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After Anderson’s prediction of disorder-induced insulating behavior, extensive work found no singularities in
the density of states of localized systems. However, Johri and Bhatt [Phys. Rev. Lett. 109, 076402 (2012) and
Phys. Rev. B 86, 125140 (2012)] recently uncovered the existence of a nonanalyticity in the density of states
near the band edge of noninteracting systems with bounded disorder, in an energy range outside that captured
by previous work. Moreover, this feature marks the boundary of an energy range in which the localization is
sharply suppressed. Given strong current interest in the effect of interactions on disordered systems, we explore
here the effect of a Hubbard U interaction on this behavior. We find that in ensembles of small systems a cusp
in the density of states persists and continues to be associated with a sharp suppression of the localization. We
explore the origins of this behavior and discuss its connection with many-body localization.
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I. INTRODUCTION

Unconventional superconductivity and other novel elec-
tronic behaviors in transition metal oxides continue to drive
the study of strong electron correlations. Doping which breaks
translational invariance is generally required to obtain these
novel behaviors, raising the question of how disorder affects
strongly correlated systems. Meanwhile, since the seminal
work of Anderson in 1958 [1], localization of single-particle
states by disorder has been the subject of intense study in
a wide range of systems [2]. Experiments have suggested
that electron-electron interactions might drive a delocalization
transition [3], and there has been recent rapid progress in
addressing the question of how interactions affect localized
systems [4–8].

In this paper we ask how electron-electron interactions
affect several novel features recently pointed out in non-
interacting disordered systems [9,10]. After Anderson first
predicted localization, significant effort went toward estab-
lishing whether or not any feature in the density of states
was associated with localization. Edwards and Thouless [11]
showed that the density of states is analytic in a wide energy
range around the middle of the band for all continuous
distributions, and Wegner [12] showed that the density of states
neither vanishes nor diverges anywhere inside the band for
Gaussian distributed disorder. It therefore came as a surprise
when Johri and Bhatt [9,10] uncovered the existence of a
nonanalyticity in the density of states of systems with bounded
disorder. Their result does not contradict earlier work. Rather,
the nonanalyticity they found occurs outside the energy range
addressed by Edwards and Thouless.

Beyond the novelty of this singularity, Johri and Bhatt
showed that a corresponding singularity exists in the inverse
participation ratio, a measure of localization, and demonstrated
that these singularities mark the boundary of a region at the
edge of the band dominated by resonant states, also known as
Lifshitz states. Moreover, while this behavior persists in large
systems and in two and three dimensions [9], Johri and Bhatt
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demonstrated that the key features can be seen and understood
analytically in the simple case of an ensemble of two-site
systems [10].

Here we consider an ensemble of two-site Anderson-
Hubbard systems and calculate both the density of states and
a generalized form of the inverse participation ratio applicable
to interacting systems. Figure 1 summarizes our key results.
The presence of local interactions results in a richer energy
dependence of both quantities. In particular, the minimum in
the inverse participation ratio no longer occurs at the band
edge but instead moves closer to the Fermi level. We present
below an exploration of how these changes arise, highlighting
two distinct types of resonance which can occur in interacting
systems and their role in our results.

II. THE MODEL

The Anderson-Hubbard model is a tight-binding Hamil-
tonian which includes nearest-neighbor hopping t , on-site
Coulomb repulsion U , and site potentials chosen from a
uniform distribution of width W :

H = t
∑

〈i,j〉,σ
ĉ
†
iσ ĉjσ +

∑
i

Un̂i↑n̂i↓ +
∑
i,σ

(εi − μ)n̂iσ . (1)

ĉ
†
iσ is the creation operator for an electron with spin σ at lattice

site i, n̂iσ = ĉ
†
iσ ĉiσ , and 〈i,j 〉 refers to nearest neighbor pairs.

The site potentials εi are chosen from the distribution P (εi) =
�(W/2 − |εi |)/W , where � is the Heaviside function. μ is
the chemical potential.

We consider here ensembles of two-site systems so i,j =
1,2, and we focus on the case of half-filling so μ = U/2.
For each system in an ensemble, the site potentials ε1 and ε2

are different but all are chosen from the same distribution.
Following Johri and Bhatt, it is convenient to use the
coordinates

x = ε1 + ε2√
2

and y = ε1 − ε2√
2

. (2)

The phase space of all systems in an ensemble is represented
by the diamond in the main panel of Fig. 2.
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FIG. 1. (Color online) (a)–(d) The ensemble-averaged density of states for W/t = 12 and U/t = 0, 2, 4, and 8, respectively. The thin black
lines indicate the atomic-limit density of states. (e)–(h) The ensemble-averaged generalized inverse participation ratio at the same U values.
The vertical dashed lines mark energies at which a cusp appears in the density of states and a sharp drop occurs in the generalized inverse
participation ratio. Ensembles consist of 100–150 million systems and the energy bin width is 0.019t–0.025t .

III. THE DENSITY OF STATES

The density of single-particle states for a single system
is the average of the local density of states on the two sites
calculated from the Lehmann representation of the retarded
Green’s function (see Appendix):

ρ(ω) = 1
2 [ρ1(ω) + ρ2(ω)], (3)

where

ρi(ω) = − 1

π
Im GR

ii(ω). (4)

The result consists of a small number of δ functions corre-
sponding to the allowed single-particle transitions from the
ground state.
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FIG. 2. (Color online) In the main panel, each point in the
diamond specifies the site potentials for one two-site system in an
ensemble with disorder strength W/t = 12. Regions are labeled
according to the number of particles in the ground state for interaction
strength U/t = 8. Insets show typical single-system density of states
plots for each region with the transition corresponding to each peak
labeled. Energy bin width 0.02t .

The main panel of Fig. 2 shows the number of particles in
the ground state in each region of the phase space, and the insets
show typical density of states plots in each of these regions.
For systems with a zero-particle ground state, there are two
distinct peaks corresponding to transitions to the one-particle
bonding (1b) excited state or the one-particle antibonding (1a)
excited state. For convenience we label the transition from
the n-particle ground state to excited state i the n:i transition.
In this notation these two peaks correspond to the 0:1b and
0:1a transitions. Each includes a spin-up and a spin-down
contribution which, because our Hamiltonian is paramagnetic,
occur at the same energy. For systems with a one-particle
ground state, there are five distinct peaks corresponding
to transitions to the zero-particle state and to six possible
two-particle states. Three of the two-particle states, the triplet
states (2t), are degenerate. The remaining two-particle states
(2a, 2b, and 2c) are linear combinations of the singlet state
|s〉 = (|↑↓〉 − |↓↑〉)/√2 and the double-occupancy states |20〉
and |02〉 in the Fock basis. For systems with a two-particle
ground state, there are four distinct peaks corresponding to
transitions to two one-particle states (1a and 1b) and two
three-particle states (3a and 3b). The transition options from
the three-particle ground state mirror those of the one-particle
ground state, and similarly the four-particle options mirror
those of the zero-particle ground state.

The density of states of an ensemble of two-site systems
simply averages the contributions of all the systems. The
density of states plots in Figs. 1(a)–1(d) are histograms of
the contributions in a sequence of frequency bins resulting in
a smooth density of states for a large but finite number of
systems.

In considering the evolution of the DOS with interaction
strength, the atomic limit (t = 0) provides a useful point of
comparison. This is indicated by the narrow black lines in
Figs. 1(a)–1(d). Without interactions all sites are either empty
or doubly occupied, and the atomic-limit DOS is identical to
the distribution of site potentials: a plateau of height 1/W .
On-site interaction results in singly occupied sites which at
U = 2 create a narrow raised region at the band center. The
width of the contribution from singly occupied sites grows
with U , matching that from empty and doubly occupied sites
at U = 4 and exceeding it at U = 8.

With hopping, the occupancy of each site is no longer
integer, and there is an increase both in the number of distinct
energies at which transitions can occur and in the range of
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FIG. 3. (Color online) Transition specific information for an en-
semble of two-site systems with W/t = 12 and U/t = 8. Each row
corresponds to a different transition as labeled in column 1. Only
transitions which contribute above the Fermi level are shown. The
1:2c transition is not shown because its contribution is negligible.
Column 2 shows the contribution to the density of states made by
this transition alone (red) as well as the full density of states (black)
for comparison. Column 3 shows the constant energy curve (blue) in
phase space at the energy marked with a dashed line in column 2.
Column 4 shows the generalized inverse participation ratio for this
transition at a set of points along the constant energy curve shown in
column 3.

weights associated with these transitions. In the noninteracting
case, this results in the two peaks at the band edge highlighted
by Johri and Bhatt [9,10]. With interactions, the DOS gains
even more structure. The zero-bias anomaly in Fig. 1(d) has
been explored in detail elsewhere [13,14].

The particular feature on which we focus here is the
persistence of sharp peaks, marked in Fig. 1 by vertical dashed
lines. These peaks closely follow the edge of the contributions
from empty and doubly occupied sites in the atomic limit,
which might suggest that the cusps would be lost when U > W

and all sites are singly occupied. In fact, when U > W the
shoulders seen around ω/t = ±9 in Fig. 1(d) evolve into sharp
cusps, such that the DOS of the Mott insulator (not shown)
looks like two copies of the U = 0 case above.

To provide further insight into the origin of these peaks,
Fig. 3 shows the DOS contributions from individual transi-

tions. The first column indicates the transition, and the second
shows the DOS contribution. In the third column the phase
space is shown with a blue curve which indicates all systems
for which the specified transition occurs at the energy marked
with a vertical dashed line in column 2. As the energy E is
increased, the shape of this curve for a given transition does not
change but the curve shifts to the right. In the noninteracting
case, the magnitude of the DOS contribution from each
transition in each system is the same. Therefore, the overall
magnitude of the DOS at a given energy is simply proportional
to the length of the constant energy curve at that energy.
In the interacting case, there is variation in the magnitudes
of the DOS contributions from different transitions, meaning
that the line length alone is not the sole determinant of the
DOS magnitude at each energy. However, the main qualitative
features of the DOS contribution from each transition are still
reflected in the changes in line length.

Consider, for example, the 1:2a transition. The constant
energy curve has the same shape as the boundary between
the two-particle and the one-particle ground state regions. At
E = 0, the constant energy curve coincides with this boundary,
and the transition makes its maximum contribution to the DOS.
As the energy is increased, the constant energy curve moves
to the right declining in length roughly linearly with energy.
In this way the origin of the energy dependence of the DOS
contributions of each transition can be seen, and from these
the structure of the DOS as a whole.

In particular, what do we learn from Fig. 3 regarding the
origin of the DOS cusps? As in the noninteracting case [10],
the peaks appear where a constant energy curve sits nearly
tangent to the edges of the phase-space diamond, maximizing
its length. (See the 1:2t transition in Fig. 3.) Unlike the
noninteracting case, many transitions contribute at the same
energy, resulting in variation in the shape of the peaks.

IV. THE GENERALIZED INVERSE
PARTICIPATION RATIO

To explore whether there is a connection between the
structure in the density of states and variations in the strength
of localization, we have also studied a generalization of the
inverse participation ratio, a standard measure of localization.
In noninteracting systems the inverse participation ratio at
an energy E is proportional to one over the size of a
single-particle state with energy E. In interacting systems,
single-particle states are not well defined. Nonetheless, the
following generalized inverse participation ratio (GIPR) can
be defined:

I (ω) =
∑

i ρ
2
i (ω)[ ∑

i ρi(ω)
]2 . (5)

ρi(ω), the local density of states as defined above in
Eq. (4), has the form of a sum of weighted δ functions:
ρi(ω) = ∑

t wtiδ(ω − Et ), where Et are the energies of single-
particle transitions available from the ground state. In many
numerical calculations only the local density of states is
known and only up to some nonzero energy resolution. In
such cases, when interactions are set to zero, the GIPR has
the same scaling behavior as the IPR in the limits of zero
and infinite disorder, but the correspondence for intermediate
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disorder is less clear [15]. In our case, however, we know
the many-body eigenstates and can therefore distinguish the
local-density-of-states contributions of individual transitions
no matter how close they may be in energy. Regularizing the
δ functions in the LDOS would result in a loss of information.
To avoid this we interpret Eq. (5) as

I (ω) =
∑

i w
2
t i[∑

i wti

]2 for ω = Et (6)

and zero otherwise. In this way, in the absence of interactions,
the GIPR reduces to the IPR, expressed in terms of the single-
particle eigenstate ψ as

∑
i |ψi |4/[

∑
i |ψi |2]

2
.

Note that in an interacting system, the GIPR is associated
with the size of a transition between two many-body states.
Column 4 of Fig. 3 shows the GIPR values for specific transi-
tions in selected individual systems. For example, consider the
2:3a transition. The blue line in column 3 shows all systems
for which the energy of this transition is 8.1t . The system at
y = 5 has a GIPR value of 1 for this transition. In this system,
the LDOS associated with this transition is large on one site
and close to zero on the other. This is a transition which is
localized primarily on a single site. Alternatively, the system
at y = 0 has a GIPR of 0.5 for this transition. In this case, the
LDOS associate with the transition is roughly equal on the two
sites, and the transition is as extended as it can be in a two-site
system.

Column 4 of Fig. 3 shows GIPR values for each transition
for a selection of systems at different values of y along the
constant energy curve shown in column 3. The GIPR values
are independent of x. For most transitions the GIPR value
increases as y increases. For example, 2:3a transitions have
GIPR values of 0.5 at y = 0 and these values increase rapidly
to 1 at higher values of y.

The 2:3b transition is particularly interesting: There are two
minima in the GIPR, one at y = 0 and one at y = ±U/

√
2.

These two values represent the two distinct types of resonance
which can occur in a strongly correlated system. The y = 0
resonance is the one present in noninteracting systems: The
potentials on the two sites are the same. The y = U/

√
2

resonance is unique to strongly correlated systems: Here the
potential on one site is greater by U than the potential on the
other site.

From column 4 of Fig. 3 it is clear that the transitions
contributing to the DOS at any given energy may have a wide
range of GIPR values, both because of contributions at the
same energy from different transitions and because of variation
in the GIPR within a single transition. To obtain a single value
at each energy we average over all the contributions. In the
noninteracting case studied by Johri and Bhatt [9,10], the
magnitude of the DOS contribution from each transition is
the same, so the IPR values can be directly averaged. In the
interacting case we study here, there is wide variation in the
magnitude of the DOS contributions. We therefore average the
GIPR values weighted by the magnitude of the corresponding
DOS contributions. Consider a transition t in system s at
frequency ωst . The DOS contribution for this transition is ρst

and the GIPR value is Ist . We define the ensemble-average

GIPR value

〈I (ω)〉 =
∑

s

∑
t Ist (ω)ρst (ω)δ(ω − ωst )∑

s

∑
t ρst (ω)δ(ω − ωst )

. (7)

Figures 1(e)–1(h) show the ensemble-average GIPR versus
energy for four values of U . At U = 0 there is a gentle
upward curvature in the center of the band mirroring the gentle
downward curvature in the DOS, consistent with the usual
picture that localization is stronger when the DOS is smaller.
Then, after reaching a sharp maximum, there is an abrupt drop
in the IPR at the edges of the band. This drop has been shown
[10] to come specifically from systems with extreme x values
but y near zero. The states in these systems have been referred
to as resonant or Lifshitz states.

When U is nonzero, the GIPR, like the DOS, has much
more structure. One pattern is an overall lowering of the GIPR
over most of the width of the band as U is increased. This is
consistent with weak interactions providing screening which
reduces localization.

A second pattern is the persistence of region of sharply
suppressed localization. In particular this region moves to-
wards the band center as U increases. What causes this
abrupt drop? Changes in the GIPR can occur at frequencies
at which a particular transition starts or stops making DOS
contributions or due to variations in the GIPR value within a
specific transition. The latter effect is generally smoother and
smaller in magnitude. The sharp drops in GIPR which move
toward the center of the band with increasing U are due to
equal-site-potential resonances, as in the noninteracting case.
There do not appear to be such dramatic features associated
specifically with the y = U/

√
2 resonances unique to strongly

correlated systems.

V. DISCUSSION

In noninteracting systems, sharp peaks in the DOS were
found to coincide with peaks in the IPR at the edge of an energy
range dominated by resonant states. Focusing on ensembles
of two-site systems at half-filling, we find that in interacting
systems the same pattern persists. With available transitions
dependent on the ground state of the system, both the DOS and
the GIPR have more structure than in the noninteracting case.
Nonetheless, sharp peaks in the DOS continue to be associated
with abrupt drops in the GIPR.

In noninteracting systems the decline in the IPR comes from
resonant states in systems in which the potentials on both sites
are similar. In strongly interacting systems, a distinction can be
drawn between this matching of site potentials and a strongly
correlated resonance in which the site potentials differ by the
on-site interaction strength U . Both types of resonance can
be seen in the GIPR spectra of individual systems. However,
no feature in the ensemble average results can be uniquely
associated with the strongly correlated resonance.

Our results show a reduction of localization as interactions
are turned on. When the interaction strength becomes greater
than the disorder and a Mott gap opens, the trend reverses,
consistent with other work on interactions in disordered
systems [16–18]. It is of particular interest that interactions
shift the regions of suppressed localization toward the Fermi
level, making this behavior more accessible to experiments.
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Both the DOS peaks and the GIPR dips should be observable
in quantum dot systems [19].

There has been recent rapid progress in understanding the
phenomenon of many-body localization, focusing mostly on
spin systems. It can be shown that the Hamiltonian of any
system with a Hilbert space of dimension 2N can be expressed
in terms of spinors [8,20]. In this spinor picture, eigenstates
differ in the flipping of individual spinors. Therefore, the
GIPR presented here, which is a measure of the localization
of transitions between many-body eigenstates, is providing
information on the localization of these spinors.

Moving away from half-filling and exploring larger systems
will be important directions for further study.
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APPENDIX: THE GREEN’S FUNCTION

GR
ii(ω) = 1

2

[
GR

ii↑↑(ω) + GR
ii↓↓(ω)

]
, (A1)

where

GR
iiαα(ω) =

∑
n

{ |〈ψn|ĉ†iα|ψ0〉|2
ω − (�n − �0) + iη

+ |〈ψn|ĉiα|ψ0〉|2
ω + (�n − �0) + iη

}
. (A2)

Because the Hamiltonian conserves spin, GR
iiαβ(ω) is zero for

α �= β. ψ0 is the many-body eigenstate with the lowest grand
potential �0 = E0 − μN0, where E0 and N0 are the energy
and the particle number corresponding to this state. ψn are
all other many-body eigenstates with grand potentials �n. In
noninteracting systems the distribution of this local Green’s
function is an order parameter for the Anderson transition
[21,22], and it is also being explored as a measure of the
many-body localization transition [23].
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