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NMR evidence of anisotropic Kondo liquid behavior in CeIrIn5
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We report detailed Knight-shift measurements of the two indium sites in the heavy-fermion compound CeIrIn5

as a function of temperature and field orientation. We find that the Knight-shift anomaly is orientation dependent,
with a crossover temperature T ∗ that varies by 50% as the field is rotated from (001) to (100). This result
suggests that the hybridization between the Ce 4f states and the itinerant conduction electrons is anisotropic, a
result that reflects its collective origin, and may lead to anisotropic Kondo liquid behavior and unconventional
superconductivity.
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I. INTRODUCTION

Heavy-electron materials exhibit a number of interesting
correlated electron phenomena, including unusual broken-
symmetry ground states, quantum criticality, and non-Fermi-
liquid behavior, which arise from the interactions between
a lattice of nearly localized 4f electrons and itinerant
conduction electron states [1,2]. When the 4f states are
weakly hybridized with the itinerant states, the materials
tend to exhibit long-range antiferromagnetism mediated by
Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions; in the
opposite limit the long-range order disappears, the resulting
itinerant quasiparticles have enhanced effective masses, and
the system typically is unstable towards unconventional
superconductivity [3–5]. The emergence of a heavy-fermion
fluid in close proximity to an antiferromagnetic instability
of localized moments remains an active area of experimental
and theoretical research. Several Ce-based compounds happen
to exhibit a level of hybridization that places them close
to the quantum critical (QC) boundary between long-range
antiferromagnetism and superconductivity. As a result small
perturbations induced by doping or pressure can result in
dramatic changes to the ground-state properties [6,7]. These
compounds offer an ideal testing ground to investigate the
interplay between the hybridization and the emergent states of
the strongly correlated system.

CeIrIn5 is an excellent example of a system close to a
QC boundary; while it is superconducting below 0.4 K, the
normal state exhibits antiferromagnetic fluctuations and non-
Fermi-liquid behavior [8,9]. Thus this compound can provide
vital information about the emergence of the coherent heavy-
fermion fluid near a QC boundary. Dynamical mean field
theory (DMFT) calculations indicate that CeIrIn5 undergoes
a crossover from localized to itinerant electron behavior
with decreasing temperature, accompanied by changes to the
Fermi surface [10,11]. Experimental evidence is provided
by resistivity, specific heat, and nuclear magnetic resonance
(NMR) Knight-shift measurements which are well described
by a two-fluid picture of heavy-fermion behavior [12]. Re-
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cent calculations have shown that this hybridization-driven
crossover is strongly anisotropic in this material [13]. Here we
provide direct experimental evidence for such hybridization
anisotropy, which may play a key role in stabilizing the
unconventional superconductivity in this family of heavy
fermions. The DMFT calculations indicate that since the local
4f states are anisotropic, the hybridization is dominated by
the orbital overlap between the Ce 4f and the out-of-plane
In(2) electron orbitals (see Fig. 1). This hybridization should
be manifest in the spin susceptibility χcf , describing the
correlations between the itinerant and local moment electron
spins. This quantity can be directly probed via Knight-shift
experiments [14,15]. We have conducted detailed angular-
dependent studies of the In(1) and In(2) Knight shifts and have
found that χcf indeed depends on the orientation of the applied
magnetic field with respect to the crystal axes. The temperature
dependence of this correlation function is determined by the
Kondo lattice coherence temperature T ∗, which we find to be
largest along the Ce-In(2) bond axis.

II. KNIGHT-SHIFT MEASUREMENTS

High-quality single crystals of CeIrIn5 were synthesized
using the standard flux method described in Ref. [16].
Characterization with powder x-ray diffraction showed the
samples were pure with a small amount of In flux [17]. A
large single crystal with the dimensions 3 × 3 × 1 mm was
chosen for the NMR studies, which were performed in an
Oxford high-homogeneity magnet at a fixed field of 11.7 T.
All spectra were obtained using a standard Hahn echo pulse
sequence [18]. The orientation of the sample was controlled
by a single-axis goniometer, and the sample was mounted
such that the applied field was directed at an angle θ from
(001), in the plane spanned by (100) and (001), as shown in
Fig. 1(a). For each angle, a full spectrum including several
different satellite transitions of 115In(I = 9/2) was obtained
using an automated tuning system integrated with the NMR
spectrometer. The quadrupolar nature of this isotope enabled
us to extract the orientation of the field, and hence the Knight
shift, as described in detail in the Appendix. There are four
In(2) sites per unit cell, and when θ > 0, these four sites split
into two inequivalent sites depending on whether the field
is parallel or perpendicular to the face of the unit cell [see
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FIG. 1. (Color online) (a) Unit cell indicating the three indium
sites and the field orientation. (b) Projection of the unit cell in the ab

plane. (c) A representative frequency-swept spectrum of CeIrIn5 at
11.7 T for θ = 44◦ and temperatures from 6 to 80 K; the magnitude is
normalized by temperature. The temperature-dependent Knight shifts
for the In(1), In(2A), and In(2B) sites are scaled over the raw spectral
data.

Fig. 1(b)]. We refer to these two In(2) sites as In(2A) and
In(2B). Characteristic spectra of the In(1), In(2A), and In(2B)
sites are shown in Fig. 1(c) for θ = 44◦ at several different
temperatures. Each of the three sites clearly exhibits different
temperature-dependent behaviors. Detailed spectra were also
measured at various rotation angles in order to observe any
anisotropy in the temperature dependence.

For a spin-1/2 nucleus, the resonance frequency is given
by ω = γH0[1 + K(θ,φ)], where γ is the gyromagnetic ratio,
H0 is the magnetic field, and K(θ,φ) = H0 · K · H0/H

2
0 .

Here K is the Knight-shift tensor, with principal axes lying
along the unit-cell directions. In general, the Knight shift
arises because of the hyperfine coupling between the nuclear
and electron spins of the material, which gives rise to an
effective hyperfine field at the nuclear site in addition to
the external field, thus shifting the resonance frequency.
Hyperfine couplings can arise from on-site Fermi contact
interactions, as well as via transferred couplings to electron
spins located on neighboring atoms. The exact values of these
couplings depend on details of the electronic structure of the
material, are different for each site, and are generally difficult
to compute. However, it is useful to consider an effective
hyperfine interaction that is appropriate for heavy-fermion
materials: Hhyp = Î · (A · Sc + B · Sf ), where A and B are
temperature-independent hyperfine coupling tensors to the
conduction electron and local moment spins, Sc and Sf [14].
Î is the nuclear spin on the ligand site, in this case either
In(1), In(2A), or In(2B). In the paramagnetic state, the spins
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FIG. 2. (Color online) (a) Knight shift at θ = 44◦ (solid points)
and bulk susceptibility χ (T ) = χc cos2(θ ) + χa sin2(θ ) vs tempera-
ture (solid line). (b) K(2A) and K(2B) vs K(1) and K(2A) vs K(2B)
with temperature implicit. Solid lines are fits to the high temperature
(T > T ∗). T ∗ is the temperature below which the linear relationship
between these quantities breaks down.

are polarized by the external field, and the Knight shift is
given by K = K0 + A · χcc + (A + B) · χcf + B · χff , where
χij = 〈SiSj 〉 are the components of the total susceptibility χ =
χcc + 2χcf + χff , and K0 is the temperature-independent
orbital shift tensor. For sufficiently large temperatures χff is
the dominant contribution; thus K ≈ K0 + B · χ . As a result,
Kα is linearly proportional to χα , where α = (a,b,c) are the
principal directions of the tensor. Furthermore, since the shift
of each site is proportional to χ , each shift is also proportional
to the shifts of the other sites, as shown in detail in the
Appendix. This linear dependence is evident in Fig. 2 for
T > T ∗.

Below the coherence temperature T ∗, the conduction and
local moment spin degrees of freedom become entangled,
and χcf grows in magnitude relative to χff . As a result,
Kα is no longer proportional to χα , as seen in Fig. 2. T ∗
is a material-dependent crossover temperature that depends
on the hybridization and intersite couplings between the Sf

spins in the Kondo lattice [10,12,19,20]. T ∗ can be measured
experimentally via independent measurements of Kα and χα:
when Kα is plotted versus χα with temperature as an implicit
variable, the linear relationship breaks down at T ∗, as observed
in Fig. 2 at θ = 44◦. Several other pairs of shifts and angles
are shown in Fig. 3, and in each case there is a clear break in
this linear relationship at low temperatures.

In order to discern the influence of hybridization anisotropy,
it is important to measure T ∗ as a function of angle. Our
previous studies of the In(1) site in CeIrIn5 indicated that
T ∗ ∼ 40 K and did not appear to vary significantly with field
orientation or magnitude [15,21]. However, the precision of
the T ∗ measurement is limited for the In(1) site because
the coupling constants Aa = Ba in the plane. Therefore the
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FIG. 3. (Color online) Clockwise from the top right panel:
K(2)]K(2A) = K(2B) = K(2) for this orientation] vs K(1) for
θ = 0◦ (purple inverse triangles), K(2B) vs K(1) for θ = 28◦ (green
diamonds), K(2A) and K(2B) vs K(1) and K(2A) vs K(2B) for
θ = 44◦ (pink, dark red, and red circles, respectively), and K(2A)
and K(2B) vs K(1) and K(2A) vs K(2B) for θ = 82◦ (light blue,
dark blue, and blue squares, respectively). Solid lines are fits to the
high-temperature portion as described in the text. T ∗ is indicated by
the gray arrows.

magnitude of the Knight-shift anomaly gradually decreases
with angle and vanishes for H0 ‖ (100). This problem can
be circumvented by measuring the Knight shifts of both of
the In(2) sites and the In(1) site. This approach is superior
because all of the Knight-shift measurements can be acquired
simultaneously at the same crystalline orientation without the
need for separate measurements of χ [21]. The behavior
below T ∗ is governed by the temperature dependence of
the correlation function χcf (T ). As the conduction electron
and local moments become entangled, this quantity grows in
magnitude and can be extracted from the Knight shift below
T ∗. To do so, we fit the high-temperature data (T > T ∗)
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FIG. 4. (Color online) Kcf /K0
cf vs T for various angles (colors

and symbols are defined as in Fig. 2). The solid lines are fits as
described in the text. The inset shows Kcf vs T .

for each pair (K1,K2) of Knight shifts to K1 = a + bK2

and then plot Kcf (θ,T ) = K1(T ,θ ) − a − bK2(T ,θ ) versus
temperature in the inset of Fig. 4. As shown in the Appendix,
this quantity is proportional to χcf (θ,T ) and becomes nonzero
below T ∗. The constants a and b depend on the ratios of
hyperfine couplings of the various pairs of sites and are
unimportant for our analysis [21]. We have confirmed that
these constants are consistent for three different data sets.

III. ANISOTROPY

As seen in Fig. 4, Kcf vanishes above T ∗ but grows in
magnitude with decreasing temperature below this tempera-
ture. These data clearly indicate that the onset temperature
T ∗ depends on the angle θ . This angular variation is model
independent and can be discerned in the plots of Ki versus
Kj in Figs. 2 and 3. For concreteness we fit the temperature
dependence of Kcf to the two-fluid expression [22],

Kcf (T ) = K0
cf (1 − T/T ∗)3/2[1 + ln(T ∗/T )], (1)

and plot K0
cf and T ∗ versus angle θ in Figs. 5(a) and 5(b).

K0
cf is proportional to a complex ratio of the hyperfine

couplings and anisotropic g factors of the material, and
the angular dependence of this quantity seen in Fig. 5(a)
reflects the anisotropies of these couplings. The main panel
of Fig. 4 shows Kcf (T ) normalized by K0

cf , which removes
any anisotropies introduced by the hyperfine couplings and
g factors. The onset temperature of the anomaly T ∗ varies
with angle. Here T ∗ is unrelated to the hyperfine couplings
and reflects intrinsic properties of the electronic degrees of
freedom of the Kondo lattice. As seen in Figs. 4 and 5(b), as
the field angle rotates from the (001) direction, T ∗ increases
from 40 to nearly 50 K at 44◦ and then reaches a minimum
of 26 K for the (100) direction. In order to parameterize
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FIG. 5. (Color online) (a) K0
cf and (b) T ∗ vs angle as determined

from the fits shown in Fig. 4, as determined by plotting K(2B) vs
K(1) (pink), K(2A) vs K(1) (blue), and K(2A) vs K(2B) (green).
Dashed lines are guides to the eye, and the solid line in (b) is a fit
as described in the text. (c) T ∗(θ ) shown as a polar plot, relative to
the (001) (vertical) and (001) (horizontal) directions. The dotted red
lines indicate the Ce-In(2) directions. (d) χcf (T ,θ ) and T ∗/Jz (solid
line) vs θ for the two-spin model discussed in the text.
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this anisotropy, we fit this angular dependence to the form
T ∗(θ ) = T ∗

0 + T ∗
2 cos(2θ ) + T ∗

4 cos(4θ ), which qualitatively
reproduces the hybridization function calculated in Ref. [13].
We find T ∗

0 = 42(2) K, T ∗
2 = −7(2) K, and T ∗

4 = 7(2) K,
shown in Fig. 5(c). These results reveal that the heavy-electron
fluid, which emerges from the collective hybridization of the
lattice of 4f sites with the conduction electrons, is anisotropic
in this material. This result suggests that the hybridization is
not isotropic and has fourfold symmetry.

A. Hybridization

A recent analysis of data in a broad range of heavy-fermion
materials indicated that T ∗ is proportional to the intersite
RKKY exchange interaction, which itself is proportional to J 2,
where the Kondo coupling J is a function of the hybridization
[12]. Therefore anisotropy in the hybridization should be
reflected in the experimentally measured quantity, T ∗. In order
to discern how an anisotropic hybridization can give rise to
anisotropy in the susceptibility χcf , it is instructive to consider
a generalization of the two-spin model introduced in Ref. [15].
We consider an anisotropic coupling between two free spins,
Sc and Sf : H = J⊥(Sx

c Sx
f + S

y
c S

y

f ) + JzS
z
cS

z
f , where Jz,⊥ is

the coupling between the spins derived from the anisotropic
hybridization parallel (perpendicular) to the z axis. This model
is the single-site limit of the periodic Anderson model in the
limit of large on-site repulsion U relative to the hybridization
V , such that Jα = 4V 2

α /U [20]. In this case, the susceptibilities
χcc, χcf , and χff are exactly solvable. For the isotropic case
J⊥ = Jz, χij are all isotropic and scale as T/T ∗, where
T ∗ = Jz/kB . When J⊥ 
= Jz, these susceptibilities become
anisotropic tensors, such that the susceptibility becomes an-
gle dependent: χcf (T ,θ ) = χz

cf (T ) cos2(θ ) + χ⊥
cf (T ) sin2(θ ),

shown in Fig. 5(d) for the case J⊥ = 0.2Jz. We fit this quantity
to Eq. (1) for several values of θ , and the solid line in Fig. 5(d)
shows the fitted values of T ∗(θ ). Clearly, T ∗ is anisotropic,
although this model is not sophisticated enough to capture the
fourfold variation observed in Fig. 5(b). A model including
multiple sites would represent the full lattice better and would
be more likely to resemble the experimental measures.

B. Crystalline electric field

An alternative interpretation of Knight-shift anomalies is
that the hyperfine coupling constants depend on the particular
crystalline electric field (CEF) doublets [23,24]. The strong
spin-orbit coupling combined with CEF interactions at the
Ce ions gives rise to a temperature-dependent anisotropic g

factor. The Ce3+ ions in this material experience a CEF that
splits the J = 5/2 ground-state multiplet into three doublets,
with excited states energies �1 = 6.7 meV and �2 = 29 meV
above the ground state [25,26]. In order to explore the
possible role of the CEF in the anisotropy we observe in
Kcf , we have computed KCEF

cf and χCEF as a function of
field orientation using the hyperfine coupling model discussed
in Refs. [21,23,24]. In this scenario, the hyperfine coupling
between the In(1) site and the Ce spin depends on the particular
CEF doublet; thus when the temperature T � �1/3kB , the
thermal population of the excited states is significantly
reduced, and the effective hyperfine field changes. As a
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FIG. 6. (Color online) Susceptibility χCEF (solid lines) and
Knight shifts KCEF (dotted lines) vs temperature calculated in the
CEF model for various field orientations, as described in the text.
The inset shows KCEF vs χCEF (solid lines) for the same orientations.
Dashed lines are fits to the high-temperature data points.

result, the Knight shift differs from the susceptibility below
the anomaly temperature T ∗

CEF ∼ �1/kB . Here we computed
χCEF

c,ab and KCEF
c,ab using the same CEF parameters and hyperfine

couplings as in Ref. [21] in a field of 11.7 T. These quantities
are shown in Fig. 6. Note that these calculations do not
accurately capture the behavior of the real material because this
model neglects the role of hybridization of the Ce 4f states.
Nevertheless, there is a clear anisotropy in the magnitudes of
both KCEF and χCEF, which reflects the anisotropy of the g

factor of the Ce. We have also assumed isotropic hyperfine
couplings in this calculation, but relaxing this assumption
would simply modify the relative scale factors of the Knight
shifts shown in Fig. 6.

We then fit the high-temperature portion (T > 100 K) of
KCEF(θ ) versus χCEF(θ ) for various values of θ and plot-
ted KCEF

cf (θ ) = KCEF(θ ) − a − bχCEF(θ ), shown in Fig. 7(a).
χCEF(θ ) grows in magnitude below T ∗

CEF ≈ 55 K ∼ 0.7�1 and
varies strongly with θ . For concreteness, we fit KCEF

cf (θ ) to
Eq. (1) to extract T ∗

CEF, shown in Fig. 7(b). However, the
fits, shown for θ = 0◦ and 90◦ as dotted lines in Fig. 7(a),
are poor and do not capture well the detailed temperature
dependence of the theoretical CEF curves. The fitted T ∗
increases from 64 to 120 K and then decreases down to 98 K
as the field varies from the c axis to the ab plane. Figure 7(c)
shows KCEF

cf (θ ) normalized by K0
cf in order to remove the

anisotropy of the g factor. Although the angular dependence
of T ∗ extracted from these fits qualitatively reproduces the
experimental observations, the temperature dependence of
KCEF

cf does not match well with the experimental data shown
in Fig. 4. From these data alone, it is not possible to rule
out this model, although previous work indicates that the field
dependence of the Knight-shift anomaly is not captured by the
CEF model [21]. It is possible that both CEF and hybridization
effects could be playing a role in determining the anisotropic
behavior we observe.

085108-4



NMR EVIDENCE OF ANISOTROPIC KONDO LIQUID . . . PHYSICAL REVIEW B 92, 085108 (2015)

-12

-8

-4

0
K

cf
C

E
F
  (

x1
0-3

  e
m

u/
m

ol
 O

e)

 0°
 18°
 36°
 54°
 72°
 90°

120
80
40
0T

* C
E

F
 (

K
)

80400

θ (°)

-3.0
-2.0
-1.0
0.0

K
cf

C
E

F
/K

cf
0

300250200150100500

T (K)

(a)

(b)

(c)
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CEF extracted by fitting the theoretical
KCEF

cf results to Eq. (1) in the main text as a function of angle. (c)
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cf vs T for various angles. The dotted line is a fit to Eq. (1)

in the main text.

IV. DISCUSSION

An anisotropic coherence temperature has important impli-
cations in the context of the two-fluid model and can explain
various observations. For example, in compounds such as
CeCoIn5 and CeCu2Si2, evidence suggests that the temperature
onset of the Knight-shift anomaly differed when the field was
parallel or perpendicular to the tetragonal c axis [14]. Our
experiments on CeIrIn5 suggest that hybridization anisotropy
may also be present in these materials and call for further
measurements. Anisotropy may also explain the variations in
T ∗ measured by different experimental techniques such as
NMR, resistivity, specific heat, or Hall measurements [12]. If
there is a magnetic field present to break the symmetry, then
experiments that couple to the susceptibility will reveal this
anisotropy. On the other hand, for measurements in the absence
of a field, such as resistivity or specific heat, the heavy-electron
fluid will have an isotropic response with a slightly different
temperature scaling. For example, in the isotropic case of the
two-spin model discussed above, both the susceptibility and
the specific heat scale as T/T ∗, where T ∗ = Jz/kB = J⊥/kB .
However, when J⊥ 
= Jz the susceptibility scales as T/T ∗(θ ),
and the specific heat scales as T/T ∗

C , where T ∗
C is isotropic. In

this case, both T ∗(θ ) and T ∗
C are more complicated functions

of Jz and J⊥.
The anisotropy we observe in the static susceptibility will

also be reflected in the dynamic susceptibility of the Kondo
liquid, which may play a role in the emergence of super-
conductivity in this material. Anisotropic spin fluctuations
have been shown to give rise to d-wave superconductivity
and enhance Tc in for two-dimensional fluctuations [27].
Superconductivity appears to be fairly common in certain
heavy-fermion families, such as the CeMIn5 series, but not
in other Ce-based heavy-fermion families. Our observations

suggest the reason for the stability of superconductivity in the
CeMIn5 series may arise from the particular orbital overlap
between the In(2) and the Ce sites in this structure, giving rise
to the anisotropy in T ∗ we observe experimentally.

In summary, we have found evidence that the coherence
temperature T ∗ as measured by the Knight shift is anisotropic
in CeIrIn5, reflecting an anisotropic collective hybridization
in the Kondo lattice among multiple sites. Our results
demonstrate that the NMR Knight shift is a vital new tool to
explore and quantify this anisotropy and suggests that the In(2)
sites in this compound play a key role in the development of
the heavy-electron fluid. Detailed calculations, for example,
quantum Monte Carlo simulations, should be carried out
in order to test the effects of anisotropic hybridization and
discern whether the fourfold symmetry we observe arises from
collective hybridization among multiple sites.
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APPENDIX

1. Spectrum analysis

Each spectrum, covering up to a range of 40 MHz,
contains 9 In(1) transitions plus up to 18 In(2) transitions,
depending on the orientation of the field with respect to the
crystal. The resonance frequencies are determined by the NMR
Hamiltonian: Hn = γ �Î · (I + K) · H0 + HQ, where K is the
Knight-shift tensor, γ is the gyromagnetic ratio, H0 is the
external applied field, and HQ is the quadrupolar Hamiltonian.
The latter is given by

HQ = �

6

[
ωzz

(
3Î 2

z − Î 2
) + (ωxx − ωyy)

(
Î 2
x − Î 2

y

)]
, (A1)

where (ωxx,ωyy,ωzz) are the eigenvalues of the electric field
gradient (EFG) tensor, with eigenvectors directed along the
x,y,z directions. For the In(1) site, ωzz = 6.07 MHz along
(001), and ωxx = ωyy = −3.04 MHz along (100) and (010).
For In(2) ωzz = 18.17 MHz along (100), ωxx = −13.26 MHz
along (010), and ωyy = −4.91 MHz along (001). Hn was
diagonalized numerically, and the resonance frequencies were
fit to the spectral data with the shift Kαα , the polar angle θ ,
and the azimuthal angle φ left as variable parameters. The
In(1) site has axial symmetry; therefore there are nine equally
spaced satellite transitions whose frequencies only depend on
θ . For each orientation of the crystal, we fit the positions of
the In(1) peaks in order to extract the angle θ . The azimuthal
angle φ describes the orientation of H0 relative to (100). By
analyzing the satellites of In(2) we found φ = 0◦ ± 2◦ for each
rotation of the goniometer.

2. Relationship between shifts of different sites

The hyperfine interaction is given by Hhf = Î · [ASc +
BSf ], where A and B are the hyperfine couplings to the
itinerant electron spins Sc and to the local moment spins Sf .
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In this case the Knight shift of each site is given by

Ki = K0
i + Aiχcc + (Ai + Bi)χcf + Biχff , (A2)

where i corresponds to In(1), In(2A), or In(2B); K0
i is a

temperature independent orbital term; and the components of
the susceptibility are given by χαβ . The bulk susceptibility
is χ = χcc + 2χcf + χff . For T > T ∗, χcf and χcc can be
neglected; therefore Ki = K0

i + Biχ . In this case Ki is also
linearly proportional to Kj : Ki = a + bKj , where

a = K0
i − (Bi/Bj )K0

j , (A3)

b = Bi/Bj . (A4)

These relationships enables us to extract χcf using just two
pairs of Knight shifts without the need for independent
measurements of χ . Using Eqs. (A2) and (A4), we find

Kcf (T ) = Ki(T ) − a − bKj (T )

=
(

Ai − Bi

Bj

Aj

)
[χcf (T ) + χcc(T )]. (A5)

Since the hyperfine couplings are temperature independent and
χcc can be neglected, this quantity is proportional to χcf and
becomes nonzero below T ∗.
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