counterterm that renormalizes
the Wilsonian effective action to the leading order in g is then
given by ∂�(g,μ,K;�)

∂ log �
d. This amounts to integrating out modes

with energies between �′ and �, which generates quantum
corrections to the Wilsonian effective action with the new
energy cutoff �′. Finally, we rescale energy and momentum
such that the original energy cutoff � is restored. Note that,
although the quantum effective action is in general nonanalytic
in external energy and momentum, it is crucial to keep the
analyticity of the Wilsonian effective action.

The tree-level scalings are as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k → e
1
2 d k

μ → ed μ

ω → ed ω

K → e
1
2 d K

{ψ,ψ̄} → e− 3
2 d {ψ,ψ̄}

→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[k] = 1
2

[μ] = 1
[ω] = 1
[K] = 1

2
[ψ] = [ψ̄] = − 3

2

. (5)

From the above tree-level scaling dimensions we obtain
[g] = 0, and thus the four-fermion interaction with momentum-
independent vertex is marginal. It is noted that the momentum
cutoff K and the chemical potential μ run under the rescaling.
As a result, these parameters should be treated as relevant
couplings in the theory [26].

At one-loop order, we have diagrams shown in Figs. 6, 7.
Among the diagrams in Fig. 6 that renormalize the interaction
vertex, the diagram in Fig. 6(b) is not allowed as it requires
same spin indices on all four legs of one of the vertices.
Diagrams in Fig. 6(a) and Fig. 6(c) do not vanish and involve
the exchange of a particle and a hole, while the diagram in
Fig. 6(d) involves a pair of particles. Note that the results
of the diagrams in Fig. 6(a) and Fig. 6(c) to the interaction
vertex are distinct due to the spin indices of the external legs;
nevertheless they have the same loop integral up to a minus

FIG. 6. Diagrams that renormalize four-fermion interactions at
one-loop order. In order to keep track of the spin indices, a wiggly
line is used for the marginal density-density interaction even though
the vertex of this interaction is momentum-independent. Diagrams
(a), (b), and (c) involve the exchange of a particle and a hole,
whereas diagram (d) is a particle-particle diagram. Diagram (a) is the
usual particle-hole bubble �PH, diagram (b) is the penguin diagram,
diagram (c) is a one-loop ladder diagram �Ladder

PH .

sign:

�Ladder
PH (q,�) = −�PH(q,�)

=
∫

dk
(2π )2

θ (ξk) − θ (ξk+q)

i� − ξ (k + q) + ξ (k)

× e
− ξ2

k +ξ2
k+q

�2 e
− |k|2+|k+q|2

K2 . (6)

The result of the diagram in Fig. 6(d) is given by:

�PP(q,�) = −
∫

dk
(2π )2

θ (ξk) − θ (−ξk+q)

i� − ξ (k + q) − ξ (k)

× e
− ξ2

k +ξ2
k+q

�2 e
− |k|2+|k+q|2

K2 . (7)

FIG. 7. Self-energy diagrams at one-loop order. Since we are con-
sidering momentum-independent bare interactions, only the Hartree
diagram (a) contributes (an O(g) constant) and the Fock diagram (b)
is not allowed.
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The renormalized interaction term at one-loop order is given
by,

Γ(4)

= g − g2

2

− g2 − g2 ,
(8)

where the accompanying numerical factors − 1
2 , −1, and −1

are the combinatorial factors associated with each diagram. We
postpone the discussion of the structure of ∂log ��Ladder

PH (q,� =
0) and ∂log ��PP(q,� = 0) to the next section. Note that we
are solely interested in the quantum corrections at zero
frequency.

Diagrams shown in Fig. 7 contribute to the renormalization
of the chemical potential at one-loop order. The pseudo-
particle-hole symmetry at μ = 0 ensures that the contribution
of these diagrams (as well as all higher-order corrections
to the chemical potential) vanishes at μ = 0. For μ > 0,
∂log ��(1) ∝ gμ (with no singular dependence on K as K →
∞). For this reason, we ignore the quantum correction to
the chemical potential in the small g and μ limit near the
critical point. Since we assume that the bare interaction
vertex is momentum independent, the momentum-dependent
self-energy contribution first appears at the two-loop order.

When they are analytic, quantum corrections can be
expanded in the basis of local operators. Taylor expanding
the vertices of one-loop four-fermion quantum corrections,
one obtains the following local interaction terms:

S{n,m}
PH = [

g
{n,m}
PH (1 − δσ,σ ′ ) + h

{n,m}
PH δσ,σ ′

] ∫
dk

(2π )2

dω

2π

∫
dk′

(2π )2

dω′

2π

∫
dq

(2π )2

d�

2π
ψ̄σ,k ψσ,k+q

q2n
x

�n

q2m
y

�m
ψ̄σ ′,k′+q ψσ ′,k′ , (9)

which are the local particle-hole interactions with the couplings g
{n,m}
PH (h{n,m}

PH for similar spin indices). Similarly,

S{n,m}
PP = g

{n,m}
PP

∫
dk

(2π )2

dω

2π

∫
dk′

(2π )2

dω′

2π

∫
dq

(2π )2

d�

2π
ψ̄σ ′,k+q ψ̄σ,−k

q2n
x

�n

q2m
y

�m
ψσ,k′+q ψσ ′,−k′ (10)

are the particle-particle interactions with the couplings g
{n,m}
PP . Here n and m are respectively the powers of q2

x and q2
y in the Taylor

expansions of the one-loop quantum corrections. The one-loop β functions for the above local operators are as follows:

ġ = −g2 ∂log ��Ladder
PH (0) − g2 ∂log ��PP(0)

ġ
{n,m}
PH = −(n + m) g

{n,m}
PH − g2 ∂2n

∂q2n
x

∂2m

∂q2m
y

∂log ��Ladder
PH (q)

∣∣
0

ḣ
{n,m}
PH = −(n + m) h

{n,m}
PH − g2

2

∂2n

∂q2n
x

∂2m

∂q2m
y

∂log ��PH(q)
∣∣
0 (11)

ġ
{n,m}
PP = −(n + m) g

{n,m}
PP − g2 ∂2n

∂q2n
x

∂2m

∂q2m
y

∂log ��PP(q)
∣∣
0

K̇ = 1

2
K μ̇ = μ + O(g) ,

where the vertical bar with the subscript 0 is a shorthand for |q=0, and the numerical factors accompanying g2 terms are
the combinatorial factors associated with the corresponding diagrams. Here, g is the coupling of the momentum-independent
interaction term.

IV. ONE-LOOP RG ANALYSIS

We explicitly compute one-loop β functions in this section. We specifically demonstrate that both a nonzero chemical potential
and a finite momentum cutoff are needed to maintain the locality of the Wilsonian effective action. When the Wilsonian effective
action is Taylor expanded in momentum, the radius of convergence shrinks to zero either when μ diminishes or K grows large.
To simplify the computation, we first focus on one-loop particle-hole quantum corrections (∂log ��PH – from here on we use
�PH ≡ �Ladder

PH = −�PH) for q = qx̂.

A. 0 < μ � �

When the chemical potential is nonzero [see Fig. 5(a)], the one-loop correction from the particle-hole diagram is given by:

∂log ��PH(qx̂,0) ≈ 1

2(2π )2

[
8
K2

�

q2

�
+

(
19.7 log

μ

K2
+ 101 − 5.6

K4

�2

)
q4

�2
+

(
−1.87

�

μ
+

[
22.8

K2

�
+ 86

�

K2

]

× log
μ

K2
+ 4.11

K6

�3
+ 162

K2

�

)
q6

�3
+

(
−0.13

�2

μ2
− 2.06

K2

μ
+

[
237

�2

K4
+ 255 + 8.7

K4

�2

]
log

μ

K2

085112-5



SEDIGH GHAMARI, SUNG-SIK LEE, AND CATHERINE KALLIN PHYSICAL REVIEW B 92, 085112 (2015)

+ 1462 − 71.5
K4

�2
− 3.16

K8

�4

)
q8

�4
+

(
−0.014

�3

μ3
− 0.138

K2

�μ2
− 0.326

�3

K2μ2

− 0.716
K4

�μ
− 17.13

�

μ
− 12.98

�3

K4μ
+

[
−1.262

K6

�3
+ 305

K2

�
+ 1082

�

K2
+ 483

�3

K6

]

× log
μ

K2
+ 2.52

K10

�5
+ 9.235

K6

�3
+ 1987

K2

�

)
q10

�5
+ O(q)12

]
, (12)

where we have ignored all O(μ) and O(1/K) terms.
The above expression is valid for q2 < 4μ. The nonanalyt-

icity at q2 = 4μ stems from the 2kF singularity, which arises
when the transfer momentum q connects antipodal points on
the Fermi surface, as shown in Fig. 8. Having this in mind, let
us examine the origin of different K- and μ-dependent terms
in this series expansion. First, consider terms that become
singular in the μ → 0 limit. The appearance of these singular
terms can be understood as follows. With a soft-energy cutoff,
although quantum corrections are most sensitive to modes at
the energy scale �, they nevertheless weakly sense all other
modes. This is because the derivative of a soft-energy regulator
with respect to log � is not a δ function. Thus, the appearance
of an IR singularity upon setting μ to zero is sensed by quantum
corrections (in this case, ∂log ��PH). Since the above series
expansion is valid only for q < 2

√
μ and singular terms in

μ are accompanied by sufficiently high powers of q, these
singular terms do not result in divergence in the μ → 0 limit.
The singular dependence on μ should be understood as a
sign of nonanalyticity in the μ = 0 limit instead of actual
divergence. Singular dependence on μ first appears at O(q4).
This feature depends on the choice of the energy cutoff.
If exp(−ξ 4

k/�4) was used instead of exp(−ξ 2
k/�2), singular

dependence on μ would first appear at O(q6). More generally,
for an energy cutoff of the form exp(−ξ 2n

k /�2n), singular terms
in μ appear at O(q2n+2). Note that, in the limit n → ∞, where
the energy cutoff becomes the sharp energy cutoff θ (1 − |ξk|

�
),

these particular singular terms disappear. However, the sharp
cutoff will generate yet another nonanalyticity in ∂log Lambda�PH

at |q|  �/K , which is pushed to zero as RG progresses (see
Fig. 9).

FIG. 8. (Color online) All three indicated vectors satisfying q2
x −

q2
y = 4μ and connecting antipodal points correspond to 2kF momen-

tum transfers q on the Fermi surface.

Another important feature of the series expansion in
Eq. (12) is the presence of terms with positive powers of K .
This leads to another scale, �

K
beyond which this expansion

also breaks down. The origin of this scale becomes evident
when both cutoffs are imposed sharply. As depicted in Fig. 9,
the smaller |q| is, the farther from the origin the modes that are
decimated lie. This results in nonanalyticity of ∂log ��PH(q,�)

as it is proportional to θ (1 − �2

q2K2 ). Note that this applies to

both μ = 0 and μ 	= 0 as long as μ � �,K2. Imposing a soft
momentum cutoff, while maintaining a sharp energy cutoff,
will not cure this nonanalyticity. For our momentum regulator
exp(−|k|2/K2), one finds nonanalytic dependence on |q| in
∂log ��PH(q,�) of the form exp(− �2

|q|2K2 ). When both cutoffs
are imposed softly, this aspect of the problem manifests itself
as a finite convergence radius q < �

K
. Unlike terms singular

in μ, these terms are independent of the details of the energy
regulator. Since μ � �  K2 at the initial steps of RG
near the critical point, the criterion q < �

K
is automatically

satisfied if q < 2
√

μ. Since μ and K grow under this RG (or,
equivalently, as the energy cutoff is lowered), there comes
a point where the constraint q < �

K
becomes more stringent

than q < 2
√

μ (see Fig. 11).

FIG. 9. (Color online) When both cutoffs are imposed sharply,
as depicted in this figure, for smaller |q|, the eliminated modes
will be farther from the origin. Thus, if |q| is sufficiently small
(< �

K
) ∂log ��PH(q,�) suddenly vanishes (as a result of using sharp

cutoffs). When both cutoffs are imposed softly, as discussed in the
text, this feature results in the convergence radius q < �/K in
∂log ��PH.
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For the particle-particle diagram, which is given by Eq. (7),
in the limit q = 0 and � � � we obtain:

�PP(q = 0,

� � �) ≈ 1

(2π )2

[
log

K2

�
log

(
1 + 4�2

�2

)

+ 1

4
log2

(
�2

4�2

)
+ O

(
�2

4�2
,μ

)]
. (13)

Note that the quantum effective action is nonanalytic in
frequency. In particular, it contains a term that is proportional
to log2 ( �2

4�2 ), which generates a nonlocal term in the Wilsonian
effective action. However, it is canceled by another nonlocal
term generated from the first term, which is sensitive to the
size of the Fermi surface. As a result, the net contribution to
the Wilsonian effective action remains local:

∂log ��PP(q = 0,

� � �) ≈ 1

(2π )2

[
8�2

4�2 + �2
log

K2

�

− log

(
1 + �2

4�2

)
+ O

(
�2

4�2
,μ

)]
. (14)

As shown in Eq. (11), this contributes to the β function
for the local four-fermion interaction term. It is noted that the
quantum effective action and the β functions are ill defined
without the momentum cutoff, K .

B. μ = 0

In the previous subsection, we found that the window
of convergence for the gradient expansion of the effective
action vanishes in the μ → 0 limit. This suggests that the
effective action is nonanalytic at μ = 0. Indeed, we find that
at the critical point of the neck-narrowing transition (μ = 0),
∂log ��PH(qx̂,0) is nonanalytic in q. In the limit q � �,K , we
obtain the following series expansion in q:

∂log ��PH(qx̂,0)

≈ 1

(2π )2

[
−0.028

q4

�2
− 0.368

K2

�

q6

�3

+
(

0.473
K4

�2
+ 0.448

)
q8

�4
−

(
0.55

K6

�3
+ 0.6

K2

�

)

× q10

�5
+ O

(
q12

�6

)]
log

q2

K2
, (15)

where analytic terms are not shown and O( 1
K

) terms are
ignored.

C. β functions

The β functions of g, and the first five subleading vertices
g

{n}
PH ≡ g

{n,0}
PH are obtained from Eq. (12). These β functions

describe the evolution of the local effective action when μ > 0.
From here on we set � to 1 for brevity (� can be restored by
K2 → K2/� and μ → μ/�). The one-loop β functions are:

ġ = − g2

2π2
log K2 (16a)

ġ
{1}
PH = −g

{1}
PH − g2

2(2π )2
8K2 (16b)

ġ
{2)
PH = −2g

{2}
PH − g2

2(2π )2

×
(

19.7 log
μ

K2
+ 101 − 5.6K4

)
(16c)

ġ
{3}
PH = −3g

{3}
PH − g2

2(2π )2

(
−1.87

μ
+

[
22.8K2 + 86

K2

]

× log
μ

K2
+ 4.11K6 + 162K2

)
(16d)

ġ
{4}
PH = −4g

{4}
PH − g2

2(2π )2

(
−0.13

μ2
− 2.06

K2

μ

+
[

237

K4
+ 255 + 8.7K4

]
log

μ

K2
+ 1462

− 71.5K4 − 3.16K8

)
(16e)

ġ
{5}
PH = −5g

{5}
PH − g2

2(2π )2

(
−0.014

μ3
− 0.138K2

μ2

− 0.326

K2μ2
− 0.716

K4

μ
− 17.13

μ
− 12.98

K4μ

+
[
−1.262K6 + 305K2 + 1082

K2
+ 483

K6

]

× log
μ

K2
+ 2.52K10 + 9.235K6 + 1987K2

)
,

(16f)

where, K = K0e
/2 and μ = μ0e

 ( is the RG time, μ0 =
μ=0 and K0 = K=0 are the initial values).

The β function of g can be solved analytically:

g() = 2π2

 log K2
0 + 1

22 + 2π2

g0

, (17)

where g0 = g=0. Thus, g grows (decreases) at low energies
for attractive (repulsive) interaction. It is noted that g runs
quadratically in the logarithmic length scale . One of the
logarithms originates from the usual BCS enhancement of an
attractive interaction. The other logarithm reflects the fact that
the size of the Fermi surface, K , increases under the scaling
that expands the momentum space with respect to k = 0. Of
course, we have to consider the fact that μ also grows under
this scaling. Once μ becomes comparable with �, the van
Hove singular point is no longer a special point and we should
use the alternative scheme (à la Shankar) where momenta are
scaled towards the nearest points on the Fermi surface. This
implies that the attractive interaction increases quadratically in
 for  < s ∼ log �/μ. The quartic coupling reaches order of

unity at the scale ∗ = − log K2
0 +

√
log2(K2

0 ) + 2
|g0| + 4π2,

which is smaller than s for μ � �. This suggests that, when
the system is sufficiently close to the van Hove singularity,
it can become unstable toward a superconducting state before
entering into a regime controlled by the usual Fermi liquid that
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FIG. 10. (Color online) A schematic phase diagram of a neck-
narrowing Lifshitz transition in the presence of weak attractive inter-
actions. In the quantum critical (QC) region, the pairing susceptibility
grows as log2 T in temperature T . Away from the critical point, the
system enters into the Fermi liquid (FL) region below the temperature
scale T ∼ |μ − μc| where the pairing susceptibility grows as − log T .
However, it is likely that the system undergoes a superconducting
(SC) phase transition before it crosses over into the Fermi liquid
regime near the critical point which is indicated by the dome in the
figure. Even the Fermi liquid will eventually become unstable toward
SC state at sufficiently low temperatures, which is not indicated in
the figure.

exhibits a simple logarithmic growth of the pairing interaction.
A schematic phase diagram is illustrated in Fig. 10. It is
emphasized that we are able to capture the superlogarithmic
growth of the coupling within a local RG scheme owing to the
introduction of the momentum cutoff K , which is treated as
a dimensionful coupling. The rest of the β functions can be
solved numerically.

Observe that the β functions of subleading couplings
contain higher powers of K . For example, there is a K10 term
in the β function of g

{5}
PH in Eq. (16f). This is the reflection of the

fact that the effective action becomes nonanalytic in the large
K limit. The analytic window, within which one can describe
the evolution of effective interactions by the above β functions,
changes in the course of RG as shown in Fig. 11. Regardless
of the details of the cutoffs (even for a sharp cutoff), by the

FIG. 11. (Color online) Depiction of the change of the analytic
window (the shaded region below the two curves) in the course of RG.
Initially, the width of the neck (due to the 2kF physics) determines this
analytic window (blue curve). Beyond the point

√
μ()K() = �, it

is �/K that dictates analytic range of quantum corrections (the black
curve). Starting from a microscopic scale (�  K2), by the time the
energy cutoff has been lowered to μ, the analytic window has shrunk
to O( μ

K
).

time the energy cutoff has been sufficiently lowered (� � μ)
this analytic window has shrunk to O( μ

K
). This indicates the

strong dependence of quantum corrections on q that cannot be
captured entirely in terms of local operators.

V. SUMMARY AND DISCUSSION

In summary, we have demonstrated that the locality of the
effective action can be retained only away from the Lifshitz
critical point (μ 	= 0) and in the presence of a momentum
cutoff. Based on a local renormalization group scheme
implemented near the critical point, we show that a short-range
attractive interaction grows as log2 E at energy scales above the
chemical potential. The fast growth of the pairing interaction,
which is distinct from the simple logarithmic growth in the
low-energy Fermi liquid regime (E < μ), implies that near the
critical point the system is likely to undergo a superconducting
phase transition before it enters into the Fermi liquid.

The Wilsonian effective action is analytic within a finite
momentum range, which shrinks as the critical point is
approached. This indicates that the Wilsonian effective action
is intrinsically nonlocal in the presence of interactions at the
Lifshitz quantum critical point in two space dimensions. The
intrinsic nonlocality in the Wilsonian effective action right at
the critical point suggests that some gapless modes have been
integrated out in the coarse-graining procedure. To understand
what is required to keep the locality at the critical point, it
is illuminating to compare the case at hand with quantum
critical points associated with more conventional symmetry
breaking phase transitions in metals. If one insists on keeping
only electron fields to describe a symmetry-breaking quantum
critical point at low energies, one inevitably encounters a
nonlocality in the Wilsonian effective action. This is because
gapless order parameter fluctuations are integrated out in
the pure fermionic description. In order to keep locality, one
has to explicitly include a gapless collective mode for the
order parameter. Analogously, we envisage the emergence
of a gapless mode at the Lifshitz critical point, associated
with the critical fluctuations of the Fermi surface topology.
Unlike in symmetry-breaking phase transitions, the gapless
mode in the Lifshitz transition should describe global degrees
of freedom. In the future, it will be of great interest to find a
local description for the critical point, by including an extra
mode that becomes gapless at the critical point.
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