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Patterns of electromagnetic response in topological semimetals

Srinidhi T. Ramamurthy and Taylor L. Hughes
Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Illinois 61801, USA

(Received 17 July 2014; revised manuscript received 28 May 2015; published 3 August 2015)

Topological semimetals are gapless states of matter which have robust and unique electromagnetic responses
and surface states. In this paper, we consider semimetals which have pointlike Fermi surfaces in various spatial
dimensions D = 1,2,3 which naturally occur in the transition between a weak topological insulator and a trivial
insulating phase. These semimetals include those of Dirac and Weyl types. We construct these phases by layering
strong topological insulator phases in one dimension lower. This perspective helps us understand their effective
response field theory that is generally characterized by a 1-form b which represents a source of Lorentz violation
and can be read off from the location of the nodes in momentum space and the helicities/chiralities of the nodes.
We derive effective response actions for the two-dimensional (2D) and 3D Dirac semimetals and extensively
discuss the response of the Weyl semimetal. We also show how our work can be used to describe semimetals
with Fermi surfaces with lower codimension as well as to describe the topological response of 3D topological
crystalline insulators.
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The discovery of topological-band insulators (TIs) and
their novel electronic properties has led to a reexamination
and search for robust topological features of the electronic
structure of many different material types [1]. Some notable
properties of TIs include a gapped, insulating bulk interior,
protected boundary modes that are robust even in the presence
of disorder, and quantized electromagnetic transport. A full
(periodic) classification table of noninteracting fermionic
states of matter that are protected by time-reversal (T ), chiral,
and/or particle-hole (C) symmetries has been established
[2–4]. Recent work has further augmented the initial periodic
table by including the classification of states protected by
spatial symmetries such as translation, reflection, and rotation
[5–20]. While these symmetry-protected topological phases
are theoretically interesting in their own right, this field
would not have attracted so much attention if it were not
for the prediction and confirmation of candidate materials
for many different topological classes. A few examples are
the two-dimensional (2D) quantum spin Hall insulator (e.g.,
CdTe/HgTe quantum wells [21–23]), the 3D T -invariant
strong TI (e.g., BiSb [24], Bi2Se3 [25–27]), the 2D quantum
anomalous Hall (Chern) insulator (e.g., Cr-doped (Bi,Sb)2Te3

[28,29]), and the 3D T -invariant topological superfluid state
(e.g., the B phase of He-3 [2,4,30]).

All of the above work pertains to gapped systems; however,
recent theoretical predictions have shown that even materials
that are not bulk insulators can harbor robust topological
electronic responses, transport properties, and conducting
surface/boundary states [31–40]. This class of materials falls
under the name topological semimetals and represents another
type of noninteracting electronic structure with a topological
imprint. The most well-studied examples of topological
semimetals (TSMs) are the 2D Dirac semimetal (e.g., graphene
[41]), the 3D Weyl semimetal (possibly in pyrochlore irridates
[32], inversion-breaking superlattices [42], or optical lattices
[43]), and the 3D Dirac semimetal [44–49]. While there
are yet to be any confirmed experimental candidates for
3D Weyl semimetals, their unique phenomenology, including
incomplete Fermi-arc surface modes, an anomalous Hall effect
(AHE), and a chiral magnetic effect, has drawn theoretical and

experimental attention to these materials. Two types of 3D
Dirac semimetals, i.e., a Dirac semimetal type with nodes
at the time-reversal invariant momenta [44,47,48], and one
with nodes away from those special momenta [45,46] has
been reported to be found. In addition to these TSMs there
is a large set of symmetry-protected TSMs which rely on
additional symmetries for their stability [35]. Finally, we also
note that there are superconducting relatives of these semimetal
phases called topological nodal superconductors, or Weyl
superconductor phases, that await experimental discovery
[35,50,51], though we do not consider them further.

In this article we explore the quasitopological response
properties of TSMs in the presence of external electromagnetic
fields. We present a generic construction of TSMs that can be
adapted to model almost any type of TSM. This construc-
tion allows us to manifestly determine the electromagnetic
response properties of the TSMs in question. It also enables
us to uncover clear patterns in the quasitopological electro-
magnetic response terms exhibited by the various semimetal
types and in different spatial dimensions. In addition, our
work nicely complements the extensive recent work study-
ing the topological response properties of Weyl semimetals
[32–35,40,52].

The previous field-theoretic calculations of the response
of Weyl semimetals have predicted a novel electromagnetic
response for the 3D TSMs, but not without some subtlety
[34,53–58]. Thus, another goal of this article is to address
the electromagnetic (EM) response for various topological
semimetals and to show the validity and limitations of the
field-theory results. To this end, we provide explicit numerical
simulations using simple lattice models to complement our
transparent analytic discussion. In addition to the discussion
of the 3D Weyl semimetals, we carefully illustrate the pattern
of TSM response actions that exist in 1D metallic wires and 2D
Dirac semimetals to establish a unified framework of the EM
response of TSMs. We discuss the influence of and, in some
cases, the necessity of antiunitary and/or spatial symmetries
for the stability of the semimetal phase and the resultant
implications for the EM response. Furthermore, we provide
an analytic solution for the boundary modes of the TSMs
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in our simple lattice models, derive a topological effective
response action for the 2D and 3D Dirac semimetals, calculate
the EM response at interfaces between different TSMs, and,
where possible, emphasize the important physical quantities
of TSMs that can be observed.

The article is organized as follows. In Sec. I we discuss
the preliminaries and motivation for the work. This section
provides our approach to the characterization of TSMs and
further reviews previous work on the response of Weyl
semimetals. After this we begin by discussing 1D semimetals
in Sec. II as a warm-up problem for the rest of the article.
From this, we move on to 2D Dirac semimetals in Sec. III.
We discuss the connection between 1D TIs and 2D Dirac
semimetals and discuss the low-energy boundary states of the
Dirac semimetal. We calculate the “topological” contribution
to the EM response for a TSM with two Dirac points using a
field-theoretical calculation and then go on to generalize the
picture to a generic number of Dirac points. We also discuss
the microscopic origin and subtleties of the response using
lattice model realizations. For the 2D Dirac semimetal some
parts of the quasitopological EM response have been discussed
quite extensively for graphene in Refs. [59,60]. Additionally,
the time-reversal-breaking quantum anomalous Hall (Chern
insulator) response in a gapped Dirac semimetal has been
studied quite carefully as well [28]. We generalize these results
to the case of an arbitrary number of nodes, including fewer
nodes than the four in graphene, and consider subtleties which
arise from theZ2 nature of the edge modes which arise in these
models. Based on the work of Ref. [61], we are also able to give
a valid definition of the electric charge polarization for Dirac
semimetals, a quantity usually reserved for bulk insulators,
which we use to define the quasitopological EM response of
the semimetal.

After this we proceed to 3D, where we study both Weyl
semimetals and 3D Dirac semimetals (we also comment on
the possible response of 3D topological crystalline insulators
in the Discussion and Conclusions). First, in Sec. IV A
we discuss the response properties of a Weyl semimetal.
While some of the results in this section are already known,
we present the material from a different perspective and
include lattice-regularized numerical calculations of the re-
sponse, which show precisely under what conditions there is a
nonzero current due to the chiral magnetic effect (CME). We
also connect the numerical result with our earlier discussion on
1D systems since, when placed in a uniform magnetic field,
one can map the 3D Weyl semimetal to identical copies of
the 1D model. This may help resolve some of the controversy
surrounding questions raised over whether the CME exists in
a lattice model. We also provide many new results including
an analytic description of the boundary modes for a lattice
model of the Weyl semimetal, the response behavior of a
heterojunction between two different Weyl semimetals, and
a discussion of the anomaly cancellation which connects
the bulk and surface responses. We finish our discussion of
3D materials with Sec. IV B on 3D Dirac semimetals. The
interesting quasitopological response of 3D Dirac semimetals
is present when the Dirac nodes are located at generic points
in momentum space away from the zone boundaries [45,46].
This type of Dirac semimetal (DSM) was shown to be stable
in Ref. [49] and has been experimentally observed in Na3Bi

[46]. We find a type of EM response which appears when the
surface of the 3D DSM is in contact with a magnetic layer
and is related to the response predicted for the 2D quantum
spin Hall insulator [3,62]. Finally, in Sec. V we summarize our
results and briefly discuss an application of our work to the
topological response properties of 3D topological crystalline
insulators and also how to consider semimetals with Fermi
surfaces with different codimensions, both of which will be
discussed more in future work.

I. PRELIMINARIES AND MOTIVATION

A. Electromagnetic response

One of the primary goals of this work is to produce
valuable intuition for understanding the response properties
of generic topological semimetals with point nodes (linelike
nodes will be considered in future work). In this section we
begin with a simple physical construction that is applicable
to different types of topological semimetals and provides a
basis for understanding the EM response of a wide class of
TSMs in a unified manner. In this context we discuss some
of the previous work on the EM response of Weyl semimetals
as an explicit example. Finally, before we move on to more
technical calculations, we illustrate the pattern followed by the
EM response of TSMs in various spatial dimensions.

An insightful way to view a topological semimetal is as a
stable gapless phase that separates a trivial insulator phase from
a weak TI phase. A trivial insulator is essentially a band insu-
lator that is adiabatically connected to the decoupled atomic
limit. The electronic structure of trivial insulators does not
exhibit any nonvanishing topological properties. On the other
hand, weak topological insulators (WTIs) are anisotropic,
gapped topological phases that are protected by translation
symmetry and characterized by a vector topological invariant
�ν. The fact that the topological invariant is a vector, and not
a scalar, is an indication that they are essentially anisotropic.
This anisotropy can be made more apparent because each WTI
phase in d spatial dimensions can be adiabatically connected
to a limit of decoupled (d − 1)-dimensional systems that are
layered perpendicular to �ν. The (d − 1)-dimensional building
blocks that make up the d-dimensional WTI must each be
in a (d − 1)-dimensional TI phase to generate the higher-
dimensional WTI phase. Of course, one can also construct
a d-dimensional WTI from (d − q)-dimensional (1 < q < d)
topological phases, which will lead to Fermi surfaces with
lower codimension although we save their consideration to
future work.

The most well-known example of a WTI is a stack of
planes of 2D integer quantum Hall states (or 2D Chern
insulators) that create the so-called 3D quantum Hall effect
(QHE) [63–66]. If the 2D planes are parallel to the xy plane,
then the vector invariant �ν ∝ ẑ. If the coupling between the
planes is weak, then the bulk gap, arising from the initial bulk
gaps of the 2D planes, will not be closed by the dispersion in
the stacking direction. However, when the interlayer tunneling
becomes strong enough, the system will become gapless and
exhibit the so-called Weyl semimetal phase. Eventually, as
the tunneling strength increases, the system will transition to
another gapped phase that will either be a different WTI phase
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or a trivial insulator. Thus, in the simplest case, the Weyl
semimetal is an intermediate gapless phase separating a WTI
from a trivial insulator. As we discuss later, a similar picture
can be developed for the 2D Dirac semimetal which can be
adiabatically connected to an array of 1D TI wires that are
stacked into 2D. Ultimately, this type of description of TSMs
will be very useful since the relevant EM response properties
of the lower-dimensional TI building blocks are known [3],
and the problem of the TSM response is transformed into
understanding how the interlayer coupling affects the EM
responses of the TI constituents.

While it is well-known that TIs and WTIs exhibit topo-
logical EM response properties, at the transition between
trivial and topological phases the relevant topological response
coefficients are no longer well-defined, i.e., not sharply
quantized. In fact, there is usually a jump from a quantized
nonzero value in the topological phase to a vanishing value
of the response coefficient in the trivial phase. Therefore,
it is a bit surprising that the semimetal phases intermediate
between trivial and topological insulators retain an imprint of
the topological response.

This is illustrated beautifully in the case of the Weyl
semimetal as we now discuss. A trivial insulator has no
topological component to its EM response; it obeys Maxwell’s
equations with the conventional insulator constituent relations
for polarization and magnetization. On the other hand, the
nontrivial WTI represented by the 3D quantum Hall insulator
produces a topological response term in the effective action

Seff[Aμ] = − e2

2πh

∫
d3xdt νμε

μσρτAσ ∂ρAτ , (1)

where ν0 = 0, νi = n
2Gi are the components of a half-integer

multiple n/2 of a reciprocal lattice vector �G, and Aμ are
external EM fields. This action implies that spatial planes
perpendicular to �ν will have a Hall effect, and the 3D Hall
conductance is σxy = −ne2/haG, where aG is the lattice
spacing along �G (aG = 2π/| �G|). Note that we have chosen
the global negative sign to match the convention of Ref. [54].
The trivial insulator phase can be thought of as the case when
�ν = �0. It is clear that the topological response is anisotropic,
as the particular �ν = �G

2 breaks rotation invariance (and as a
consequence Lorentz invariance if we are considering rela-
tivistic theories which are a common low-energy description
of a TSM; see Ref. [67]).

Now that we understand the topological response of the
two phases that straddle the Weyl semimetal phase, we can
try to understand the response of the simplest type of Weyl
semimetal, i.e., the kind with only two Weyl nodes (the
minimal number). Let us imagine the following process, where
we begin with a trivial insulator and nucleate two Weyl nodes at
the	 point in the 3D Brillouin zone (BZ) by tuning a parameter
m (see Fig. 1). The low-energy k · P Hamiltonian near each
Weyl node is of the form HWeyl(p) = p1σ

1 + p2σ
2 + p3σ

3,
where σa are Pauli matrices and we have set the velocity to
unity. As m is further changed, the Weyl nodes will move
through the BZ but cannot be gapped (assuming translation
invariance) unless they meet each other again or another node
with opposite chirality. The reason is that if the Weyl nodes are
separated, then there is no matrix which anticommutes with

Increasing m

FIG. 1. (Color online) Schematic illustration of the motion of
point nodes in the kz = 0 plane of a cubic, 3D BZ as a parameter m
is adjusted. As m increases, two Weyl nodes with opposite chirality
(as represented by the color shading) are created in the 2D subspace
(i.e., kz = 0) of a full 3D BZ. As m increases further, the nodes move
throughout the BZ, meet at the boundary, and then finally annihilate to
create a gapped phase with a weak topological invariant proportional
to the reciprocal lattice vector separation �G = 2�ν of the Weyl nodes
before annihilation. The far left BZ represents a trivial insulator, the
far right represents a WTI, and the intermediate slices represent the
Weyl semimetal phase.

HWeyl(p), and thus no perturbation can be added that will open
a gap. If the two Weyl nodes (with opposite chirality) meet
and become degenerate, then the resulting 4 × 4 Hamiltonian
HWeyl ⊕ H̃Weyl has the Dirac form. In this case one can find
an anticommuting matrix to add that will perturbatively open
a gap and annihilate the nodes. If the Weyl nodes meet at the
boundary of the BZ at points which differ by a reciprocal lattice
vector �G, then upon annihilation the system will undergo a
change of its weak invariant, i.e., 
�ν = �G

2 . Thus, if the system
starts with �ν = 0 then it will have a transition to a nontrivial
WTI during this process.

During the process of tuning m we see that before we
nucleate the Weyl nodes, there is no topological response,
and after they annihilate at the BZ boundary there will be a
nontrivial Hall response. We now can ask the following: What
is the response in the gapless semimetal phase? The answer
turns out to be simple, we just have the response of Eq. (1),
with �ν = �b, where 2�b is the difference in momentum between
the two Weyl nodes [54]. Interestingly, the response coefficient
smoothly interpolates between the two insulating end points.
This remarkable result can be extended even further because
we also have a notion of a relative energy between the Weyl
nodes. Because of this, we can generate a coefficient ν0 = b0

in Eq. (1), where 2b0 is the energy difference between the two
Weyl nodes. This enhances the response as now we can have a
Lorentz-invariance-violating 4-vector response coefficient νμ
(again, see Ref. [67] for what is meant by “Lorentz violating”).

The addition of a response proportional to ν0 is a new
feature of the semimetal since one cannot define a notion of
ν0 in the pure WTI because the low-energy theory is gapped.
The reason one can have a spatial vector in the gapped WTI is
because of the translation-symmetry (and continuous-rotation-
symmetry)-breaking lattice structure which gives rise to the
reciprocal lattice vector(s) �G. On the other hand, if we had a
periodically driven system, i.e., a system evolving according to
Floquet dynamics, then, even in the insulating case, we could
have a nonzero ν0 which would be proportional to the driving
frequency of the time-dependent field, i.e., the reciprocal
lattice vector for time. In the Weyl semimetal phase, the
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existence of nondegenerate Weyl nodes immediately gives rise
to a Lorentz-breaking 4-vector similar to the kind anticipated
by Refs. [68,69] for Lorentz violations in high-energy physics.

The resulting response from Eq. (1) generates an anomalous
Hall effect along with a CME. The CME occurs when b0 �= 0
and is anticipated to give rise to a current when a magnetic field
is applied to the system, but in the absence of any electric field.
For a translation-invariant 3D material with an even number
of Weyl nodes, we can determine

�b = 1

2

∑
a

χa �Ka, b0 = 1

2

∑
a

χaεa, (2)

where the sum runs over all of the Weyl nodes and χa , �Ka , and
εa are the chirality, momentum location, and energy of the ath
node, respectively. Additionally, from the Nielsen-Ninomiya
no-go/fermion-doubling theorem we know there is also the
constraint that the total chirality

∑
a χa = 0 must vanish [31].

With these definitions, the resulting charge density and current
in the semimetal are given in terms of bμ and the applied EM
fields as

j 0 = e2

2πh
(2�b) · �B, (3)

�j = e2

2πh
[(2�b) × �E − (2b0) �B]. (4)

As an aside, we note that while the origin and detection
of the anomalous Hall current is well understood, there have
been some disagreements in the recent literature about the
possibility of a nonvanishing CME. To summarize the results
so far, the field-theoretical results are somewhat ambiguous
because of the dependence on a regularization [53,70]: A tight-
binding lattice calculation has shown a vanishing result [55],
while a more recent calculation has indicated the need for
a slowly varying magnetic field that eventually tends toward
a uniform/constant field [56]. In Sec. IV A we comment on
these results and note that having an explicit source of Lorentz
violation is a necessity for a nonvanishing CME effect. We also
discuss the interpretation of the CME effect from a quasi-1D
perspective generated from applying a uniform magnetic field
to a Weyl semimetal. This allows us to map the 3D problem
onto degenerate copies of the 1D system, which can be more
easily analyzed.

General pattern of quasitopological electromagnetic
response in topological semimetals

While we have seen that it is the case for the Weyl
semimetal, it is generically true that the general pattern of
EM response for TSMs with point nodes in any spatial
dimension stems from the existence of the Lorentz-violating
vector response coefficient bμ. In systems with translation
symmetry, the vector is connected to the momentum and
energy difference between nondegenerate point nodes (e.g.,
Dirac nodes in 2D and Weyl nodes in 3D). In general, the vector
represents a source of Lorentz violation in the system because
it chooses a preferred direction or frame in the system, and
its time and space components can both be nonvanishing [67].
For example, the spatial part of bμ represents an anisotropic

“stacking direction” similar to the case of the weak TI.
Now let us denote the external EM gauge field by Aa and
its field strength by Fab = ∂aAb − ∂bAa. In odd-dimensional
space-time (D + 1 is odd), the effective EM response action
for point-node semimetals is

S[A] = AD

∫
dD+1x εa1a2···aD+1ba1Fa2a3 · · ·FaDaD+1 , (5)

where the ellipses in the above equation represent further
factors of the field strength and AD is a dimension-dependent
normalization coefficient. We see from this equation that if
one calculates the current jμ = δS[A]/δAμ, then the result
always depends on derivatives of bμ.This is important because
it immediately implies that the response of semimetals in odd-
dimensional space-time depends crucially on the properties of
boundaries or interfaces where bμ is changing.

In contrast, in even space-time dimensions (D + 1 is even),
the effective action for the quasitopological EM response of
point-node semimetals is

S[A] = AD

∫
dD+1x εa1a2···aD+1ba1Aa2Fa3a4 · · ·FaDaD+1 , (6)

where the ellipses in the above equation represent further fac-
tors of the field strength. For example, in (1 + 1) dimensions,
we have just S[A] = A1

∫
d2x εμνbμAν.Now if one calculates

the current, the result depends on the value of bμ itself (as well
as possible derivatives in some cases). This hints that at least
part of the response is determined by bulk effects alone and
does not involve the properties of surfaces and boundaries.
In even-dimensional space-times the literature differs on the
convention for the choice of the action and some sources use

S[A] = AD

2

∫
dD+1x εa1a2···aD+1θFa1a2Fa3a4 · · ·FaDaD+1 ,

where θ ≡ 2bμxμ. However, this second form, while it looks
somewhat nicer as far as gauge invariance is concerned, has an
implicit breaking of translation symmetry. This comes from
the freedom of the choice of origin in the definition of θ as
we could have alternatively defined θ to be θ ≡ 2bμ(xμ + x

μ

0 )
with some constant 4-vector xμ0 . Because of this, we always
choose the form Eq. (6) to avoid the translation symmetry
ambiguity. In fact, using the θ -term version of the action leads
to spurious effects when the system is not homogeneous, e.g.,
in the presence of boundaries.

In general, the pattern of response actions for TSMs
with nodal (pointlike) Fermi surfaces is attached to an
intrinsic 1-form b = bμdx

μ, which is determined from the
electronic structure. This type of 1-form indicates some
inherent anisotropy in the electronic structure and can appear
in any dimension. We also note that because of the lattice
periodicity, the vector 2�b is only determined up to a reciprocal
lattice vector. Thus, the response of a TSM is only determined
up to a quantum determined by the addition of a filled band. For
Weyl semimetals this indeterminacy is due to the possibility
of a contribution of an integer Hall conductance (per layer)
from filled bands; the low-energy Fermi-surface physics does
not contain information about the Hall conductance of the
filled bands [71]. For cases where the response coefficients are
connected toZ2 invariants instead of integers, the ambiguity of
contributions from filled bands must be carefully considered,
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as we do below for the 2D Dirac semimetal. We also note
that, more generally, we can have terms in the effective action
which involve an n form in space-time dimensions greater
than or equal to n when a d-dimensional system has a Fermi
surface with codimension less than d, some cases of which
will be discussed elsewhere [72].

The most important feature of the quasitopological response
coefficients of TSMs is that the response coefficients contin-
uously change throughout the gapless TSM phase from the
quantized values in the insulating phases on either side of
the gapless phase. One might expect that when the gap closes
there might be some complicated singular behavior in the
response coefficients; however, what is special about the TSM
phases is that we can continuously track the coefficient through
the weak TI-TSM-trivial insulator phase diagram. We note that
there could be other transport coefficients that do have more
complicated singular behavior during the insulator-to-TSM
transitions, but the restricted set on which we focus has this
important property.

B. Boundary degrees of freedom

The other generic feature of TSM phases is the existence
of low-energy boundary modes. It is well known that TIs have
robust, gapless boundary modes that exist in the bulk energy
gap. A (strong) TI will contain topological boundary states on
any surface, while a WTI only harbors topologically protected
boundary states on surfaces where �ν does not project to zero
in the surface BZ [73]. This is another clear signature of the
anisotropy, and it gets passed on to the TSMs that interpolate
between the WTI and trivial insulator phases.

TSMs themselves will have low-energy boundary modes,
but again, only on surfaces where bi does not project to zero in
the surface BZ. That is, there will be surface states on surfaces
where the normal vectors are not parallel to the node separation
vector �b.We note that even in cases where bi = 0 (or bi projects
to zero on a surface) there can still be surface states because
bi is only well defined modulo a reciprocal lattice vector. We
note that surface states that exist when bi = 0 come from fully
filled bands and will exist over the entire BZ (if the ground state
does not carry a strong topological invariant). These surface
states are not related to the properties of the semimetal and
will not crucially depend on the locations of the nodes as they
are continuously deformed.

The existence of boundary modes in TSMs is most easily
illustrated with a simple example. Let us again resort to
the picture of a Weyl semimetal arising out of a stack of
identical 2D Chern (quantum anomalous Hall) insulators
and, for simplicity, assume that the layers are stacked in
the z direction. Then, for the WTI phase in the completely
decoupled limit, each Chern insulator layer contributes one
set of chiral edge modes on surfaces with normal vectors in
the x̂ and/or ŷ directions [65]. This is the simple picture of a
WTI, and if each layer has a first Chern number C1 = 1, then
the vector invariant �ν = (0,0,π/a), where a is the spacing
between the Chern insulator layers. If the system has length
Lz = Na in the z direction, then the total Hall conductance is
σij = −εijk

e2

πh
νkLz = −N e2

h
, i.e., an amount e2/h per stacked

layer. When the coupling between layers is turned on, then the
bulk and edge states will disperse in the z direction, but as

long as the interlayer coupling does not close the bulk gap,
then the system will remain in the WTI phase with the same
Hall conductance.

To further discuss the boundary modes of the topological
semimetal, it useful to illustrate with an explicit lattice model.
We can represent this system as a tight-binding model on
a cubic lattice where each site contains a single electronic
orbital with spin-up and spin-down degrees of freedom. A
representative Bloch Hamiltonian is

H (�k) = A sin kxσ
x + A sin kyσ

y

+ (2B − m − B cos kx − B cos ky − C cos kz)σ
z,

(7)

where A, B, C,andm are parameters, σa represents spin, and
we have set the lattice constant a = 1. If we choose the
parameters A = B = 2m = 1 and C = 0, this will represent
a WTI phase built from decoupled layers of Chern insulator
states as discussed above. We can see this from the fact that
when C = 0 there is no dispersion in the z direction, and
thus we have many copies of a 2D system, one for each
allowed kz, i.e., one for each layer. The important point is
that when A, B, and m are tuned as above, then, ignoring the
z direction, the resulting 2D system is in a Chern insulator
phase with C1 = 1 [3], and thus we have decoupled copies
of a nontrivial Chern insulator. When the tunneling between
the layers is activated, the parameter C will be nonvanishing.
With A, B, and m fixed as above, then for −1/2 < C < 1/2
the model will remain in the WTI phase. At C = 1/2 the bulk
energy gap closes at �k = (0,0,π ). If C is further increased,
then there will be two points where the gap vanishes, i.e.,
two Weyl nodes, and they will occur at �k = (0,0, cos−1(−m

C
)),

where we added the dependence for a variable m parameter
back in. Accordingly, when |m/C| < 1 the system will exhibit
a Weyl semimetal phase if A = B = 1.

As was shown in Ref. [74], we can use a model like Eq. (7)
to create a nice description of the Weyl semimetal phase. For
this picture, it is useful to think about the system as a family
of 2D insulators Hkz (kx,ky) ≡ H (kx,ky,kz), parametrized by
kz. For parameters representing the fully gapped WTI phase
(e.g., A = B = 2m = 1, C = 0), then for each value of kz the
2D insulator Hkz (kx,ky) is in the Chern insulator phase.

Now when we tune the C parameter into the Weyl
semimetal phase, then the model will contain gapless Weyl
nodes at �k = (0,0,±kc), and a separation vector �b = (0,0,kc).
To understand the existence of surface states in the semimetal
phase it is again helpful to think of each 2D insulator at fixed
kz being in a trivial C1 = 0 phase when |kz| > |kc| and a
Chern insulator phase with C1 = 1 when |kz| < |kc|. Exactly
at kz = ±kc there is a gapless “transition” as a function of kz
between the trivial 2D insulator withC1 = 0 and the nontrivial
2D insulator with C1 = 1.

This illustration shows that in the Weyl semimetal phase
we should only expect boundary states to exist over a finite
range of kz, i.e., |kz| < |kc| for this particular example. For
each kz in the topological range, the 2D insulator Hkz (kx,ky)
contributes one propagating chiral fermion mode to the
boundary degrees of freedom. These chiral boundary states
manifest as incomplete surface Fermi arcs that connect Weyl
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points in the surface BZ for surfaces with normal vectors
which are not parallel with �b. The picture of a TSM as a
momentum-space transition in a family of lower-dimensional
gapped insulators is helpful because similar concepts can
be applied to understand the properties of all topological
semimetals.

This completes the basic review and motivation. To sum-
marize, we have introduced some important physical intuition
and concepts pertaining to 3D Weyl semimetals, and during
this process reviewed some of the previous work describing the
EM response and boundary states of these systems. Now we
begin a more in-depth discussion of the response and boundary
states of semimetals in 1D, 2D, and 3D following the outline
presented above.

II. SEMIMETAL IN 1 + 1 DIMENSIONS

We begin with a careful study of the properties of a 1D
TSM, which in this case is just an ordinary 1D metal, as
noted in Ref. [33]. As a representative model we can choose a
spinless one-band tight-binding model of the form

H1D = −α
∑
n

[c†n+1cn + c†ncn+1], (8)

where the sum over n runs over all of the lattice sites, and
we let the lattice constant be a. This familiar model is easy to
diagonalize and the energy spectrum is

E(k) = −2α cos ka, (9)

where k ∈ [−π/a,π/a). In the momentum basis the Hamilto-
nian is just H1D = ∑

k E(k)c†kck.
Establishing a chemical potentialμ that lies within the band

will fill the system with a finite density of electrons. If we keep
translation symmetry, we can calculate the number of particles
by counting the number of occupied momentum states

N =
∑
k∈occ.

1 = L

2π

∫ kF

−kF

dk = LkF

π
, (10)

which implies a charge density ρ = e kF
π

, where kF is the Fermi
wave vector and e is the electron charge. In the language of
the previous section we note that this density breaks Lorentz
invariance because it establishes a preferred frame, i.e., the
rest frame of the fermion density. Thus, we should expect a
Lorentz-violating contribution to the effective action. In fact,
we can easily write this contribution since a background charge
density just couples to the scalar EM potential A0 to give a
potential energy term

S[A0] = −
∫

dxdtρA0. (11)

In addition to the density, there is the possibility of
introducing an electric current that will also break Lorentz
invariance. For a moment, let us consider a generic 1D lattice
model with translation invariance and in the momentum basis.
When minimally coupled to an EM field (e.g., through Peierls
substitution) we find

H =
∑
k

c
†
kH

(
k − e

�
A1

)
ck, (12)

whereH (k) is a Bloch Hamiltonian. The current for this system
in the limit A1 → 0 is given by

j = lim
A→0

∂H

∂A1
= − e

�

∑
k

[
∂H (k)

∂k
nF

]
, (13)

where nF is the Fermi-Dirac distribution, which will be a step
function at T = 0. This can be rewritten at zero temperature
as

j = −e
∑
n∈occ

∫
BZ

dk

2π�

∂En(k)

∂k
, (14)

where n runs over the occupied bands. Specializing to the
case of our single-band model, the current is equal to j =
− e

2π�
[E(kF ) − E(−kF )] which is nonzero only if E(kF ) �=

E(−kF ). We discuss two different mechanisms for generating
a current in Secs. II A and II B.

A. 1D model in an electric field

One way to generate a nonzero electric current is to
apply an external electric field. We apply an electric field by
adiabatically threading magnetic flux through the hole of the
periodic lattice ring via Faraday’s law. This is equivalent to
introducing twisted boundary conditions on the wave functions

�(x + L) = ei�(t)L�(x), (15)

where

�(t) = eEt

�
(16)

for an electric field E at time t. Using Eq. (14) we can easily
calculate the electric current to be

j = 2αe

π�
sin(kF a) sin[�(t)a]. (17)

For comparison, we numerically calculate the charge density
and current for the case when the single band is half filled. At
half filling kF = π/2a, and thus the density should be uniform,
time independent, and equal to ρ = e

2a , i.e., half an electron per
site. At half filling, the current reduces to j = 2αe

π�
sin[�(t)a].

The numerical calculations are shown in Fig. 2, and they agree
with the analytic results.

We note in passing that for finite-size lattice models some
care must be taken to correctly calculate a smooth electric
current response. We have intended to calculate the current of
a metallic/gapless system, but there are finite-size gaps in the
energy spectrum between each state separated by
k = 2π/L.
Thus, if we want the system to behave as a gapless system
should, we must apply a minimum threshold electric field.
If too small of an electric field is applied at a given system
size, the model will behave like a gapped insulator instead.
To avoid this we can simply enforce the canonical momentum
�x = px − eA1 to be a multiple of 2π�/L so that the system
remains gapless at each time step. If this is not done, then
the system will behave as gapped insulator and we will see
steps in the current response. Ensuring that e

�
A1 = 2πm

L
at

every time step saves us this trouble, and in our simulations
for this section we have always taken �(t) = eEt/� to be a
multiple of 2π/L and never smaller than this value. Physically
we understand that, for a system with these finite-size gaps,
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FIG. 2. The current and charge density of the 1D (semi-)metal are plotted vs time for half filling and for nearest-neighbor hopping α = 1.
The current has a periodic response, as expected, with a period of 200 time slices for an electric field of strength E = h

eT (200a) for some time

scale T that is long. The charge density is given by ρ = e kF
π

= e/2a, as expected, and shows no time-dependent behavior.

an infinitesimal adiabatic current generation will not work.
Instead we must turn on a large enough electric field so that
there is some nonadiabaticity so that the finite-size gaps can
be overcome.

Although we do not present the results here, we have
carried out numerical calculations for various filling factors
and electric field strengths, and the analytic results match the
numerical simulations. If we change the boundary conditions
from periodic to open, then the charge density remains the
same (possibly up to some damped density oscillations near
the ends of the wire), but the current vanishes, as expected.
Hence, we see that in the presence of an electric field with
periodic boundary conditions the response action of the 1D
(semi-)metal is

S[Aμ] =
∫

dxdt[−ρA0 + jA1] =
∫

dxdtjμAμ, (18)

where jμ = (ρ,j ), which in our convention already has the
electric charge factored in. Other than the presentation, most
of what we have done here is elementary; we are just using
these results to set the stage for the later sections.

Now, we can rewrite the action in a few suggestive ways.
First we can define a new 2-vector,

bμ = π

e
(j,ρ), (19)

such that the action can be rewritten

S[Aμ] = e

π

∫
dxdtεμνbμAν. (20)

This is to be compared with Eq. (6). Alternatively, we can
define an axionlike field,

θ (x,t) ≡ 2bμx
μ = 2π

e
(ρx − j t)

= 2kF x − 4α

�
sin(kF a) sin[�(t)a]t, (21)

and if the system is homogeneous with no boundaries, we can
use θ (x,t) to rewrite Eq. (18) as

S[Aμ,θ ] = − e

4π

∫
dxdtθ (x,t)εμνFμν. (22)

As mentioned in Sec. I, using θ (x,t) breaks space-time
translation symmetry due to the arbitrary choice of origin, and
thus we must be careful to specify that the system is translation
invariant when writing down Eq. (22), otherwise spurious
response terms will be generated at boundaries and interfaces.
Physically, we can interpret eθ

2π as the charge polarization since
its space and time derivatives are proportional to the charge
density and current, respectively.

While this method of generating an electric current came
from an external effect, i.e., an externally applied electric field,
we now move on to a discussion of an intrinsic effect that can
produce a current in the absence of an external electric field.

B. 1D model with next-nearest-neighbor (NNN) hopping

In this section we illustrate another way to generate a
nonvanishing current. For energies near the Fermi points, the
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dispersion of our model is linear, and the modes near each
Fermi-point are (1 + 1)-dimensional chiral fermions. In fact,
it is well known that there is a close connection between the
physical electric current for a 1D metallic band in an electric
field and the compensating chiral anomalies of the fermion
modes near each Fermi point. The previous section explicitly
dealt with these issues, albeit using a less elegant perspective,
and in that case an electric current was generated by an external
source of Lorentz breaking, i.e., the applied electric field.
Here we would like to consider an intrinsic source of Lorentz
breaking that will lead to a current as well. By considering this
effect, we are trying to make an analogy to the 3D CME in
Weyl semimetals, where it has been predicted that a current
can appear in the presence of an applied magnetic field, but in
the absence of an electric field.

The basic idea is that, for the 1D model we have chosen,
the chiral fermions near the Fermi points both have the
same velocity, except for the sign, and we want to deform
the velocities so that each chiral fermion has a different
“speed of light.” This is an obvious way to break Lorentz
invariance. If the velocities are different (and the spectra
were linear for all energies), then it is clear that we should
have E(−kF ) = vLkF �= vRkF = E(kF ), which suggests the
presence of a current. Physically, this just means that if
we have (1 + 1)-dimensional chiral fermions with the same
nonzero density, but different velocities, then there will be
a nonvanishing current. Since we are in 1D, the analog of
the 3D CME predicts that we should find an intrinsic current
without the application of a magnetic field or an electric field,
and it should be proportional to the intrinsic quantity b0. In
the 3D Weyl semimetal, the number b0 represents the energy
difference between Weyl nodes and has units of frequency.
A simple interpretation of the effect seen here in 1D is that
a nonvanishing frequency scale b0 will be generated by the
combination of 
vF , i.e., the velocity difference at the two
Fermi points, and a length scale. In our system we have two
important length scales: the lattice constant a and the inverse
of the Fermi-wave vector kF . To see which one enters the
result, we perform an explicit calculation.

To generate the velocity modification effect, we deform
the tight-binding model in Eq. (8) above to include imaginary
next-nearest-neighbor hopping terms,

H1Dv = H1D + iβ
∑
n

[c†n+2cn − c†ncn+2]. (23)

The Fourier transform of the Hamiltonian is given by

H1Dv = −2
∑
k

[α cos(ka) − β sin(2ka)]c†kck. (24)

For β �= 0, inversion symmetry is broken in the model and
subsequently we should consider two Fermi wave vectors
kFL and kFR , where kFL � kFR by definition. Exactly at
half-filling kFL = −kFR = π/2a for all β (as shown in Fig. 3).
Thus, the electric current is vanishing at half filling (since
β sin[2a(π/2a)] = 0), and the charge density will be ρ = e

2a ;
i.e., the same as was found when no electric field was applied
to the model H1D at half filling.

Half filling is just a special point of this model where β

has no effect because of our choice of next-nearest-neighbor
hopping. Instead, let us consider the case where μ is tuned

0
2

1

0

1

2

0

k

k

E

E
0

-1

FIG. 3. (Color online) (Top) Energy spectrum of the Hamiltonian
H1Dv , where each curve represents a different value of β. The solid
blue line is β = 0, the magenta dashed line is β = 0.1, and the dash-
dotted tan line is β = 0.25. All curves have α = 1. (Bottom) This is a
magnified region of the top figure slightly below half-filling, which is
the regime for our calculation. Exactly at half filling β has no effect,
and the stronger β is, the more the Fermi-wave vectors and velocities
are modified at a fixed μ.

slightly away from half filling, i.e., μ = 0 − δμ with |δμ| 	
α, and we also take |β| 	 α as we want to consider the
perturbative effect of turning on this term. We can define
kFL = − π

2a + εL and kFR = π
2a + εR. By expanding Eq. (24)

around the Fermi points, we find that consistency requires

εL/R = ± δμ

2a(α ± 2β)
≈ ± 1

2a

δμ

α

[
1 ∓ 2β

α

]
. (25)

Thus, we can determine that

kFL/R ≈ π

2a

[
∓1 ± δμ

πα

(
1 ∓ 2β

α

)]
(26)

and can subsequently define κF ≡ π
2a (1 − δμ/πα), which

would be the Fermi wave vector if β = 0.Note that the signs in
the previous two equations are correlated. From Fig. 3 we can
see that as β is increased the Fermi-wave vector at a fixed μ

(different than half-filling) changes, as well as the velocity of
the low-energy fermions. From Eq. (14), the response should
be

ρ = e
kFR − kFL

2π
= eκF

π
= e

2a

(
1 − δμ

πα

)
, (27)

j = 2eβ

π�
sin(2κF a). (28)
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FIG. 4. The current of H1Dv is plotted vs next-nearest-neighbor
hopping strength β near half filling. κF = π/2a − π/100a was
chosen and the nearest-neighbor hopping α = 1 with periodic
boundary conditions. The current increases linearly as a function
of β, as expected from Eq. (28). Note that we have let a = � = 1.

This result shows that we find a nonzero electric current
even in the absence of an applied electric field, and its
magnitude is proportional to the inversion-breaking parameter
β. This effect, while simple in origin, is the 1D analog of the
3D CME. It represents a current proportional to an intrinsic
frequency scale, but does not require the application of any
external electric or magnetic fields. We do note that the
definition of the frequency scale does require a nonvanishing
Fermi wave vector, i.e., a nonvanishing background density
which cannot arise from a completely empty or filled band.
As shown in Fig. 4, the numerical calculation of the electric
current matches the analytic formula. The response is linear
in β, as expected from Eq. (28) and, although we do not
show the charge density, it matches as well. The numerical
calculations were done for slightly less than half filling at
κF = π/2a − π/100a.

Let us take a closer look at the generation of the electric
current. The velocity of the chiral fermions at ±κF is given by
�v± = ±[2αa sin(κF a) ∓ 4βa cos(2κF a)], and, thus,


vF = 8βa

�
cos(2κF a). (29)

For our choice of the chemical potential, κF = π/2a + δκF ,
and the current from Eq. (28) is approximately

j ≈ − 8eβ

2π�
δκF a = − e

2π

8βa

�
δκF = e

2π

vF δκF , (30)

where we used that near κF = π/2a we have 
vF ≈ − 8βa
�
.

Thus, 
vF δκF gives a Lorentz-breaking frequency scale that
will give rise to a nonvanishing b0 term in the effective
response. In fact, the density and current give us the 2-vector
bμ = ( 1

2
vF δκF ,κF ), which determines the response action

S[Aμ] = e

π

∫
dxdtεμνbμAν. (31)

To draw an analogy with the previous literature on the Weyl
semimetal response, we could also define a θ (x,t) by

θ (x,t) = 2π

e
(ρx − j t) = 2κF x − 4β

�
sin(2κF a)t

≈ 2κF x − 
vF δκF t, (32)

which couples into the action

S[Aμ,θ ] = − e

4π

∫
dxdtθ (x,t)εμνFμν. (33)

C. Derivation of the effective response

After our explicit discussion of the different EM responses
of the 1D metallic wire, let us elevate our discussion to a
field-theoretic calculation. In this section, we use the Fujikawa
method to derive the effective response of the low-energy
continuum field theory description of the 1D metal in the
presence of intrinsic sources of Lorentz invariance violation,
e.g., external EM fields, momentum and velocity shifts of
the nodes, and nonzero chemical potential. The derivation is
similar to that for 3D Weyl semimetals found in Ref. [54].

To carry out the calculation, let us expand the lattice
Bloch Hamiltonian given byH (k) = −2α cos ka + 2β sin 2ka
around the chemical potential μ = 0 − δμ for |δμ| 	 α and
|β| 	 α, as in the previous section. If we expand the right-
and left-handed chiral branches around ±κF , respectively, we
find the approximate continuum Hamiltonian

Hcont = (−δμ + 1
2 �
vFq

)
I + (

�vF q + 1
2 �
vF δκF

)
σ z,

(34)

where the upper component represents the fermions near kFR ,
the lower component represents the fermions near kFL, q
represents a small wave-vector deviation from kFL/R , �vF ≡
2aα, 
vF ≡ − 8βa

�
, and δκF = − δμ

2aα . The definitions of the
parameters are easy to understand by looking at the lattice
model in the previous section when expanded around κF .

Since we know the behavior of the full lattice model, i.e., the
high-energy regularization of the continuum model, we can see
that our expansion effectively normal orders the current and
density with respect to half filling. Since the current vanishes
exactly at half filling, the total current is simply j = δj. The
current change away from half filling is simply given by δj =
e

2π�
[ER(q = 0) − EL(q = 0)] = e

2π 
vF δκF , which matches
that given in the previous section, which does not include
the effective normal ordering. On the other hand, the charge
density does not vanish at half filling. The density change away
from half filling is given by δρ = e

−δμ

2παa = e δκF
π

, and the full
density includes the additional amount ρ0 = e

2a that arises
from all the occupied states up to half filling. This makes the
total density ρ = ρ0 + δρ = e kFR−kFL

π
, as expected. However,

if we are just given the continuum model, without reference to
an initial lattice model, it only has information about δρ and
δj. We note that neither the current nor the density depend on
the dispersion term 1

2 �
vFqI and so we drop it from further
discussion as it is also higher order in the expansion around
the Fermi points.

From this Hamiltonian it is simple to construct the La-
grangian now using the Dirac matrices γ 0 = iσ x,γ 1 = σy

085105-9



SRINIDHI T. RAMAMURTHY AND TAYLOR L. HUGHES PHYSICAL REVIEW B 92, 085105 (2015)

and the chirality matrix γ 3 = σ z. We find

L = ψ(i /∂ − /bγ 3)ψ, (35)

where /b = bμγ
μ for bμ = ( 1

2
vF δκF ,δκF ). If we included
the EM gauge field, this Lagrangian would be analogous to
the Lagrangian derived for the Weyl semimetal in Ref. [54],
except this is in 1 + 1 dimensions. We can now get rid of the
bμ-dependent term by doing a chiral gauge transformation. As
is well known, this transformation can change the measure of
the path integral and lead to anomalous terms in the effective
action.

We use the Fujikawa method to derive the effective
response due to this change of measure. Performing a series
of infinitesimal chiral transformations parametrized by the
infinitesimal ds, we can get rid of the bμ-dependent term,

ψ → e−idsθ(x)γ 3/2ψ, (36)

ψ → ψe−idsθ(x)γ 3/2, (37)

where θ (x) ≡ 2bμxμ. Note that using this choice of θ (x) we
have made an arbitrary choice of origin which is folded into
the calculation. To avoid spurious response terms, we need
to constrain the system to be homogeneous in space-time so
that each choice of space-time origin is equivalent. The Dirac
operator /D acts as

/D = i /∂ − /A − /bγ 3(1 − s), (38)

/Dφn(x) = εnφn(x), (39)

where Aμ is the EM gauge field, and φn are a complete set of
eigenstates of the Dirac operator. Let us write

ψ(x) =
∑
n

cnφn(x), ψ(x) =
∑
n

cnφ
∗
n(x), (40)

where cn are Grassman variables, and we can expand ψ in
terms of φn because they are complete. Considering what
the infinitesimal chiral transformation does to the cn’s, from
Eq. (36), we see that

c′
n =

∑
m

Unmcm, c′
n =

∑
m

Unmcm, (41)

Unm = δnm − ids

2

∫
d2xφ∗

n(x)θ (x)γ 3φm(x). (42)

The Jacobian of this transformation is J = det(U−2). Using
the identity that det(U ) = eTr log(U ), we see that

J = eids
∑

n

∫
d2x φ∗

n (x)θ(x)γ 3φn(x). (43)

The Jacobian due to the chiral rotation thus induces a term in
the effective action given by

Seff =
∫ 1

0
ds

∫
dxdtθ (x)I (x), (44)

I (x) =
∑
n

φ∗
n(x)γ 3φn(x). (45)

To evaluate I (x), we can use the heat kernel regularization,

I (x) = lim
M→∞

∑
n

φ∗
n(x)γ 3e− /D

2
/M2

φn(x), (46)

to arrive at the well-known result that

I (x) = − e

4π
εμνFμν. (47)

So, the effective action is given by

Seff[Aμ] = − e

4π

∫
d2xθ (x)εμνFμν. (48)

To remove the dependence on the arbitrary origin, we can
rewrite the action as

Seff[Aμ] = e

π

∫
εμνbμAν. (49)

This expression matches the result we determined from simpler
calculations of the lattice model in Secs. II A and II B if we
replace ρ with δρ and j with δj.

D. Interfaces

Now that we have derived the EM response via two separate
methods, we put it to use in this section where we calculate
the properties of interfaces across which bμ varies. We show
that the response action in Eq. (49) predicts results that match
numerical simulations, while the θ -term version in Eq. (48)
gives spurious results due to boundary terms that depend on
the arbitrary choice of origin embedded in θ (x). We want to
emphasize that this also happens in the case of the 3D Weyl
semimetal and is a generic feature. One might think that one
could remove these spurious terms by adding boundary degrees
of freedom; however, the spurious results to which we refer do
not seem to be connected to any anomalies as they can appear
on surfaces which do not exhibit gapless boundary modes.

The form of the action to use when studying inhomoge-
neous systems (i.e., with relaxed translation invariance) is

S[A] = e

π

∫
d2xεμνbμAν.

One might complain that this action appears gauge variant;
however, it is not. We note that we can define a current
j
μ

(b) = e
π
εμνbν . Therefore, the action itself can be written

S = ∫
d2xj

μ

(b)Aμ. If the current is conserved, then the action
is gauge invariant due to the continuity equation. For the 1D
metal, the current jμ(b) is exactly the EM charge current and thus
is conserved, yielding a gauge-invariant response functional.

Now, for the first example of an interface, suppose our 1D
metal lies in the spatial region x > x0, and there is only vacuum
for x < x0. We model this by choosing bμ(x) = bμ�(x − x0),
where �(x) is the step function, and for simplicity we only
turn on a nonvanishing b1. If we look at the charge density the
response action would predict, we find

ρ(x) = e

π
b1�(x − x0), (50)

which is physically correct since the metallic region will
have a density equal to this value, and the vacuum will have
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no density. If we had used the axion action with θ (x,t) =
2b1(x − x1) for some arbitrary constant value x1, we would
have obtained the density

ρ̄(x) = e

2π
∂xθ (x,t) = e

π
b1∂x[(x − x1)�(x − x0)]

= eb1

π
[(x0 − x1)δ(x − x0) + �(x − x0)]. (51)

This predicts a spurious boundary charge located at the
interface x0 and proportional to the distance between the
boundary point and our arbitrary choice of x1. This term
is clearly unphysical, and simulations show that there is
nothing special happening at the interface. Thus, the first action
reproduces the correct response and matches numerics for the
one-band lattice metal.

For a more complicated illustration, consider an interface
between two different systems such that b1 is nonvanishing in
both and varies in the x direction. This will give an x-dependent
charge density. A simple way to implement an x-dependent b1

is to introduce an on-site energy term which is x dependent.
If we had a translationally invariant 1D lattice model with a
fixed chemical potential μ, then shifting the on-site energy
up or down will decrease or increase the electron density,
respectively. Let us consider two 1D segments which have a
common boundary. Suppose the on-site energies are constant
within each region, but are offset between the two regions by
ε0. To simplify the description we assume that they are glued
periodically so, in fact, there are two interfaces.

For an analytically tractable limit, let us study the case when
the offset is not too big when compared to the bandwidth of
the system and with the chemical potential fixed at μ = 0. The
Hamiltonian is given by

H = −t
∑
n

[c†n+1cn + c†ncn+1] +
∑
n

ε(n)c†ncn, (52)

where ε(n) = ±ε0/2, when n � N/2 or n > N/2, respec-
tively, for a system with an even number of sites N. We want
to understand what happens to the charge density in the system
and compare it to what is predicted by the EM response action.
With this Hamiltonian the system consists of two segments
(labeled by � and r), each of length Ls = Na/2, where a is
the lattice constant.

We can now compute what b1(�) and b1(r) are for each
segment since there is a simple relation between charge
density and b1. As the length of the segments approaches
the thermodynamic limit, the average charge density will not
depend on whether we calculate it with open or periodic
boundary conditions, so for simplicity we can calculate the
density with periodic boundary conditions for each segment
separately. With μ = 0 fixed, the Fermi momentum for the
segment � with the offset +ε0/2 is given by

0 = ε0/2 − 2t cos(kF,�a) ⇒ kF,� = 1

a
cos−1

(
ε0

4t

)
. (53)

The Fermi momentum for system r is given by

0 = −ε0/2 − 2t cos(kF,ra) ⇒ kF,r = 1

a
cos−1

(−ε0

4t

)
.

(54)
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FIG. 5. Charge density in units of e/a as a function of position for
an inhomogeneous system with N = 1000 lattice sites, where each
segment has Ls = 500 sites. The chemical potential is μ = 0, and if
ε0 was tuned to zero the density would be ρ = e/2a. For our choice of
ε0 = 0.5t we have b1(�) = (π/a)0.46, b1(r) = (π/a)0.54. Away from
the interfaces the values match the calculation from the effective
response action. Near the interfaces there are damped oscillations due
to finite-size effects that are not captured by the analytic calculation.
Note that the finite-size boundary effects have nothing to do with the
spurious “interface” terms in Eq. (51).

So we have ρr = e
kF,r
π

and ρ� = e
kF,�
π

, which by definition
implies that b1(r/�) = (π/e)ρr/� = kFr/�. Explicitly, we have

b1(�) = 1

a
cos−1

(
ε0

4t

)
, (55)

b1(r) = 1

a
cos−1

(−ε0

4t

)
. (56)

In our geometry we have interfaces at x = Ls and x = 2Ls ≡ 0
and b1 varies across the interfaces. The EM response action
predicts

ρ = e

π
{b1(�)[θ (x) − θ (x − Ls)]

+ b1(r)[θ (x − Ls) − θ (x − 2Ls)]}. (57)

This result matches what is found numerically, as shown in
Fig. 5.

E. General comments

Before we move on to discuss the more interesting higher-
dimensional semimetals, we pause to make a few important
comments.

(i) Response action without translation invariance. Initially,
we parametrized the EM response of the 1D metal through
quantities such as the Fermi-wave vector, and the velocity
at the Fermi points, which can only be clearly defined when
there is translation symmetry. That is, when the system is
homogeneous we can precisely define momentum space and
these two quantities. What we have found is that the response
is actually more general because we can define it in terms of
the sources of Lorentz violation [67], i.e., an intrinsic charge
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density and charge current. These two physical quantities can
be defined, and measured, without reference to momentum
space and thus we can drop all reference to a Fermi-wave
vector and a Fermi velocity by using the density and current,
respectively. The fact that the EM response is accurate even
without translation invariance is clearly shown when we have
an interface as shown in the previous section.

This physical definition of the response is special to 1D
because the semimetal EM response action is just

∫
d2xjμAμ.

This type of term will appear in every dimension, but in
higher dimensions there are more interesting anisotropic
response terms that appear and which we discuss later. For
d-dimensional space-time we can introduce a (d − 1) form
bμ1μ2···μd−1 representing a source of Lorentz breaking. We
can furthermore take the dual to generate a current jμ(b) =
εμμ1···μd−1bμ1μ2···μd−1 , which represents an intrinsic charge
density or charge current which couples toAμ minimally. This
term yields the higher-dimensional analog of the 1D semimetal
EM response. We comment later on the possibility to represent
higher-dimensional response actions without reference to
momentum space.

(ii) Response of filled bands. As is well-known from
elementary solid-state physics, a filled band of electrons in
a crystal carries no current. Each filled band also contributes
a charge density ρband = e

a
or e/�, where � is the size

of a unit cell in higher dimensions. The EM response
actions of topological semimetals do not capture density or
current contributions from filled bands and thus the response
coefficients are ambiguous by a finite quantized amount; i.e.,
bμ is ambiguous by the addition of half of a reciprocal lattice
vector.

(iii) Symmetries of bμ in 1D. Let us discuss the trans-
formation properties of bμ under time reversal (T ), charge
conjugation (C), and inversion symmetry (P ). Since in 1D we
know that b0 is proportional to a current and b1 is proportional
to a density we can easily determine their symmetry properties,

T : b0 → −b0, C : b0 → b0, P : b0 → −b0, (58)

and

T : b1 → b1, C : b1 → b1, P : b1 → b1. (59)

Note that they are both even under C, which is due to the fact
that our convention for bμ defined in terms of the density and
current has the electric charge factored out. Subsequently, the
response actions will have factors of electric charge in their
normalization coefficients. Note that these symmetry proper-
ties only hold in 1D because the transformation properties of
bμ under these discrete symmetries are dimension dependent.

(iv) Connection between 1D and 3D semimetals. As
mentioned in Sec. I, the effective response for a 3D Weyl
semimetal is

S[Aμ] = − e2

2πh

∫
d4xεμνρσ bμAν∂ρAσ .

To be explicit, consider a system where bμ = (b0,0,0,bz) in
the presence of a uniform magnetic field Fxy = −B0. In this
case the action reduces to

e2�

πh

∫
dtdzεabbaAb = N�

e

π

∫
dtdzεabbaAb, (60)

where � = −B0LxLy is the magnetic flux and a,b = 0,z.
From this we see that the 3D action, for this arrangement
of bμ and Fμν , reduces to N� = |�/(h/e)| copies of the 1D
action. This connection hints that it could be possible to define
the response of the 3D Weyl semimetal without reference to
momentum space and instead only using physical quantities,
e.g., the charge density and current in a uniform magnetic field.
It also shows why the symmetry transformation properties of
bμ in 1D are different than those of bμ in 3D because of the
additional factor of � in 3D which is odd under time reversal.
We discuss this more in the section on 3D semimetals.

III. DIRAC SEMIMETAL IN (2 + 1) DIMENSIONS

After our discussion of the simple one-band metal, we now
move on to a discussion of the 2D Dirac semimetal that has
become widely recognized with the experimental discovery
of graphene [41]. Graphene is a honeycomb lattice of carbon
atoms with a low-energy electronic structure consisting of
four Dirac points. These four Dirac points are located in spin-
degenerate pairs at the special pointsK andK ′ in the hexagonal
BZ. For models like graphene, with both time-reversal and
inversion symmetry, the minimum number of Dirac points
that can appear in a 2D lattice model is two. Graphene has
twice this amount because of the spin- 1

2 degeneracy of the
electrons due to the time-reversal symmetry with T 2 = −1.
For our purposes, we focus on a reduced case of spinless (or
spin polarized) electrons for which (effectively) T 2 = +1. To
recover results for graphene, one could trivially add in the
degenerate spin degree of freedom. Later in this section we
discuss a general (even) number of Dirac nodes, but we always
assume they are nondegenerate for simplicity.

This section is organized as follows. (i) We first discuss
the construction of WTIs and, subsequently, Dirac semimetals
from wire arrays of 1D TIs; (ii) using the connection to the
weak TI state we conjecture a form for the EM response
of a Dirac semimetal with two nodes, discuss the required
symmetries for the robustness of this response, and show
that a simple model yields the predicted physical properties;
(iii) we derive the conjectured quasitopological response
effective action in the continuum limit using two Dirac nodes;
(iv) we provide a physical interpretation of the response action
in terms of known EM quantities, and we discuss the general
measurable properties; (v) we discuss the generalization of the
continuum calculation to lattice models and an arbitrary (even)
number of Dirac nodes; (vi) finally, we make some general
comments on the nature of the quasitopological response, the
similarities and differences between responses in even and
odd space-time dimensions, and connect the results to the
properties of Chern insulator with nonzero charge polarization.

A. Dirac semimetal from layered topological insulators

1. Topological insulator in 1D protected by C or P symmetry

As discussed in Sec. I, each TSM can be constructed from
a collection of lower-dimensional TIs which are stacked and
then coupled; the DSM is no different. To generate a DSM this
way, we must begin with 1D TI wires. From the classification
of 1D TIs we know that to have a robust, nontrivial 1D
topological phase we must require the presence of a symmetry
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to protect the state [2–4]. This is inherently different than
the 3D Weyl semimetal, which is constructed from stacks
of 2D Chern insulators that require no symmetry to have a
protected topological phase [75]. There are two possibilities
for an appropriate 1D TI symmetry: (i) charge-conjugation
symmetry (C) or (ii) inversion/reflection symmetry (P ). For
C symmetry the 1D topological wire lies in class D of the
Altland-Zirnbauer classification [2,3,76], and there is a Z2

topological invariant that controls the EM response. While,
in principle, there is no problem with considering insulators
withC symmetry, in practice, such a symmetry is approximate
and/or fine tuned. ForP symmetry the wire belongs to the set of
inversion-symmetric insulators and also has a Z2 topological
invariant [8,9,77,78]. In both cases we call the invariantZ1D. If
Z1D takes its trivial (nontrivial) value Z1D = +1(Z1D = −1),
then the insulator will have a bulk charge polarization of
P1 = nemodZe[P1 = (n + 1/2)emodZe] and will exhibit an
even (odd) number of low-energy fermion bound states on each
boundary point. Let us note that we use P to label reflection
symmetries (inverting a single coordinate) and I to represent
inversion symmetry (reflection in all coordinates). Of course,
in 1D they are the same, so we simply use P for 1D systems.

Since it will become important, let us review the EM
response of the 1D TI. The response is captured by the effective
action

Seff[Aμ] = 1

2

∫
d2xP1ε

μνFμν, (61)

where P1 depends on the insulating phase as given above.
The requirement of either C or P symmetry enforces a
quantization of the polarization in units of half an electron
charge [3,8,9,77]. Naively, these symmetries should forbid a
nonzero P1 since P1 → −P1 under C or under P. However,
since the polarization in 1D crystalline insulators is only well
defined modulo integer charge, the allowed values of P1 are 0
and e/2, which both satisfyP1 = −P1 modulo integer electron
charges [3,79]. Another way to say this is that 1D insulators
with polarizations that differ by an integer electron charge are
topologically equivalent (or stable topologically equivalent).

It will be very useful to have an explicit system in mind
when discussing the features of the 1D TI and the subsequent
weak TI and 2D Dirac semimetal generated by stacking the
1D TIs. Thus, let us choose a simple model which exhibits a
1D TI phase: the 1D lattice Dirac model. For translationally
invariant systems, this model has a Bloch Hamiltonian

H1DTI(k) = (A sin ka)σy + (B − m − B cos ka)σ z, (62)

where A, B, and m are model parameters (we set A = B =
1 from now on), a is the lattice constant, and σα are the
Pauli matrices representing some degrees of freedom within
the unit cell. The phases of this model are controlled by the
parameter m, and for m < 0, or m > 2, the system is a trivial
insulator with Z1D = +1. For 0 < m < 2 the system is in
a TI phase with Z1D = −1. A benefit of this model is that
we can judiciously choose a C operator and a P operator
such that the Hamiltonian has that symmetry. For example,
if we pick C = σy , then CH1DTI(k)C−1 = −H ∗

1DTI(−k), and
if we pick P = σ z, then PH1DTI(k)P−1 = H1DTI(−k). So, as
written, this model is simple enough to have both C and P

symmetry and thus can exhibit a protected topological phase.

If we add perturbations to the model that break one of the
symmetries, but preserve the other, then the topological phase
will remain stable. It is only if we break both symmetries that
we can destabilize the 1D TI phase.

Usually, for insulators, a C symmetry only exists when the
model is fine tuned, but inversion/reflection symmetry can be
approximately preserved in real materials. In what follows we
emphasize the inversion- or reflection-symmetric cases as it is
more relevant when considering semimetal phases that might
be realized in materials. We note that this model also has
time-reversal symmetry with T = K (T 2 = +1). Although
this symmetry is not important for the 1D classification, it will
become important when we discuss the 2D semimetal phase.

2. Weak topological insulator in 2D protected by
C, P, or I symmetry

Before we approach the DSM, let us consider the 2D WTI
phase generated by stacking a weakly coupled set of 1D TI
wires. To be explicit, suppose that the wires are oriented
parallel to the x axis and stacked perpendicularly to spread
into the y direction. In the limit of decoupled wires, we can
determine that the system will have a charge polarization in
the x direction, and will have low-energy boundary states on
boundaries with a normal vector in the x direction (or, in
general, on boundaries not parallel to the y axis). In this limit, a
2D Hamiltonian representing this phase is just multiple copies
of H1DTI with a fixed value of 0 < m < 2 for each wire. These
distinguishing topological characteristics remain as long as the
coupling between the wires does not close the bulk gap, and
as long as the relevant symmetries of the 1D TI are preserved.

We can model this using a square-lattice Bloch Hamilto-
nian,

H2DWTI(�k)

= sin(kxa)σy + [1 − m − cos(kxa) − ty cos(kya)]σ z,

(63)

for a lattice constant a and a new tunneling parameter ty .

Again, this model has both C and Px symmetry (reflection
with x → −x), with the same operators as above, since the
interwire tunneling term −ty cos(kya)σ z preserves both. It also
has time-reversal symmetry T = K , reflection symmetry in
the y direction with Py = I, and inversion symmetry with
I = σ z. If we pick 0 < m < 2, then the model remains in the
WTI phase as long as no solutions for at least one of

cos(kya) = −m

ty
, cos(kya) = 2 − m

ty
, (64)

can be found. We immediately see that as long as |ty | < |m|
and |ty | < |(2 − m)|, then the system will be gapped, and if
additionally 0 < m < 2, the model will be in the WTI phase.

This WTI is characterized by a 2D topological vector
invariant �ν = (0, π

a
), which is a half-reciprocal lattice vector.

The EM response of the 2D WTI depends on this vector and
is given by

Seff[Aμ] = e

4π

∫
d3xνμε

μνρFνρ, (65)

where ν0 = 0. This response represents the contribu-
tion of a charge polarization �P1 to the action where
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P i
1= e

2π ε
ij νj=( e

2a ,0). The magnitude of the polarization is due
to a contribution of a 1D polarization of e/2 (and e/2 boundary
charge) per wire, as expected, and the total charge on a bound-
ary with normal vector x̂ will be Ny

e
2 , where Ny is the number

of wire layers. As discussed in Sec. I, the WTI phase does not
give rise to ν0 because there is no effective Lorentz breaking
in the time direction for a filled band. One could generate a ν0

in an insulator by applying a time-dependent periodic field to
generate Floquet dynamics, or perhaps by coupling the system
to a varying adiabatic parameter that will drive cyclic adiabatic
charge pumping [80]. For the latter, this will drive a constant,
quantized current along the wires which will result in a
nonvanishing ν0 proportional to the charge pumping frequency.
We prove below that, just as νi is connected to the intrinsic
charge polarization, ν0 is related to the intrinsic magnetization,
which is why producing currents will generate such a term.

3. From 2D weak topological insulator to Dirac semimetal

We now give an explicit example of a Dirac semimetal, and
in Sec. III B we discuss its physical response properties and
characteristics. We then move on to deriving the results for a
generic Dirac semimetal in the subsequent sections.

It is easy to construct an explicit example of a DSM phase
from the WTI model we have been using by choosing m

and ty such that at least one of Eq. (64) has a solution. To
be concrete, let m = 1/2, ty = −1, and a = 1, for which
cos ky = −m/ty has two solutions, ±kyc = ±π/3, which
implies there are Dirac points at �k = (0,±kyc). If we expand
the Hamiltonian in Eq. (63) around these points, we find the
continuum Hamiltonians,

H2Dcon = δkxσ
x ±

√
3

2
δkyσ

z, (66)

which are anisotropic Dirac points with δkx the deviation from
kx = 0 and δky the deviation from ky = ±kyc. If we tuned
the velocity parameter A in Eq. (62) to be

√
3/2, we would

find isotropic Dirac points. In Fig. 6 we show the energy
spectrum of this model, at the parameter values given above,
in a strip/cylinder geometry with open boundary conditions
in the x direction and periodic boundary conditions in the
y direction. We see the Dirac points at the predicted values
and also a flat band of midgap states which are exponentially
localized on the edges of the strip.

Despite some superficial differences, the square-lattice
model for the DSM captures the same physics as the
honeycomb-lattice graphene model. In fact, in Appendix A we
show that our square-lattice model for the DSM can be contin-
uously deformed to the honeycomb graphene model, and thus
we can easily consider graphene to be constructed from layers
of 1D TIs if we trivially add spin degeneracy. This matches
the well-known result that graphene has anisotropic boundary
states that appear only on zigzag edges and not armchair edges,
which is a consequence of this layered structure, and the close
connection to the WTI model of stacked 1D TIs [41].

B. Motivation of quasitopological response
of 2D Dirac semimetals

Following the general discussion in Sec. I, when the DSM
is formed, we expect the quasitopological EM response to be
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FIG. 6. The energy spectrum for the Hamiltonian in Eq. (63)
tuned into the 2D Dirac semimetal. The figure shows exact diago-
nalization of this model in a strip geometry (x direction with open
boundaries and y direction with periodic boundaries) with ±kyc =
±π/3 and by = π/3. The flat band of states stretched between the
Dirac nodes are edge modes.

dependent on the momentum and energy differences between
the Dirac nodes. In this section we present a form of the
quasitopological response that is analogous to Eq. (65) for the
weak TI, and we provide physical evidence that our conjecture
is correct. In Sec. III C we derive the result more systematically.

For our explicit choice of parameters we should have a
separation vector bμ = (0,0,π/3). As we prove in Sec. III C,
one contribution to the EM response is the analog of Eq. (65)
for the WTI phase, that is,

Seff[Aμ] = e

4π

∫
d3x bμε

μνρFνρ. (67)

From the interpretation of the 2D WTI response above, this
implies a nonzero charge polarization,

P i
1 = − e

2π
εij bj . (68)

We warn that when there are multiple pairs of nodes, one must
be careful when constructing the value of bi that enters the
response due to the Z2 nature of the polarization. We discuss
this in detail in Sec. III E, but for now we continue analyzing
the simplest case with only two nodes.

1. Charge polarization in a 2D Dirac semimetal

Let us now try to understand the origin of the polarization.
To illustrate this, we should heuristically view the DSM
model Hamiltonian as representing a family of 1D insulators,
parametrized by the values of ky. That is, each value of ky
(except ky = ±kyc) represents a 1D insulating wire; in the
model we have picked the wires are effectively oriented in the
x direction. From our model we see that the 1D wires with
ky values on opposite sides of a Dirac point have opposite
values of Z1D, and thus their contributions to the overall
charge polarization differ by a quantized amount. We already
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FIG. 7. We have plotted the deviation of the charge density from
the average forLx = Ly = 120 at half-filling in a 2D Dirac semimetal
with by = π/3 (i.e., same parameters as in the previous figure).
The average background charge per site is Q0 = 120e. We notice
peaks at the boundaries of the system due to the charge carried by
localized midgap modes. The charge density exponentially decays
to the value of Q0 = 120e within a few lattice sites. The total
charge at the boundary calculated from summing the boundary charge
near the right edge is Qb = −19.6e, which matches the expected
result, Qb = P x

1 Ly = − e

6a 120a = −20e. The deviation from −20 is
a finite-size effect and the result will converge to the analytic value
as the system size increases.

know that for the completely gapped WTI phase, each wire
contributes e/2 boundary charge (modulo ne) to an edge
normal to the x axis. In comparison, it is clear that for
the DSM only the fraction of the wires between the Dirac
nodes contribute e/2, while the remainder contribute charge
0(mod e).

We can also see that, physically, the bulk polarization
manifests as an observable bound charge on the sample
edges. In Fig. 7 we show the charge density as a function of
position along the open boundary direction for the cylinder
geometry mentioned above (see Fig. 6). We have subtracted
off the average background charge, and two peaks in the
charge density can be seen, one on each end of the sample.
The amount of charge localized on each end matches the
charge density calculated from Eq. (67) at an interface where
the polarization changes from P x

1 = − e
2π

π
3a = − e

6a to zero
(we have temporarily restored the lattice constant). More
convincingly, in Fig. 8 we show the numerically calculated
boundary charge values versus the analytically predicted
value of the polarization/boundary-charge over a range of
values of m in our square-lattice model. The numerical and
analytic results match almost exactly except near m = 1,
where the analytic result predicts a cusplike shape that is
cut off in the numerical calculations from finite-size effects.
Interestingly, we see that even though the system is gapless,
the charge polarization calculation gives reasonable physical
results; e.g., it gives a physically meaningful prediction for
the boundary charge. This is unusual, but not unprecedented,
as Ref. [61] has shown that one can have a well-defined
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FIG. 8. (Color online) The boundary charge is plotted vs the
mass parameter m. The solid blue curve represents eby

2π , where by
is calculated from the solutions to cos ky = −m/ty for a range of m
and with ty = −1. The open circles are the numerically calculated
boundary charge (per layer) for a system with open boundaries in
the x direction (Lx = 120) and periodic boundary conditions in the y
direction. They match except nearm = 1, where the cusplike analytic
result is cut off in the numerics due to finite-size effects.

polarization in a Chern insulator despite the fact it has gapless
boundary modes. We comment more about this point later.

Already for just two nodes there are some important sub-
tleties to consider when calculating the polarization. The first
subtlety has to do with the direction in which the polarization
should point. For example, what determines which boundary
has the positive charge in Fig. 7 and which end has a negative
charge? The answer to this question is well known: To uniquely
specify the polarization, we must apply an inversion-breaking
(orC-breaking) field that picks the direction of the polarization
and then take the limit as the system size goes to infinity before
setting the symmetry-breaking perturbation to zero. This is the
conventional paradigm for spontaneous symmetry breaking.
Thus, in order to uniquely specify the sign of the polarization,
and hence effectively the sign of bi , we must turn on a
small symmetry-breaking perturbation before we calculate and
take the limit in which this perturbation vanishes. This issue
arises in Sec. III C when we try to calculate Eq. (67) using
field-theoretical methods. To be consistent with the notation
in the next section, we call the inversion-symmetry-breaking
parameter mA.

The second subtlety is similar in nature and has to do with
determining the value of the polarization in a bulk crystalline
sample. In fact, in a bulk sample without boundary, since
the BZ is periodic and we have no edge states to reference,
we cannot determine a unique value for the polarization of
a 2D Dirac semimetal. For example, in the simplest case
of two nodes, how do we determine the magnitude of the
polarization if we do not have a preferred way to take the
momentum difference between the Dirac nodes? This is a
problem because there are multiple ways to subtract the two
momenta in a periodic BZ. For our concrete example, our
nodes lie at �k = (0,±π/3), and so we could let �b = 1

2 (0,2π/3)
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or, e.g., we could subtract the nodes across the BZ boundary to
find �b′ = 1

2 (0,4π/3). The measurable property of the charge
polarization is a boundary charge, which is determined by the
occupation of the edge states. For two nodes there are two
possible cases for how the edge states traverse the edge BZ. If
they go through the origin, we should use �b = 1

2 (0,2π/3), or
if they instead go through k = π , then we should use �b =
1
2 (0,4π/3) = (0,π ) − 1

2 (0,2π/3). These two configurations
can be interchanged by first adding a weak topological state,
whose edge states will traverse the entire edge BZ, and then
coupling it to the DSM, which will have the ultimate effect of
switching the DSM edge states from one configuration to the
other. In Sec. III E we see for the general case that, similar to
the case of a polarized Chern insulator, the connection between
the bulk value of the polarization and the boundary charge can
have a more complicated relationship when more than two
nodes are present and there are overlapping regions of edge
states in the edge BZ.

2. Symmetry protection of the response of 2D Dirac semimetals

Before we move on to discuss the EM response due
to the time-component b0, we address the important issue
of symmetry protection. For the 1D TI and the 2D WTI
constructed from stacks of these 1D TI wires, we have
only required inversion symmetry to have a well-defined EM
response. This symmetry quantizes the 1D polarization to be 0
or e/2 on each wire, and as shown in Refs. [8,9], this symmetry
is also enough to quantize the polarization (per wire) for the
2D WTI. However, it is well known [81] that for local stability
of the Dirac nodes in a DSM, one needs at least the composite
T I symmetry (for T 2 = +1). We would like to understand
the importance of this seemingly different requirement for the
polarization response and the Dirac-node stability. This issue
does not arise, for example, in the 3D Weyl semimetal since the
Weyl nodes are locally stable without adding any additional
symmetries, and hence, it is important to carefully discuss in
the present context.

First, for 1D wires, T I also quantizes the polarization since
P1 is odd under this symmetry. Thus, we could have already
constructed a 1D TI and a 2D WTI using this symmetry instead.
In fact, the explicit model we have been considering has T I
symmetry as written, and thus we were able to avoid discussing
this issue until now.

Importantly, in dimensions greater than 1, T I symmetry
has a crucial effect: It constrains the Berry curvature to satisfy
F (kx,ky) = −F (kx,ky). Since the Berry curvature flux is only
defined modulo 2π on a lattice, this requires that for gapped
systems either (i) F (kx,ky) = 0 or (ii) F (kx,ky) = π , and is
constant throughout the BZ (we will only consider the former
case [82]). Hence, with this symmetry we expect a vanishing
Berry curvature. However, if F (kx,ky) is not required to be
smooth, we can have singular points in momentum space
where F (kxc,kyc) = π ; these are exactly the set of Dirac-node
locations. Since the Berry flux that passes through a closed
manifold, e.g., the BZ, must be a multiple of 2π , this implies
that there are an even number of singular points, i.e., fermion
doubling. This conclusion immediately implies local stability
of the Dirac nodes, because if T I is preserved and one of
the Dirac nodes disappears locally by itself, then there will

not be an integer amount of Berry flux in the BZ which is a
contradiction.

This constraint, and thus the T I symmetry itself, is also
essential for the 2D charge polarization response of the DSM.
Let us illustrate the idea. Suppose we wish to calculate
the charge polarization of a crystalline DSM. The physical
consequence of a nonvanishing polarization is a boundary
charge, so let us specify a particular boundary with a normal
vector GN in the reciprocal lattice. Let GF be the dual vector
to GN , i.e., Gi

F = εijG
j

N . Then GF is the normal vector to a
set of lattice lines whose ends terminate on the surface normal
to GN . For example, pick GN = 2πx̂ and GF = 2πŷ. In this
case our choice picks out a family of 1D wires parallel to the
x direction and stacked in the y direction. Consequently, this
gives rise to a family of 1D Bloch Hamiltonians parametrized
by the momentum along GF . In this example we have the
family Hky (kx) which is parametrized by ky.

To calculate the charge polarization of the DSM with our
choice of GN (i.e., the polarization parallel to GN ), we can
start by asking an important question: How much does the
charge polarization of the family of 1D systems Hky (kx) vary
as ky is varied? We find

P x
1 (ky2) − P x

1 (ky1)

= e

2π

∫ π

−π

dkxax(kx,ky2) − e

2π

∫ π

−π

dkxax(kx,ky1)

= e

2π

∫ π

−π

dkx

∫ ky2

ky1

dkyF(kx,ky)

= e

2

Nenc∑
a=1

χa, (69)

where we have used Stokes theorem to replace the line integrals
over the Berry connection a(k) by an area integral over
F(kx,ky) = ∂kx ay − ∂ky ax , i.e., the Berry curvature, and we
have assumed only one occupied band for simplicity. In the last
equality we used the fact that for systems with T I symmetry
the Berry curvature only contains contributions from the
singular Dirac points, and the sum runs over all enclosed Dirac
nodes. The quantity χa = ±1, which we call the helicity of a
Dirac node, indicates whether the flux carried by the node
is ±π. Thus, two 1D Hamiltonians that are members of the
parametrized Hamiltonian family specify cycles in the BZ,
and from this result we see that the polarization can only
change if the area of the BZ enclosed between those two 1D
cycles contains Dirac nodes. This restriction is the key feature
of a T I-symmetric system that determines the polarization
response. As an aside we note that, since the BZ is a closed
manifold, there are two possible ways to choose the region
“enclosed” by the closed cycles and this is related to one
source of ambiguity in the value of the polarization discussed
earlier.

This result in Eq. (69) is generically true given a general
family of Bloch Hamiltonians (with T I symmetry) with some
orientation specified by GN , and parametrized by momentum
along GF . In fact, given two 1D cycles that are members
of a parametrized Hamiltonian family in the BZ, then any
deformation/rotation of the orientation of the lines, i.e.,
variation of the choice of the direction vector GN , will not
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change the difference in polarization between the two parallel
lines unless the lines cross Dirac points during the deformation
process. This implies that the changes in polarization are
always quantized in the presence of T I symmetry, which is
crucial for being able to determine the polarization from the
nodal data.

Since the changes in polarization between different cycles
are quantized, we might now ask about the properties of the
total polarization. Since each 1D subspace is mapped onto
itself by T I and the polarization of that 1D system is odd under
T I, we see that the polarization of each of the wires/cycles
is quantized to be 0 or e/2. The other wires in the family
of Hamiltonians either have exactly the same polarization or
differ by a quantized amount. For the case with only two
nodes, this argument shows that the (fractional part of the)
boundary charge, up to an integer per unit cell, is completely
determined by the length of bi that projects onto the edge BZ,
which confirms what is predicted in Eq. (67) (more subtleties
will arise when we have to consider cases with nodes arising
from multiple bands that give rise to overlapping boundary
states). The sign of the polarization for two nodes, however, is
still ambiguous and can only be determined after a symmetry-
breaking parameter is added and after knowing whether we
should project the difference between the nodes through the
edge BZ origin or the edge BZ boundary. As we discuss
more carefully below, for two nodes the overall sign and value
of the polarization can also be modified by the addition of
nontrivial, occupied weak TI bands to the system. As far as
the boundary theory is concerned, this is equivalent to adding
an additional flat band of edge states which traverse the entire
BZ, and because of the Z2 nature of the polarization this has
to be carefully handled.

3. Magnetization response of a 2D Dirac semimetal

After finishing our discussion of the symmetry protection
and the importance of T I symmetry for the charge polariza-
tion, let us now move on to a discussion of the response due to
a nonvanishing b0. We have seen that the spatial part of bμ can
be interpreted as a charge polarization, and, as shown below,
the component b0 represents an orbital magnetization. Before
we provide the explicit proof, let us assume that this is the case
and support the conjecture with some physical arguments and
numerical calculations.

The physical manifestation of a nonvanishing magnetiza-
tion is a circulating current bound at the edges of the sample.
From our conjecture, we should be able to induce such a
magnetization by turning on a b0. We can generate a b0

by adding the term γ sin kyI to the Dirac semimetal lattice
Hamiltonian in Eq. (63). The value of b0 generated would be
b0 = (γ /�) sin kyc, where ky = kyc is the location of the Dirac
node (and consequently −kyc is the location of the other node).
On topological edges we can immediately see that the addition
of this term will cause the flat edge modes to disperse (see
Appendix B 2 for a proof). This is also seen the numerical
calculations in Fig. 9(a). Thus, the dispersion of the edge
modes attached to the Dirac points is exactly what generates
the bound current, at least on the edges which actually harbor
topological bound states.

0 2 π
−3

0

3

0
−3

0

3

E

k

2 πk

E

m A

m B

(a)

(b)

FIG. 9. The Energy spectrum is shown for the DSM with b0 �= 0
and different masses turned on. (a) WithmA �= 0, we see that the edge
modes split and do not cross as they move between the Dirac nodes.
(b) With mB �= 0, it looks like the edge mode dispersion of a Chern
insulator and they cross at k = 0.

Let us try to confirm this result numerically by calculating
the current in the lattice model. Just as for the polarization, to
properly calculate the response numerically, there is a subtlety
about how to fill the edge states. To do this properly, we
again need to choose a small, nonzero inversion-breaking mass
before filling the edge modes. In the language of Ref. [61], to
properly fill the edge modes in the presence of a nonvanishing
mA we need to use the adiabatic filling, not the thermal filling,
if we want to calculate the magnetization. One can see the
energy spectrum for b0 �= 0 in Fig. 9(a) with a finite mA

parameter. Adiabatic filling implies filling all of the states,
including the edge modes, in the lower half of the spectrum
below the energy gap induced by mA. In Fig. 10 we plot the
boundary current localized near a single edge vs b0.The bound
edge current is exactly eb0

2π , which corroborates our conjecture
that the magnetization is proportional to b0.

It is interesting to note that in the model in Eq. (63) the x
and y directions are very different since we have topological
wires oriented along x that are stacked in y. This should be
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FIG. 10. (Color online) The bound current Jy localized near a
single edge vs b0 is plotted for the model in Eq. (63) with by =
π

3 , mA = 10−3, Lx,y = 120, and periodic boundary conditions in the
y direction. The current matches the field theory prediction.

contrasted with the fact that an orbital magnetization in 2D
implies the existence of a bound current on any edge (i.e., any
interfaces where the magnetization jumps from a finite value to
zero). For the topological edges, with normal vectors parallel
to the x direction, a nonzero b0 gives the edge modes a nonzero
dispersion as shown in Fig. 9(a). The dispersing edge states
produce an exponentially localized current jybound that corre-
sponds to the change in magnetization at the edge. However,
in the y direction there are no topological edge modes, and it
is interesting to consider what happens to jx on these edges.

We show the result of a numerical calculation in Figs. 11
and 12. In the former, we compare the current profiles of
the different edge types in two different cylinder geometries
corresponding to the two different edge types. In Fig. 11(a)
we show the current on a nontopological edge (Jx on an edge
normal to ŷ), which is still localized on the boundary, but has
an oscillatory decay. The wavelength of the oscillation, in fact,
matches the wavelength of the Dirac-node wave vectors in
momentum space. In Fig. 11(b) we show the current localized
on topological edges (Jy on an edge normal to x̂) and we can
see that each edge carries exponentially localized current with
opposite currents on opposite edges.

In Fig. 12 we show the current density on a fully open
sample, where we see that all of the current is localized near the
edges. The colors are associated with the magnitude of the cur-
rent parallel to a given edge. Essentially, this is just a different
presentation of the data in Figs. 11(a) and 11(b) that shows that
on both sets of edges there is a bound current, as expected from
the orbital magnetization. Interestingly, on the edges without
topological bound states the current oscillates as it decays.
However, the magnitude of the current localized near edges
of either type is identical, so indeed, even though the model
is highly anisotropic, the bulk orbital magnetization generates
bound currents on all edges, not just topological ones.

Further, we note that in the case with just two nodes the
magnetization has no dependence on whether the edge states
go through the origin of the edge BZ or through the boundary
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FIG. 11. (Color online) Plots of (a) Jx vs y, which is the current
on the nontopological edge, and (b) Jy vs x, which is the current on
the topological edge. This is for the Dirac semimetal considered in
previous figures but with a nonzero b0. For this system by = π

3 , γ =
0.1, mA = 0.1, and Lx,y = 96. There are open boundary conditions
in both directions. We note that jy is exponentially localized, whereas
jx is less-sharply localized and oscillates as it decays into the bulk.
The oscillation wavelength coincides with the wave-vector location
of the Dirac nodes in k space. With open boundary conditions, we
must be careful to properly fill the edge states by using a nonzero
inversion-breaking mass term mA. The currents with �y = ±1 are
plotted in black and red. The total current near the boundaries is
identical in both cases and thus the magnetization does not depend
on how the edge states traverse on the edge BZ. The slight difference
between the current profiles in (b) is due to the fact that the wave
functions of the occupied edge modes that determine those boundary
currents are different in the two cases with �y = ±1; however, the
total current is the same.

of the edge BZ (i.e., at ky = π ), assuming that the sign of the
inversion-breaking parameter and the helicities of the nodes
remain the same and only the edge-state locations are flipped.
This is explicitly demonstrated in Fig. 11, where the total
currents passing through each edge match exactly for these
two cases. To generate the second case, where the edge states
pass through π in the edge BZ, we can choose our square-
lattice model with the same parameters as before, except letting
A = −1,ty = −1. Below we introduce quantities �i , where
i = x,y that track whether the edge states pass through the
origin of the edge BZ (�i = +1) or the boundary of the edge
BZ (�i = −1) for different directions (e.g., i = x or y). As
we will see, these signs will enter the expressions for the
charge polarizations, but not the magnetization. When there
are more than just two nodes the magnetization is affected by
the different edge-state configuration possibilities, but not in
the same way as the polarization.

Now that we have motivated the EM response of the DSM
using some analytic and numeric results on an example model,
we now prove these claims using a Dirac semimetal model
with two nodes and then go on to generalize to a generic even
number of nodes.
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FIG. 12. (Color online) With a similar setup to the previous
figure, we use a density plot for the current vs x,y position for the
2D Dirac semimetal with by = π

3 , γ = mA = 0.1, Lx,y = 96, and
we have open boundary conditions in both directions. We calculated
the current density in the x direction and summed it with the current
density in the y direction to produce this pseudocolor plot. We see
that the currents are spatially localized at the edges, strongly for the
one moving along the edges parallel to the y axis and less strongly
and oscillatory for the one moving along the edges parallel to the x
direction. The total magnitude of the current in the neighborhood of
each edge is the same, and the current circulates around the boundaries
of the sample.

C. Derivation of response for continuum Dirac semimetal in 2D

In the previous section we posited a form for the EM
response action of the DSM and gave some concrete examples
in which the numerical simulations in lattice models matched
the response derived from the effective action in Eq. (67). In
this section we derive the EM response from a continuum
model of the DSM using standard linear response techniques.
We derived an example of a continuum Hamiltonian for the
DSM in Eq. (66), and we use this as our starting point. After
tuning the velocity coefficients to be isotropic, we can write
the Hamiltonian for two Dirac cones that exist at the same
point in the BZ as

H = kxI ⊗ σx + kyτ
z ⊗ σ z, (70)

where τ a are Pauli matrices representing the two nodes. To this
Hamiltonian we add two perturbations, the first of which is a
splitting vector bμ = (b0,bx,by) that shifts the two cones apart
in momentum (by 2�b) and energy (by 2b0). With the inclusion
of this vector, which, if needed, we allow to be slowly varying
in space-time, the Hamiltonian becomes

H = kxI ⊗ σx − bxτ
z ⊗ σx + kyτ

z ⊗ σ z − byI ⊗ σ z

+ b0τ
z ⊗ I. (71)

The second type of perturbation we allow for is the coupling to
external EM fields, which enter the Hamiltonian via minimal
coupling k → k − (e/�)A.

To calculate the linear response, we need the current
operators that will enter the Kubo-formula calculation. For

the EM field the current operators are

J x
A = δH

δAx

= e

�
I ⊗ σx ≡ e

�
	x, (72)

J
y

A = δH

δAy

= e

�
τ z ⊗ σ z ≡ e

�
	y, (73)

J 0
A = δH

δA0
= e

�
I ⊗ I. (74)

For the splitting vector bμ, the associated currents are

J x
B = δH

δbx
= −τ z ⊗ σx ≡ �x, (75)

J
y

B = δH

δby
= −I ⊗ σ z ≡ �y, (76)

J 0
B = δH

δb0
= τ z ⊗ I ≡ �0. (77)

We want to calculate the “topological” response terms for
the DSM and, in (2 + 1) dimensions, we see that such response
terms will break either time-reversal or inversion symmetry.
It is well known that Dirac fermions in (2 + 1) dimensions
exhibit a parity anomaly that gives rise to a Chern-Simons
contribution to the effective action that encodes a nonvanishing
Hall conductivity [28,83]. There is a subtlety: To calculate
the nonvanishing coefficient, one must introduce a finite,
(time-reversal) symmetry-breaking mass parameter that is
taken to vanish at the end of the calculation. Since the resulting
response coefficient ends up being proportional only to the sign
of the symmetry-breaking parameter, it remains nonzero even
in the limit where the symmetry breaking is removed. This
effect is a manifestation of a quantum breaking of symmetry,
i.e., an anomaly. One of the main results of this paper is that
we show that the same is true for an inversion-breaking mass
term, not just the time-reversal-breaking mass term.

To calculate the responses due to Aμ or bν perturbations,
we need to introduce two different types of symmetry-breaking
mass terms,

�A = I ⊗ σy, (78)

�B = τ z ⊗ σy. (79)

These two different mass matrices commute, and thus they
are competing mass terms. They both separately anticommute
with the kinetic part of the Dirac Hamiltonian (including
the constant momentum shift �b), and thus the spectrum
will be gapped as long as the coefficients (mA,mB) of
(�A,�B) are not equal in magnitude. Explicitly, if both
mass terms are activated, the energy spectrum is ±E± =
±√

(kx − bx)2 + (ky − by)2 + (mA ± mB)2, which is gapped
unless |mA| = |mB |. These mass terms are very familiar in the
literature: �A is essentially the inversion-breaking Semenoff
mass term [84], and �B is the continuum version of the
time-reversal-breaking Haldane mass term [28].

Generically, in linear response, we find contributions to the
effective action of the form

Seff[Aμ,bν] =
∫

d3p1

(2π )3
Aa

μ(p1)�μν

ab (p1)Ab
ν(−p1), (80)
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which has been written in the Fourier-transformed basis,
and where a,b = A,B, AA

μ = Aμ, and AB
μ = bμ. The linear

response calculation (or equivalently the calculation of the
quadratic term in the effective action) amounts to the cal-
culation of the long-wavelength, dc limit of the generalized
polarization tensor

�
μν

ab (ν,q) = �

2

∫
dωd2p

(2π )3
tr
[
Jμ
a G(ω + ν,p + q)J ν

b G(ω,p)
]
,

(81)

where μ,ν = 0,x,y, a,b = A,B, and G(ω,p) is the space and
time Fourier transform of the single-particle Green’s function
of the unperturbed (bμ = 0,Aμ = 0) Dirac model.

The calculation of �
μν

ab is sensitive to the choice of
symmetry-breaking masses ma. Since we are only inter-
ested in extracting the topological terms in the semimetallic
limit, we can consider two cases: (i) |mA| > |mB | = 0 and
(ii) |mB | > |mA| = 0. We briefly consider the case when both
mass terms are nonzero in Sec. III F.

The Fourier transform of the unperturbed Green’s function
in either of these limits will be

G(ω,p) = 1

ω − px	x − py	y − mc�c

= ω + px	
x + py	

y + mc�
c

ω2 − |p|2 − m2
c

, (82)

where the label c = A or B, and is not summed over. The
topological terms in the polarization tensor can be calculated
by extracting the terms proportional to odd powers of the
symmetry-breaking mass:

�
μν

ab (ν,q) = �

2

∫
dωd2p

(2π )3
f (ω + ν,p + q)f (ω,p)

× tr
{
Jμ
a mc�cJ

ν
b (ω + px	

x + py	
y)

+ Jμ
a [ω + ν + (px + qx)	x

+ (py + qy)	y]J ν
b mc�

c
}
, (83)

f (ω,p) = 1

ω2 − |p|2 − m2
c

. (84)

Now, to be explicit, let us consider case (i), where mA is
the nonvanishing mass term. We can extract the leading term
in the external frequency/momentum, which we find to be

�
μν

ab (ν,q) = 4
e

2
mAε

μρν(iqρ)σab

∫
dωd2p

(2π )3
[f (ω,p)]2

= 4π2

(2π )3

e

2

mA

|mA|ε
μρν(iqρ)σab

= e

4π
(sgn mA)εμρν(iqρ)σab, (85)

where qρ = (ν,q) is the external 3-momentum, σAB = σBA =
1, and σAA = σBB = 0. This leads to a term in the effective
action

S
(A)
eff [Aμ,bν] = e

2π
(sgnmA)

∫
dtd2xεμνρAμ∂νbρ. (86)

This result exactly matches Eq. (67), except for the factor of
sgnmA, which we already motivated as being necessary to pick
the sign of the charge polarization.

From this continuum calculation for two nodes we can
extract the polarization and magnetization in a nice way as

(M,εij�iPi) = e

4π
(sgnmA)

2∑
a=1

χaKa,μ, (87)

where Ka,μ are the momentum and energy locations of the
nodes, and the χa are the helicities of the nodes. Even for
just two nodes the polarization calculated in the continuum
approximation is ambiguous since the edge states connecting
the nodes could pass through the origin or boundary of the
edge BZ. We have corrected for this in Eq. (87) by adding
the extra signs �i = ±1 (i = x,y), which indicate exactly
if the edge states run through the origin on the edge BZ
(�i = +1) or through π (�i = −1), as motivated before. In
general, when not on the square lattice, there is one value of �
for each independent spatial direction. These extra signs only
enter the formula for the polarization, not the magnetization
as mentioned above.

A precise definition of �i can be determined purely from
the bulk properties of the system by calculating the Wilson
line of the Berry connection along the 1D Bloch Hamiltonian
subspace that projects onto k = π in the respective edge BZs (it
is analogous to calculating the weak invariant νi). This Wilson
line can only take two values because of the T I symmetry,
and its trivial (nontrivial) value corresponds to �i = +1(−1).
It is important to note that a knowledge of �i is not contained
in the manifold of band touchings alone and requires some
knowledge of the occupied bands. For the two-node case, this
implies that the (fractional part of the) polarization can only be
determined up to an overall sign if we only have knowledge of
the continuum band-touching points and their locations in the
BZ. However, the magnetization does not share this particular
ambiguity due to �i. This might be attributed to its more
isotropic nature.

In this continuum picture we could also imagine having
more flavors of fermions with different nodal locations, but
with Hamiltonians of essentially the same form as in Eq. (70).
Since we want to eventually consider lattice models with
multiple pairs of nodes, we know there must be an even
number of total nodes, say 2N , and an equal number N

of them have opposite helicity. From our calculation, the
polarization/magnetization for such a system might be trivially
generalized as

(M,εij�iPi) = e

4π

2N∑
a=1

gaχaKa,μ,

where ga represents the sign of the symmetry-breaking mass
for each Dirac point. Unfortunately, this simple generalization
has a few caveats, one example being that it does not take care
of the Z2 nature of the edge states, which becomes important
when edge states from different blocks overlap in the edge BZ.
We discuss the details of this generalization in Sec. III E.

If we repeat this calculation for case (ii), where mB is
nonvanishing, the result is almost identical, except for the
replacement of the matrix σab by the Kronecker δab; i.e., the
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polarization tensor is

�
μν

ab (ν,q) = �e2
a

4π
(sgnmB)εμρν(iqρ)δab, (88)

where the charge eA = e/� and eB = 1. Now this gives rise to
two terms in the effective action,

S
(B)
eff [Aμ,bν] = e2

2h
(sgn mB)

∫
dtd2xεμνρAμ∂νAρ

+ �

4π
(sgn mB)

∫
dtd2xεμνρbμ∂νbρ. (89)

The first term is the conventional Chern-Simons term which
yields a Hall conductivity of σxy = e2

h
(sgnmB), which consists

of e2

2h (sgnmB) from each of the two Dirac cones. This type of
response has been discussed extensively in the literature, so we
do not dwell on it here. The second term, which does not yield
an EM response since it is independent of Aμ, is discussed in
Appendix C.

D. Physical interpretation of the Dirac semimetal response

The topological EM response of the DSM is more com-
plicated than the 1D band metal because the response density
and current depend on derivatives of bμ, not just the vector
itself. When the time-reversal mass term mB dominates,
and there are only two nodes, then we just generate the
well-known Chern insulator phase [28] or its associated parity
anomaly in the limit mB → 0 [83]. In this section we consider
the less well-known case of when mA dominates and the
resulting inversion-breaking semimetal limit. This will help
us solidify an appropriate definition of charge polarization and
magnetization for 2D Dirac semimetals, akin to the definition
provided for Chern insulators in Ref. [61]. In Sec. III F we
revisit the case when mB is nonvanishing and consider the
effects of a finite mA term in the Chern insulator phase.

1. Response in the inversion-breaking limit
(mA dominating regime)

Let us consider the limit in which the inversion-breaking
mass mA dominates over the time-reversal mass mB and then
send them both to zero (with mB → 0 first). In that limit the
response that we derived is given by

S
(A)
eff [Aμ,bμ] = e

2π
(sgnmA)

∫
dtd2xεμνρAμ∂νbρ.

The current from this effective action is given by

jα = e

2π
(sgnmA)εαμν∂μbν

⇒ ρ = e

2π
(sgnmA)(∂xby − ∂ybx), (90)

j i = e

2π
(sgnmA)εij (−∂0bj + ∂jb0).

To simplify, let us assume thatmA → 0+ so that we can replace
sgnmA = +1.

These equations can be more easily interpreted if we replace
bi via the polarization P i

1 = − e
2π ε

ij bj to generate

ρ = −∂iP
i
1 , j i = ∂0P

i
1 + e

2π
εij ∂jb0.

We immediately recognize these equations as the contributions
to the charge density and current from gradients and time
derivatives of the polarization. It is also easy to interpret the
term involving b0, as it just represents the contribution to the
current from gradients in the magnetization. We can let M =
e

2π b0 be the out-of-plane magnetization, from which we finally
arrive at

ρ = −∂iP
i
1 , j i = ∂0P

i
1 + εij ∂jM, (91)

which are the familiar constituent relations for bound charge
density and bound charge current in 2D. Thus, we see that,
in the limit where mA dominates over mB and then tends
to zero, the DSM will exhibit an effective polarization and
magnetization if bi and b0 are nonzero, respectively. Bound
charge and current manifest at interfaces or boundaries where
the bulk values of bμ are changing and are the consequence of
the topological response.

The relation between bμ and the bulk magnetization and
polarization makes an important physical connection between
generic EM quantities (P i

1 ,M) and the quantities (εij bj ,b0)
that are determined by the energy and momentum locations of
the nodal Dirac points in the electronic spectrum. Accordingly,
we can rewrite the effective action as

S
(A)
eff [Aμ,bμ] =

∫
dtd2x

[
M(bμ)B + P i

1 (bμ)Ei

]
, (92)

where we have included the dependence on bμ. Writing the
action this way is interesting because it highlights that the
DSM can have a well-defined polarization, something that is
usually reserved for gapped insulators. From this we see that
one possible signature of a clean DSM with nondegenerate
nodes would be a semimetal phase with T I symmetry and a
nonvanishing charge polarization/magnetization.

2. Polarization and boundary charge

Using the model for the DSM introduced above, let us
revisit the origin of the bound charge and bound current from
a more microscopic picture. From the effective action we see
that we need by to change with x or vice versa to generate a
nonzero charge density. To produce a nonzero current, we need
b0 to vary with x or y. The easiest way to do either of these
is to have an interface or boundary. First, suppose we have
a boundary where by changes with x as by = by�(x − x0),
where �(x) is a step function. From the response action we
should have a bound charge density

ρ = (sgnmA)�y

eby

2π
δ(x − x0), (93)

where we recall that the�y in this formula is needed to capture
the correct sign of the boundary charge for lattice systems [cf.
Eq. (87)].

The magnitude of the charge density determined by the bulk
response action exactly matches the boundary charge we find
in the DSM model from the edge modes stretched between
the two nodes. The role of the value of (sgnmA)�y is to fix
which edge has the occupied states and, subsequently, which
edge is unoccupied. Due to the inversion-breaking mass, each
boundary state on one edge will be occupied and contribute
e/2 charge on that boundary for each edge mode. On the
other edge, all of the boundary modes will be unoccupied,
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and each contributes a deficit charge of −e/2. The total
number of occupied states on the edge is given by the distance
spanned by the edge states between the two nodes multiplied
by Ledge

2π , which, in total, is Ledge
2by
2π . So, the total charge at the

positive edge is given byLedge
e
2 × by

π
= Ledge

eby
2π . This implies

a polarization of eby
2π , as expected. Thus, we see that while the

charge response in the 1D semimetal is controlled by the bulk
states, here it manifests as a property of the boundary modes.
This is due to the charge density depending on derivatives of
bi instead of bi itself.

3. Orbital magnetization and boundary current

Next, let us consider the microscopic origin of the mag-
netization. The bound current that exists on interfaces when
b0 is nonvanishing, i.e., when there is a bulk magnetization,
is more delicate. For example, the magnetization, as far as
the 2D system is concerned, is isotropic and thus should give
rise to bound currents on any interface, not just an edge with
low-energy modes. We already showed in Figs. 11 and 12 that,
even though the DSM model we have chosen is inherently
anisotropic, there are bound currents on all of the edges. Let
us now prove that this boundary current is indeed connected
to the bulk orbital magnetization.

First, to generate a nonvanishing b0 in the DSM model,
we can add a kinetic energy term ε(k) = γ sin kyI to the
Hamiltonian H2DWTI(k) in Eq. (63). If the Dirac nodes are
separated in the ky direction and located at �k = (0,±kyc),
as for our earlier parameter choice, then this simple kinetic
term will generate an energy difference of 2γ sin kyc ≡ 2�b0

between the Dirac nodes. Note that this term breaks both T

and I but preserves the composite symmetry T I, which is
required for the local stability of the Dirac nodes. Since it
breaks T , in principle, a magnetization would be allowed by
symmetry.

Next we can calculate the magnetization for this model
according to the results of Refs. [59,85] using

M = e

2�

∫
d2k

(2π )2
Im{〈∂xu−|[H (k) + E−(k)]|∂yu−〉

− 〈∂yu−|[H (k) + E−(k)]|∂xu−〉}, (94)

where E−(k),|u−〉 are the energy and Bloch functions of
the lower occupied band, H (k) = ε(k) + H2DWTI(k), and
the derivatives are with respect to momentum. To properly
calculate this quantity, we need to turn on a small, but finite,
mA and then set it to zero at the end of the calculation.
From symmetry, and from the fact that the extra kinetic
term is proportional to the identity matrix, the only terms
that contribute to the nonvanishing magnetization are those
proportional to ε(k), and we find the simplification [59]

M = e

2�

∫
d2k

(2π )2
2ε(k)Fxy(k), (95)

where Fxy(k) is the Berry curvature.
For small mA we know that Fxy is sharply peaked at each

of the two Dirac nodes. For example, when mA = 0, then T I
is preserved, and the Berry curvature is a δ-function source at
each node. When mA �= 0 the contributions of the two Dirac
points to the Berry curvature have opposite signs because of

their opposite helicities. Thus, we can see that if ε(k) had the
same value for both Dirac nodes, then M would vanish. In
the semimetallic limit mA → 0, which is the limit of physical
interest, the magnetization becomes

M = (sgnmA)
e�Dirac

4π2�

NDirac∑
a=1

ε( �Ka)χa, (96)

where �Ka is the location of the ath Dirac point, ε( �Ka) is the
energy of the ath Dirac point, χa is the sign of the Berry
phase around the Fermi surface of each Dirac point for an
infinitesimally positive chemical potential, and �Dirac is the
constant Berry curvature flux carried by each Dirac point in
the gapless limit, i.e., �Dirac = π. In terms of b0 for our single
pair of Dirac points, we find M = (sgnmA) e

2π b0, as expected.
While this is the general result for the bulk magnetization,
even for a lattice model, the connection to a boundary current
must be carefully addressed if there are Dirac nodes with
overlapping edge modes that can cancel in a Z2 fashion. We
discuss this more in Sec. III E.

Now that we have explicitly determined the relationship
between bulk magnetization and the energy locations of
the nodal points, let us try to connect the response to the
edge-state properties as mentioned earlier. Consider our simple
two-node DSM model withmA > 0 on a cylinder with periodic
boundary conditions in the trivial direction (y direction) and
open boundary conditions in the topological direction (x
direction). With this choice of orientation the system will
exhibit gapless boundary modes. Let us add in the term
ε(k) = γ sin kyI to generate a nonvanishing b0. The sample
thus has b0 = b0[�(x) − �(x − Lx)], where we have chosen
the cylinder to lie between x = 0 and x = Lx. The current
density near the left edge (x = 0) is given from the response
action by

j
y

L = − e

2π
b0δ(x). (97)

The total current traveling within a region near x = 0 is
simply J

y

L = ∫ δ

−δ
dxj

y

L = − eb0
2π . Of course, the total current

in the y direction will vanish once we take both edges into
consideration.

Now we can use this result to compare to the current carried
by the edge states. In Fig. 9(a) we show the energy spectrum
for the DSM in a cylinder geometry for a nonzero γ and a
nonzero mA > 0. We see that the edge states are attached to
the Dirac nodes (slightly gapped by mA), and their dispersion
is εedge(ky) = −γ sin ky (for a derivation, see Appendix B 2).
When mA is identically zero, then at half-filling each edge
branch will be occupied up toE = 0 (which happens at ky = π

for our model), and the boundary currents vanish. WhenmA �=
0 then the remaining states on the left edge become occupied,
which generates a current; the other edge will now have an
excess of unoccupied (hole) states which produce a current in
the opposite direction. If we take the limit asmA → 0, then the
boundary current will persist since the electrons cannot scatter
from one edge to the other as long as translation symmetry is
preserved, and the edges remain far enough apart to prevent an
interedge hybridization gap. The edge electrons will remain in
their “adiabatically” filled state (in the language of Ref. [61]).
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Let us now calculate the magnitude of the edge current in
these conditions. Explicitly, the current on the left edge when
all of the boundary modes are occupied is

J
y

L = e

2π�

∫ kyc

ky0

dky
∂εedge(ky)

∂ky

= − eγ

2π�
[sin kyc − sin ky0]

= − e

2π

[
γ

�
(sin kyc − sin ky0)

]
= −eb0

2π
, (98)

where ky0 is the energy up to which the edge state is occupied
when mA = 0, and kyc is the point up to which the additional
occupied states are filled when the entire edge branch is
occupied. Thus, we see that on the sides of the system that have
topological edge states, the current is completely accounted for
by the boundary modes.

As discussed above, the nonvanishing bulk magnetization
also implies that there should be bound currents on edges that
do not have low-energy topological boundary modes. Current
conservation also indicates that on finite-sized systems, where
all boundaries are open, the edge currents from a gapless
edge must flow somewhere after hitting a corner. Indeed,
this is confirmed in Figs. 11 and 12. Though we do not
have a simple argument to derive the magnitude of the edge
current on nontopological edges, we found numerically that
the magnitudes of the currents localized on each edge are the
same.

E. General formulation of response for 2D DSM

Let us now consider a generic T I-invariant DSM which
harbors an even number of Dirac cones. Each Dirac cone
Da (a = 1,2, . . . ,2N ) in the semimetal is specified by the
data (χa,�K̄a,εa,ga), which are the helicity, momentum-space
location of the Dirac node, energy of the node, and the sign of
an infinitesimal local mass term at the Dirac point, respectively.
The helicity indicates whether the winding of the (pseudo)spin
around a Fermi surface at a Fermi energy above the node gives
rise to a Berry phase of ±π (i.e., χa = ±1). All of the response
coefficients in which we are interested arise from anomalous
terms which, even for gapless Dirac nodes, depend on how the
gapless point was approached from a gapped phase; this is why
we must include the ga. Another way to think about this is that
the choice of ga determines the sign of the symmetry-breaking
response for each pair of Dirac nodes.

Let us now consider the generalization of our earlier
continuum formula to the case with many flavors. Following
Ref. [34], in the ultraclean limit we can associate a conserved
current jμ(a) to each Dirac cone and a matching gauge field
A(a)μ. Each Dirac cone contributes a term to the effective
response action of the form

S
(a)
eff [A(a)] = χaga

e2

4h

∫
d3xεμνρA(a)μ∂νA(a)ρ. (99)

This gauge field contains two pieces: (i) the contribution from
the EM gauge potential, and (ii) the energy-momentum shift
of each Dirac node. Thus, we have A(a)μ = Aμ + �

e
K̄(a)μ,

where K̄(a)μ tells us the energy-momentum location of the
node such that K̄(a)0 = εa/�, and Aμ is the true EM vector

potential. With this specified, we can rewrite the action in a
more transparent manner:

S[A,K(a)] = e2

4h

2N∑
a=1

χaga

∫
d3x εμνρ

(
Aμ + �

e
K̄(a)μ

)

× ∂ν

(
Aρ + �

e
K̄(a)ρ

)
. (100)

Let us now try to extract the important EM contributions to
the response. The term containing only powers of Aμ, and
none of K(a)μ, is simply

S1[A] = C1e
2

2h

∫
d3x εμνρAμ∂νAρ, (101)

where C1 is the total Chern number given by
C1 = 1

2

∑2N
a=1 χaga. We do not discuss the extra terms

in the effective action which are independent of Aμ here.
To understand them better, we can reformulate the response
theory using an analog of the K matrix formalism familiar
from the Abelian fractional quantum Hall (FQH) states [86].
This discussion lies outside the main scope of the text and we
defer it to a brief discussion in Appendix C.

To extract the mixed term that represents the charge
polarization and magnetization, we will, for simplicity, restrict
ourselves to particular configurations of the ga. When there
are more than two nodes, the concept of a single inversion- or
time-reversal-breaking mass term is not clearly defined when
given a full set of ga. One appropriate generalization of the
inversion-breaking mass is to have the sign of the mass fixed
to be the same for all nodes. That is, ga = +1 or ga = −1 for
all values of a. For this choice let us call ga = g for all a. This
choice has some immediate consequences: (i) The total Chern
number vanishes, i.e.,

C1 = 1

2

2N∑
a=1

χaga = g
1

2

2N∑
a=1

χa = 0, (102)

since there is a generic constraint
∑

a χa = 0 coming from
the T I symmetry of the lattice model; and (ii) the Chern
number for any pair of opposite-helicity Dirac nodes vanishes.
With this constraint we can determine the polarization and
magnetization from the band-touching data as discussed below.
On the other hand, if we allowed each ga to have varying
signs, the determination of the polarization can be become
more complicated since the Chern number of individual pairs
of Dirac nodes need not always vanish (cf. Sec. III F) [87].
Henceforth, we fix the all ga = g > 0.

Now, using this choice for the set of ga we can extract the
mixed contribution to the action

S2[A,b] = e

2π

∫
d3xεμνρbμ∂νAρ, (103)

where

bμ = g

2

2N∑
a=1

χaK̄(a)μ. (104)

This is the more general formulation of the two-node formulas
we had derived previously, and the magnetization and polar-
ization are given as ebμ = 2π (M,εijP

j

1 ).
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Equations (101), (103), and (104) are the general continuum
results and are similar to the types of formulas one finds for
3D Weyl semimetals, for example. However, these formulas
only provide the correct bulk results for a lattice system if
there are an even number of edge-state branches (on one
edge) that pass through the boundary of the edge BZ. This
issue is addressed by simply including an extra sign (�j ) in
the polarization for each spatial direction as discussed above.
Given our choice of an edge, this automatically determines a
reciprocal lattice vector normal to the edge GN and its dual
vector GF with components GFi = εijGNj . The �n̂, which
is essentially a weak index, is determined by the Wilson
line integral �n̂ = exp[i

∫
�GN

ai(�k)dki |kedge=π ], i.e., the line
integral of the adiabatic connection across the BZ along the
momentum direction normal to the edge, and evaluated at
kedge = π (where kedge is the momentum tangent to the edge).
Physically, the quantity �n̂ determines whether the effective
1D wire Hamiltonian at kedge = π has a trivial (�n̂ = +1)
or nontrivial (�n̂ = −1) polarization. To be explicit, let us
consider an orthogonal lattice basis �a1 = x̂ and �a2 = ŷ and
pick an edge with normal vector �a1. We have �GN = 2πx̂,
�GF = 2πŷ, and kedge runs over all values of ky. For this
choice we have the definitions �x = exp[i

∫ π

−π
dkxakx (kx,π )]

and �y = exp[i
∫ π

−π
dkyaky (π,ky)].

With this correction we arrive at the bulk values of the
polarization and magnetization of a DSM, which are valid
even in a lattice model:

P i = eεij�j

4π

2N∑
a=1

χagaK̄a,j (105)

and

M = eg

4π

2N∑
a=1

χaεa. (106)

Since the magnetization is isotropic and can even generate
currents on edges without low-energy edge-state branches, we
might have anticipated (and we actually confirmed numerically
above) that the formula would not be dependent of the values
of the weak indices �j .

While these results are what one would find via a bulk
calculation of the polarization and magnetization, we should
check whether they satisfy the correct physical properties
for these quantities. The physical manifestation of the po-
larization is due to the surface theorem that implies that the
boundary charge is proportional to the dot product between
the polarization and the normal vector to the edge. Hence, a
useful definition of polarization in a DSM should reproduce
the correct boundary charge. Similarly, the boundary current
should be related to the magnetization. We have already carried
out this program for two nodes and found, up to some benign
ambiguities, that the polarization and magnetizations deter-
mined from these bulk formulas match the expected boundary
charge and current. Let us now discuss the complications that
arise when there are more than two nodes.

Since we have already shown how this works out for
two Dirac nodes, our goal is to determine the connection
between the bulk value of the polarization in Eq. (105)
and the boundary charge for a generic (even) number of

nodes. Unfortunately, as we note below, when we go beyond
four nodes the connection between the bulk value of the
polarization and the boundary charge can be a bit byzantine.
Ultimately, the boundary charge is decided by the arrangement
and filling of the low-energy edge states that span between
edge-projected Dirac points. When multiple edge branches
overlap, a coupling between them, even if it is only localized on
the boundary, can dramatically effect the boundary charge. In
the most general configuration of nodes, the polarization can be
calculated as a sum of the (signed) momentum-space locations
of the Dirac nodes projected into the corresponding edge
BZ. Unfortunately, the signs that enter the linear combination
must be determined from the edge-state occupation and do
not generically match the bulk result. This is similar to the
complication found in Ref. [61], where a precise surface
theorem for the bulk polarization in a Chern insulator is
only defined when the occupations of the edge branches are
included. Here the occupation can change at each Dirac point
and thus there can be many possibilities for the boundary
charge.

The issue of edge-state overlap is challenging to deal with
and can have important effects since the edge states are only
stable modulo 2, unlike, for example, the chiral boundary states
of a 3D Weyl semimetal, which have an integer classification.
If we constrain ourselves to four nodes, then we can determine
the correct set of signs that enter the calculation of the
boundary charge in the presence of generic couplings between
overlapping edge states. We now present an appropriate Z2

modified construction that captures a well-defined value for
the boundary charge as determined from the bulk nodal data.
Our result shows that using Eq. (105) is still valid as long as
one replaces the set of helicities χa with a modified set χ̄a (to
be defined below) that takes into account the Z2 cancellation.
The modified set of helicities depends on the particular edge
projection of interest and can be easily determined from our
construction below.

The construction is as follows. First, given a set of Dirac
nodes in the bulk, we choose an arbitrary pairing between
the nodes with opposite helicity (the reason they have to
be opposite helicity is that the edge states always traverse
between nodes with opposite helicity). This is always possible
since there are an even number of nodes, and an equal number
with positive and negative helicity. The final result does not
depend on how this pairing is chosen (modulo the ambiguity
of the polarization to adding occupied bands with quantized
polarization) as long as the sign of ga is the same for all nodes
(otherwise, we have to worry about pairs of nodes contributing
a nonvanishing Chern number instead of a polarization as
mentioned in Ref. [87]. Next, depending on the value of
g = +1(−1) we draw oriented lines between each nodal pair
with the arrow pointing from the negative helicity to the
positive helicity (positive helicity to negative helicity). The
oriented lines should not cross the boundaries of the BZ that is
centered at the	 point (for now). We show two examples of this
in Figs. 13(a) and 13(b) for two different choices of nodal pairs.

Now, if we want to calculate the boundary charge, we begin
by projecting the energy spectrum onto the associated edge BZ.
This will generate the nodal locations in the edge BZ, as well
as projections of the oriented lines (as shown in the subfigures
in Figs. 13(a)–13(d). It is at this stage that the complications

085105-24



PATTERNS OF ELECTROMAGNETIC RESPONSE IN . . . PHYSICAL REVIEW B 92, 085105 (2015)

A

B

C

D

A B C D

A

B

C

D

A

B

C

D

A B C D

A

B

C

D

A

B

C

D

A B C D

A

B

C

D

A

B

C

D

A B C D

A

B

C

D

(a) (b) (c) (d)

A B C D A B C D

A B C D A B C D
A B C D

A B C D

A B C D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Q
1

-1

1/2

-1/2 Q
1

-1

1/2

-1/2

Q
1

-1

1/2

-1/2 Q
1

-1

1/2

-1/2

Q
1 -11/
2

-1
/2

Q
1 -11/
2

-1
/2

Q
1 -11/
2

-1
/2

Q
1 -11/
2

-1
/2

FIG. 13. (Color online) In (a) and (b) we show two arbitrary pairings of the four Dirac nodes with opposite (red and blue) helicity in the
2D square-lattice BZ. In (c) and (d) we show cases when �i for i = x,y both take their nontrivial values such that the edge states/Dirac-node
pairing pass through the BZ boundary. Below and to the right of each 2D BZ we show the projection onto the respective edge BZs. In cases
where there are overlapping edge states and a Z2 cancellation we show the resulting modified effective helicities in a second projected edge BZ
subfigure. Finally, we show a diagram for each edge-state projection showing the calculated boundary charge resolved vs kedge when a uniform
half-filled background charge has been subtracted and in units of e. The black curves show the results after the cancellation of overlapping edge
states and the black + red curves show the result if the overlapping edge-state regions all contribute. In (c) and (d) there are cases where there
are red curves below and above the axes. These are contributions coming from each overlapping edge state which cancel when added together.

begin. If the projections of the oriented lines do not overlap at
any point in the edge BZ, then one can calculate the boundary
charge by (i) multiplying the length of the each of the oriented
lines in momentum space by e

2
1

2π , (ii) then multiplying the
result by a sign that is +1 if the oriented line points from left
to right in the projected edge BZ or −1 if it points from right
to left, (iii) and subsequently adding up all of the contributions
for all of the pairs of nodes/oriented lines.

However, if there are some overlapping lines, then we have
to carefully handle the general Z2 cancellation, which we can
eventually take into account by flipping the helicities of some
of the nodes [88]. To determine which helicities should be
flipped, we can use the following procedure. For each Dirac
node there is one line emanating from itself to its partner. If
the number of lines overlapping a Dirac point with the same
orientation is even (including its own), then we must flip its
helicity; otherwise we leave it unchanged.

In both cases, i.e., whether or not the helicity is flipped,
we remove the oriented lines for intervals where there an even
number of overlapping lines, which always leaves alternating
intervals. We show the general rules for flipping helicities in the
schematic diagrams in Fig. 14. We can subsequently take these
newly determined helicities and plug them into Eq. (105) to
generate a value for the polarization that satisfies the surface
theorem normal to the chosen edge. We note that this process
must be carried out for each choice of edge individually,
and the modified helicities for one edge may not work for
a different edge. We see an example of this in Fig. 13(a),
where when projected onto the x axis the helicities of nodes
B and C are changed, while for the projection onto the y axis,
none of the nodes have modified helicities. If we now remove
the regions over which pairs of overlapping lines exist, as
exemplified by the rules in Fig. 14, the boundary charge can
be determined geometrically from the remaining oriented lines
as in the nonoverlapping case, or simply by plugging into the
polarization formula with the modified helicities.

So far this algorithm still misses an important possibility
that we have discussed earlier, namely the possibility that
the edge states pass through the boundary of the edge BZ

kedge = π instead of the origin. We can take these effects
into account in our geometric algorithm above by making
a simple extension. If �n̂ takes its nontrivial (trivial) value
then an odd (even) number of oriented lines should pass
through the BZ boundaries normal to GN . This generalizes our
discussion above where we have shown zero lines (i.e., an even
number) passing through the BZ boundary. We show some
examples of nontrivial �x and �y in Figs. 13(c) and 13(d).
The results are independent of which oriented lines are chosen
to pass through the BZ boundary (modulo the ambiguities
in the polarization discussed above). If one does not want to
include any information about the occupied bands, i.e., does
not, or is not able to, calculate �n̂, then the overall sign of
the polarization is ambiguous, as well as the addition of a
quanta of e/2 boundary charge per unit cell, which could arise
from fully occupied bands carrying a weak invariant. However,
this ambiguity essentially exists anyway since one could layer
an extra 2D weak TI on top of the 2D DSM and couple the
modes of the weak TI to those of the DSM and effectively
change between the different values of �n̂. Thus, maybe the

=

=

(a)

(b)

=

=(c )

(d )

⊕

⊕
⊕ ⊕

FIG. 14. Rules for helicity modifications and line removal for use
with the determination of the boundary charge for Dirac semimetals
with four nodes. The signs inside the enclosed circles represent the
helicities, and the oriented arrows refer to the nodal pairing in the
text.
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main advantage to knowing �n̂ is to compare with numerical
calculations of model systems where a precise model has been
specified, and the total weak invariant of the occupied bands
is unambiguously specified.

While this algorithm works for four nodes (some extra
details are given in the caption of Fig. 13), with six nodes
or higher the algorithm is not independent of how the Dirac
nodes are chosen to be paired, and it can also give ambiguous
results when there are more than two sets of edge states
overlapping in a single region. Even if one knows precisely
how the edge states connect between the different nodes, e.g.,
by diagonalizing the system with open boundaries, and thus
how the Dirac nodes are “paired,” the sign of the polarization
due to regions of the edge BZ with more than two overlapping
edge states depends, in detail, on the coupling between those
edge states. In fact, one can effectively switch the signs of
the helicities of the Dirac nodes in pairs (not necessarily the
same pairs that are connected via edge states) by modifying
boundary terms that couple the different DSM edge-state
branches. The final value for the polarization is still a signed
sum of the momenta of the bulk Dirac nodes, but the signs
that determine the boundary charge have to be determined
from the occupation of the edge-state branches, similar in
spirit to what is done for the Chern insulator in Ref. [61]. We
expect this type of issue to arise whenever the edge states are
Z2 stable as opposed to Z stable in the chiral case.

Similar complications can arise for the magnetization. The
boundary current can depend on the how different pairs of edge
states are coupled to each other and on the precise filling of
the edge states. Since the edge states are dispersing, even more
complicated configurations can arise where the edge states
enter the bulk bands arising from other sets of Dirac nodes.
It quickly becomes tedious trying to numerically match the
boundary current calculation to a bulk result since it depends on
both the energies and occupations of the edge states, which can
be affected in many ways. In some simple cases where the edge
states do not enter the bulk bands, and hence, the occupation
of the edge states change at the Dirac nodes themselves, then
the bulk result can be recovered. We leave it to future work for
an exhaustive treatment of generic edge-state configurations.

F. General comments about the 2D Dirac semimetal response

(i) Symmetries of bμ in 2D. Let us discuss the transformation
properties of bμ under time reversal (T ), charge conjugation
(C), and inversion symmetry (I). Since in 2D we know that
b0 is proportional to a magnetization, and bi is proportional
to a polarization, we can easily determine their symmetry
properties:

T : b0 → −b0, C : b0 → b0, I : b0 → −b0, (107)

and

T : bi → bi, C : bi → bi, I : bi → bi. (108)

Note that they are both even under C, which is due to the fact
that our convention for bμ in 2D still has the charge factored
out. The other thing to note is that M ∼ sgn(mA)b0 and
P i

1 ∼ sgn(mA)εij bj and sgn(mA) is odd under inversion (and
parity). When this is taken into account we find that M and
P i

1 transform appropriately. In fact, the symmetry properties
of bμ in 2D match those in 1D.

(ii) Comments on the electromagnetic response. The
response actions in this section all essentially depend on
derivatives of bμ. Thus, for a homogeneous system there is
no charge or current response. This pattern alternates between
spatial dimensions. In 1D, 3D, 5D, . . . , when the low-energy
Fermi surfaces are represented by chiral/Weyl nodes, then the
EM response will be a bulk phenomena that does not depend on
derivatives of bμ whereas in 2D, 4D, 6D, . . . , when the Fermi
surface arises from Dirac nodes, then the response depends
on derivatives of bμ which are most commonly generated at
interfaces and boundaries.

(iii) Dependence of the response coefficients on shifts of the
origin of the Brillouin zone or the energy reference point. One
might be worried that defining physical quantities in terms of
the energy/momentum locations of the nodal points might be
problematic since the definitions might depend on arbitrary
choices of, e.g., the origin of the BZ or the zero-reference
point for energy. Let us consider changing both of these to see
what effects they have. In fact, most of the results that follow
have been discussed extensively in Refs. [61,85], albeit in a
slightly different context, and we go through their arguments
here for completeness. For our purpose here we ignore the
complication of the Z2 cancellations.

To illustrate the point, let us take K̄(a)μ → K̄(a)μ + 
kμ. Let
us consider the spatial components of bμ first, which are related
to the polarization �P1. We can write down the polarization in
terms of Bloch wave functions as

�P1[�k0] = e

(2π )2
Im

∫
[�k0]

d2k 〈uk|∇k|uk〉, (109)

where we have included the dependence of the origin of the
BZ by �k0. Under a change of the origin from �k0 → �k0 + 
�k, it
can be shown generally [61] that the polarization changes by

�P1[�k0+
�k] = �P1[�k0] − eC1

2π
ẑ × 
�k, (110)

whereC1 is the first Chern number. Thus, we see that the polar-
ization itself can seemingly depend on the choice of the origin
of the BZ, but only when the Chern number is nonvanishing.
When discussing the polarization for the 2D DSM we have
been careful to require that C1 = 0 and, hence, we never have
this problem. However, even for nonvanishing Chern number
it turns out that this issue can be resolved. In fact, there is a
discussion in Ref. [61] about a well-defined polarization for
Chern insulators. To make sense of this, those authors showed
that we need to recall that what is physically meaningful is
the change in polarization under an adiabatic change of an
internal parameter of the system. They show that as long as
the same origin in the BZ is used for measuring the initial and
final polarization of the system, the results remain consistent.

It is interesting that in our case we find that a shift of �k0 in
Eq. (104) produces exactly the same result as Eq. (110). That
is, under K̄(a) → K̄(a) + 
k, we see that


P i
1 = eεij

4π

2N∑
a=1

χaga
kj = eC1ε
ij
kj

2π
, (111)

which is the same as Eq. (110), even with a nonzero Chern
number. Thus, the effective �b can change when the origin of the
BZ is redefined, but only if the Chern number is nonvanishing.
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In this case it is shifted according to the formula derived in
Ref. [61] for the charge polarization in a Chern insulator,
and any possible ambiguity can be dealt with along those
arguments without any issues.

Now we look into what happens with the time component
of bμ. Increasing b0 at a Dirac node is equivalent to reducing
the chemical potential at the node or shifting the reference of
zero energy for that point. For the purposes of calculations we
can interpret a shift in the global reference point in energy as a
global change to the chemical potential for the overall system.
The magnetization for a Bloch system is defined to be

M = eεij

2�

∫
d2k

(2π )2

× Im
∑
n

∫
εnk�μ

〈
∂ki unk

∣∣Hk + εnk − 2μ
∣∣∂kj unk〉. (112)

Following Ref. [85], we see from this relation that

dM

dμ
= −eC1

h
⇒ 
M = −eC1
μ

h
. (113)

In fact, this general result exactly matches what we find from
our definition of bμ. Under K̄(a)0 → K̄(a)0 − 
μ

�
, we see that


b0 = − 1

2�

2N∑
a=1

χaga
μ ⇒ 
M = −eC1
μ

h
. (114)

Thus, we again see that b0 changes under a redefinition of the
origin of energy, but only when the Chern number is nonzero.
In this case it changes in the exact same way as a nontrivial
Chern insulator.

(iv) Polarization in a Chern insulator. Finally, before
moving on to the 3D cases, we will discuss a related system
with just two Dirac nodes, and nonvanishing time-reversal
and inversion-breaking masses. This case, which represents
a Chern insulator with broken inversion symmetry, was
discussed in Refs. [61,85], where they have defined an electric
polarization/magnetization for a Chern insulator. The exact
details of the model they considered are a bit different
since they use the honeycomb Haldane model [28] with
both a nonzero inversion-breaking Semenoff mass and a
time-reversal-breaking Haldane mass. In fact, they tune the
size of the Haldane mass by changing an adiabatic parameter
α. What this translates to in the context of our DSM model on
the square lattice is that they are working with both an mA and
anmB turned on. In our language, the analogous Hamiltonian is

H = sin kxσ
x + [−mA + mB(α) sin ky]σy

+ (1 − m − cos kx − cos ky)σ z, (115)

where mB = mA(1 + α) is tuned as a function of the adiabatic
parameter α.

Now let us describe the polarization of this system in terms
of the edge-state filling. As shown in Appendix B, the energy
of the edge states, on edges parallel to the y direction, is
given by EL/R(ky) = ±(mB sin ky − mA) where the ± signs
are correlated with the left/right edges. In the limit that mB �=
0,mA = 0, we have a Chern insulator which is completely
inversion symmetric. If we fill all the states with E � μ = 0
on the edge, then there will be an equal number of filled edge

0
5

4

0

4

5

E

ky

FIG. 15. (Color online) We illustrate the dispersion of the edge
states of the modelH = sin kxσ x + (mB sin ky − mA)σ y + (1 − m −
cos kx − cos ky)σ z in the limits mA = 0,0.05,0.10,0.15, mB = 0.2
with various dashed lines. The Dirac nodes are located at ± π

2 .
The crossing point has shifted to a nonzero ky once we turn on an
inversion-breaking mass and moves towards one of the Dirac points
as mA is increased further. This leads to a nonzero polarization which
is decided by the ratio ofmA andmB , while the sign of the polarization
is decided by mA.

states on both edges, and hence a vanishing polarization. When
we turn on an mA, the energy of the edge states is shifted, and
filling all the edge states with E � μ creates an imbalance
between the two edges, depending on how large mA is. In this
case, there are more edge states filled on one edge compared
to the other, which leads to a polarization (and possibly
magnetization if the nodal energies are shifted). This effect
is illustrated in Fig. 15, where we compare the edge spectrum
with and without an mA turned on. The plot has parameters
by = π/3, mA = 0,0.1, and mB = 0.2. The crossing of the
edge states moves to the right as we start increasing the mA.

In the case when both the masses are finite, we can think of
this polarization/magnetization as still arising from an energy
and momentum difference, but modified from its original value
of bμ to new a value we call �μ. The spatial component is
given by �i = sin−1 mA

mB
. When there is a T I-breaking term

tp sin kyI in our Hamiltonian, we also generate a magnetization
dependent on �0 = tp

mA

mB
. Of course, since the edge states

exist between the bulk Dirac nodes this heuristic description
only makes sense when �μ is lesser than the bμ coming from
the original gapless bulk Dirac nodes. In the semimetallic
limit where mA,mB → 0, the polarization/magnetization will
actually depend on the ratio of the masses � = mA/mB

as they are tuned to zero. When the time-reversal-breaking
mass is much greater than the inversion-breaking mass, the
polarization and magnetization depend on the quantity �μ

instead of bμ.However, in the limit that the inversion-breaking
mass is much greater than the time-reversal-breaking mass, the
polarization/magnetization will depend only on the bμ derived
from the locations of the Dirac nodes in the gapless limit as
we have discussed throughout this section. There is a switch
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between the two different behaviors when mA = mB sin kc,
where kc is a location of a Dirac node in the gapless limit.
In either case, there is no polarization/magnetization without
turning on an inversion-breaking mass.

In our general discussions above, if we allowed for the set
ga to take generic values, then to calculate the polarization we
would have to use a combination of the results for vanishing
Chern number and nonvanishing Chern number on a case-by-
case basis for each region of the edge BZ with edge states.

IV. 3D TOPOLOGICAL SEMIMETALS

There has been a series of recent works that lay out
the theory of EM response in Weyl semimetals (WSMs)
[34,53–58] and build on the seminal ideas of Nielsen and
Ninomiya from three decades ago [31]. We compliment these
results in several ways. First, we include lattice-regularized
numerical calculations of the response, which show precisely
under what conditions the continuum field-theory response
calculations can be applied, and most notably when a nonzero
current due to the CME can be observed in lattice models.
We connect the numerical results with our earlier discussion
of the 1D semimetal using a map between the 3D WSM in a
uniform magnetic field and many degenerate copies of the 1D
semimetal, which can be applied at low energy. We also pro-
vide an analytic description of the boundary modes for a lattice
model of the WSM, the response behavior of a heterojunction
between two different WSMs, and a discussion of the anomaly
cancellation which connects the bulk and surface response.

Following this we move on to consider the response of 3D
Dirac semimetals in Sec. IV B. Since there is not a similar
Nielsen-Ninomiya no-go theorem for lattice Dirac fermions,
the Dirac semimetals can come in different varieties. The
first type has the Dirac node(s) appearing at the special
time-reversal invariant momenta in the BZ. This type is
reported to have been realized in Cd3As2 [47,48]. The other
variety is more closely related to the WSM and is essentially
a time-reversal and inversion-symmetric version of the WSM
where each Weyl node, which exists at generic points in the
BZ, is replaced by two copies of the Weyl node, but with
opposite chirality; i.e., Weyl nodes are replaced with 3D Dirac
nodes at generic points in the BZ. These have recently been
confirmed experimentally in Na3Bi [46].

It is this second type, which was recently dubbed a Z2 non-
trivial 3D DSM [49], to which our response theory applies, and
unfortunately it is yet to be realized in real material samples.
We predict a quasitopological EM response for these materials
which is related to the known EM response of the quantum spin
Hall insulator [3,62]. In particular, we discuss the response
of the 3D DSM when there is a magnetic film in contact
with the sample surface. Magnetization domain walls on the
surface can generate a line of zero modes along the domain
wall and hence give rise to some transport phenomena in
these materials including bound charge and currents. We have
seen that when discussing Dirac semimetals, we must enforce
extra symmetries to provide local stability for the nodes. In
3D, to guarantee local stability of the Dirac nodes, one must
require several preserved spatial symmetries, and only certain
crystalline space groups support stable nodes [44,49], though
we do not focus much more on this in this article.

A. Response for 3D Weyl semimetal

A simple model for the WSM phase can be formulated with
two bands,

HWSM = γ sin kzI + sin kxσ
x + sin kyσ

y

+ (2 − m − cos kx − cos ky − cos kz)σ
z. (116)

This model has two Weyl nodes at (kx,ky,kz) =
[0,0,± cos−1(−m)]. The identity matrix term generates a
difference in energy between the nodes. Around the two nodes,
we have linear dispersion ε± ≈ ±vF |k|, and each of the nodes
acts as a monopole of Berry curvature. The Berry curvature
flux contained in a Fermi surface surrounding each node can
be ±2π depending on whether the node enclosed is of positive
or negative chirality. This property also leads to surface states
whose Fermi surfaces consist of open line segments traveling
between the projections of the nodes onto the surface BZ
[32]. As mentioned before, we follow the convention used
in Ref. [54] and define �b as half the momentum separation in
the Weyl nodes and b0 as half the energy difference between
them (when there are more than two nodes, this needs to be
appropriately generalized). So, in the two-band model we have
here, bz = cos−1(−m) and b0 = (γ /�) sin bz.

To calculate the EM response, we can use a continuum
description of two Weyl nodes. Following the calculation
in Ref. [54], in the continuum approximation we have the
following low-energy four-band Hamiltonian:

H = τ z �σ · �k + τ zb0 + �σ · �b. (117)

When written as a Lagrangian density coupled to an EM gauge
field the four-vector bμ = (b0,�b) appears as an axial gauge field
in the action

S[b,A] = −
∫

d4x ψ(i /∂ − e /A − /bγ 5)ψ, (118)

just as it does in the 1D case. We can remove the field
bμ through a chiral rotation, and hence use the Fujikawa
method to evaluate the chiral anomaly which appears due
to the noninvariance of the measure under this finite chiral
transformation. This is very similar to the derivation we had
for the 1D model. This calculation gives us a hint that breaking
Lorentz invariance, as we have done in the 1D model, is an
essential part of the mechanism to produce a nonzero response.
The response action was calculated to be [54]

Seff[A] = − e2

2πh

∫
d4x εμνρσ bμAν∂ρAσ . (119)

We can easily interpret the form of the effective response
action since it appears just like an interpolation between the
WTI phase generated from a stack of 2D Chern insulators and
the normal insulator phase, as was discussed in Sec. I. The
current and charge density, assuming bμ is homogeneous in
space-time, are given by

ρ = e2

πh
�b · �B, (120)

�j = e2

πh
(�b × �E − b0 �B). (121)
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The term in the current involving the electric field is the
anomalous QHE of the WSM. The other terms depend on
the magnetic field �B and can be easily interpreted using an
analogy to the 1D semimetal, as we now show.

1. Understanding the Weyl semimetal response
using a quasi-1D description

To make the mapping to the 1D system we need to apply a
uniform magnetic field to the 3D WSM. Consider the two-band
model with bz �= 0. Let us assume that we have a magnetic
field turned on in the z direction so that we have Fxy = −Bz.
It is well known, and we reproduce the calculation below, that
a Weyl node in a uniform magnetic field has a low-energy
zeroth Landau level with dispersion E0 = χkz − bz near the
Weyl node with chirality χ. It is this level that is responsible
for the low-energy EM response in Eq. (120). We see that
the zeroth Landau level only disperses along the magnetic
field direction and passes through the Weyl node with the
direction of the Fermi velocity given by the chirality of the
node. Thus, the application of the uniform magnetic field
generates a quasi-1D mode at low energy. For a pair of Weyl
nodes, as would be found in the simplest WSM, there are
two low-energy branches, which, together, effectively form
the same low-energy theory as many copies of the 1D (semi-)
metal discussed earlier. Thus, the low-energy description is
almost identical to the previous 1D semimetal discussion,
except that each state has a degeneracy which is set by the
total flux of the magnetic field through the x-y plane. We
denote this degeneracy by N� = BzLxLy

�0
, where �0 = h

e
is

the fundamental flux quantum. Thus, in a uniform magnetic
field, the low-energy physics of the WSM is equivalent to
multiple copies of the 1D semimetal. As seen below, the
description is even more apt because, in a lattice-regularized
model, the zeroth Landau level modes arising from each Weyl
node connect at high energy and form multiple copies of the
usual 1D tight-binding band structure.

Let us try to reproduce the charge density predicted in
Eq. (120) by using the 1D model. There is a subtlety as to how
the states are filled. Of course, if the zeroth Landau level is
completely filled or completely empty, then there will be no
interesting response. In this case there will be a background
charge density of some integer charge per unit cell, but no
current will flow in the filled band, and thus there will be no
static CME. This was discussed in detail in Ref. [55]. While
a filled band can give rise to Lorentz violation because of the
inherent lattice structure (e.g., the spatial components of bμ can
be half a reciprocal lattice vector), the field theory calculations
for the semimetal are not sensitive to this. In fact, they can
only predict the response from a partially filled band which
provides an explicit fractional amount of Lorentz violation
(fractional meaning a fraction of a fully filled band). This
is similar to the idea of Ref. [71] in which the low-energy
structure only determines the fractional part of the response.
To match the field-theory calculation we need to assume that
the zeroth Landau level is only filled to a chemical potential
μ = 0, which implies that the band is partially filled. For
example, to calculate the density response we need to count
the number of states filled in the zeroth Landau level, which is

simply

Q = N�eLz

∫ bz

−bz

dkz

2π
(122)

⇒ ρ = e2bzBz

πh
, (123)

which matches Eq. (120). Before we attempt to understand the
properties which lead to a nonzero current, let us look at the
zeroth Landau level structure of the WSM in more detail to
see how b0 fits into the discussion.

2. Zeroth Landau level structure in a Weyl semimetal

In this section, we proceed to show that b0 can be thought
of in a way similar to what we discussed in Sec. II for the 1D
model. In the usual case a b0 is produced by shifting the Weyl
nodes in energy with respect to each other. We show that when
this is the case the zeroth Landau level is shifted in momentum
parallel to the magnetic field. So, shifting the nodes in energy
acts like an electric field (k is shifted) on the zeroth Landau
level. As in 1D, we can also generate a b0 by adding an intrinsic
term which generates a velocity difference in the dispersion
at the two Weyl nodes; we discuss this case as well. We now
show some continuum calculations to justify these statements
and then reproduce the same by a simple numerical lattice
calculation.

Consider a four-band continuum model for the WSM (a
single pair of nodes) where only bz �= 0 [54]. A possible
Hamiltonian is given by

H = τ z ⊗ σxkx + τ z ⊗ σyky + τ z ⊗ σ zkz + bzI ⊗ σ z.

(124)
To illustrate the effects of a nonvanishing b0 (which is
introduced below), we need to include a magnetic field
with ki → ki − eAi and Ay = Bzx, where Bz is the uniform
magnetic field in the z direction. We note that we have
broken translation invariance in the x direction with our
choice of Landau gauge, and the eigenvalue equation will be a
differential equation in x where we have to replace kx → −i∂x .
From now on, this is implicitly assumed. The time-independent
Schrödinger equation reads

Hψ = Eψ. (125)

Following the usual strategy, we can apply H to ψ again to
produce H 2ψ = E2ψ. We can evaluate the left-hand side to
find

H 2ψ = [
k2
x + eBzI ⊗ σ z + (eBz)

2(x + ky/eBz)
2

+ k2
z + 2bzkzτ

z ⊗ I + b2
z

]
ψ. (126)

The wave function ψ can be taken to be an eigenstate of
σ z for the spin sector, and τ z for the orbital sector. Let us
denote the eigenvalue of σ z as ζ = ±1 and the eigenvalue of
τ z as χ = ±1. Then Eq. (126) is just the harmonic oscillator
eigenequation and has the energies

En(ζ,χ,kz) = ±[
2eBz

(
n + 1

2

) + (kz + χbz)
2 + eBzζ

]1/2
,

(127)
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FIG. 16. (Color online) The zeroth Landau level of the WSM in
a uniform magnetic field is plotted vs kz before (in black) and after (in
red) switching on a γ , which gives us b0 = (γ /�) sin 2π/3 = 0.17.
The blue line is shown to indicate E = 0. The model parameters have
bz = 2π/3, m = 1/2, and Lx = Ly = Lz = 60 with the magnetic
flux per unit cell given by φ = 2π/60. b0 was then switched on to
plot the curve in red. We see that the Landau level is simply shifted in
momentum space and is akin to turning on an external electric field
in the 1D model.

with the corresponding wave functions given by

�n(ζ,χ,�x) = Nnζe−ikyy−i(kz+χbz)zFn(x + ky/eBz) × η,

(128)
where Nn is a normalization constant, Fn(x) are the Hermite
polynomial wave functions, and η = �(σ z) ⊗ �(τ z) is a
four-component spinor where �(±1) mean the eigenvectors
of σ z,τ z given by (1

0),(
0
1).

To be precise, we need to verify that all of these solutions
satisfy Eq. (125). This consistency check eliminates half of
the zero-mode solutions, and we end up with the result that the
zeroth Landau levels have energy,

E0 = χkz − bz, (129)

which depends on the chirality χ of the Weyl node. This
dispersion hits zero energy at kz = ±bz, i.e., the location
of the Weyl nodes, as expected. These modes also have a
degeneracy of N� for each value of kz as noted above. In a
lattice regularization the zeroth Landau levels of the two Weyl
nodes will be connected to each other at high energy (cf. the
energy spectrum in Fig. 16).

Now, to turn on a b0 we can add the extra term δH =
b0τ

z ⊗ I, which commutes with the initial Hamiltonian. Since
it commutes with the original Hamiltonian its primary effect is
to shift the energies of the eigenstates. We note that acting on
the zeroth Landau level wave functions the energy is shifted
by b0χ , thus leading to the dispersions

E0 = χ (kz + b0) − bz. (130)

This is just a shifted version of the original zeroth Landau level
dispersions, and they cross zero energy when kz = −b0 ± bz.
So, the conclusion is that b0 shifts the low-energy spectrum

of the zeroth Landau level to the right in momentum space,
which is the same effect that an external electric field Ez

would have. Thus, if the band is partially filled, i.e., when we
have explicit Lorentz violation due to the background charge
density, this will lead to a nonvanishing current in the presence
of an applied B field, but in vanishing applied electric field,
which is essentially the CME.

Further pushing the 1D description, let us also show that
modifying the relative velocities of the two Weyl points will
lead to a similar effect. Consider the Hamiltonian given by

H = τ z ⊗ σxkx + τ z ⊗ σyky + τ z ⊗ σ zkz

+ I ⊗ σ zαkz + I ⊗ σ zbz, (131)

where α 	 1. This α-dependent term modifies the velocities
of propagation in the z direction of the two Weyl nodes. It
effectively changes bz → bz + αkz from our previous analysis.
The entire argument for the energies of the zeroth Landau
levels from before carries through here, too, and we find a
modified zeroth Landau level dispersion of

E0 = χkz − bz − αkz. (132)

This dispersion crosses zero at kz = bz/(χ − α) ≈ χbz −
αbz + O(α2). So, near zero energy this term behaves like a
momentum shift in the Landau level, and this should give
us a nonzero current as we have shown in the 1D model in
Sec. II.

To verify these continuum results, we can perform cal-
culations using a simple lattice regularization of the above
continuum model. The Hamiltonian is given by

H = γ sin kzI + sin kxσ
x + sin kyσ

y

+ (2 − m − cos kx − cos ky − cos kz − tNNN sin 2kz)σ
z,

(133)

where the term proportional to γ will cause a shift in
energy of the Weyl nodes, and the next-nearest-neighbor term
proportional to tNNN causes a change in the velocity of the
zeroth Landau level near the two Weyl nodes.

For γ = 0 and tNNN �= 0 the Weyl nodes are given by
solving

cos kz + tNNN sin 2kz = m, (134)

which gives us two solutions for kz. Let us try to extract the low-
energy Hamiltonians near the nodes in the limit that tNNN 	 1
by writing the two solutions as kz = ±κz + δk. We have

cos(±κz + δk) + tNNN sin(±2κz + 2δk) = m. (135)

We can subtract the two equations to find

2 sin κz sin δk − 2tNNN cos 2δk sin 2κz = 0. (136)

Using the small angle approximations sin δk ≈ δk, cos 2δk ≈
1, we are left with

δk = 2tNNN cos κz ≈ 2tNNNm. (137)

Thus, we see that a nonzero velocity change will lead to a
momentum shift of 2tNNNm at the nodal energies. Comparing
with the continuum calculation we see that αbz = −2tNNNm.

We show the numerical results of γ = 0.2, tNNN = 0 in
Fig. 16 and γ = 0, tNNN = 0.2 in Fig. 17. In both cases we see
that near E = 0 the zeroth Landau levels are shifted.
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FIG. 17. (Color online) The zeroth Landau level is plotted vs
kz before (in black) and after (in red) switching on a b0 using
the NNN velocity term. The blue line is shown to indicate E = 0.
The model had bz = 2π/3, m = 1/2, and Lx = Ly = Lz = 60, with
φ = 2π/60. We then switch on a term to change the velocity of the
two Weyl nodes with tNNN = 0.2. The shift we expect is then given by
2tNNNm ≈ 0.2, as seen in the figure. In effect, near E = 0 the zeroth
Landau level is shifted.

3. Response and anomaly cancellation in Weyl semimetals
with inhomogeneous bμ

So far, all of the response properties that we have considered
for the WSM have assumed that bμ was constant in space-time.
This will not be the case in systems which have boundaries
or interfaces across which bμ will naturally change. In this
section, we closely examine what the bulk action implies for
the surface/interface action and how the whole system remains
gauge invariant. We recall that the response action is

S = − e2

2πh

∫
d4xεμνρσ bμAν∂ρAσ . (138)

Now, when we take the functional derivative of S with respect
to Aα to extract the current, we have to be careful about the
behavior of bμ,

jα = e2

πh
εαμρσ bμ∂ρAσ + e2

2πh
εαμρσAσ ∂ρbμ. (139)

This gives us the usual current we expect for the AHE and
CME, along with a term which depends on derivatives of bμ,
but is not manifestly gauge invariant since it depends directly
on Aμ. This signals the presence of an anomaly that will arise
whenever bμ changes.

The Callan-Harvey mechanism provides a straightforward
way of understanding this result [89]. To be explicit, let us
assume we have an interface in the x direction, located at
x = x0, where bz jumps from a finite value to zero. This is the
case in the lattice models we studied in the previous section.
Under a gauge transformation (Aμ → Aμ − ∂μλ) the action

transforms as

δλS = − e2

2πh

∫
d4xεμνρσ bμ(−∂νλ)∂ρAσ

= − e2

2πh

∫
d4xεμνρσ ∂νbμ∂ρAσλ

= e2

2πh

∫
d4xεzxρσ bzδ(x − x0)∂ρAσλ

= e2Lzbz

2πh

∫
dydtερσ ∂ρAσλ �= 0. (140)

Thus, in order for the system to be gauge invariant there
must be localized fermion modes where bz jumps (except in
the case when it jumps in the z direction, since δλS = 0 in that
case). In fact, for the simple WSM models we have considered,
we know that there are such surface/interface states, and they
are just straight-line Fermi arcs that stretch between the Weyl
nodes projected onto the surface/interface BZ. For a nonzero
bz and a surface with normal vector x̂ (just like the interface
considered in the previous paragraph), the surface states have a
chiral dispersion given by E(ky,kz) = ky at low energy. These
chiral modes give rise to the usual chiral anomaly. There is
an independent chiral fermion for each value of kz, but the
surface states only exist between the Weyl nodes, i.e., only for
−bz � kz � bz. Each 1D chiral mode generates an anomalous
contribution to the variation of the boundary/interface action
under a gauge transformation [89,90],

δλSbdry = − e2

2h

∫
dydtερσ ∂ρAσλ, (141)

where ρ,σ = 0,y. To calculate the total variation due to all of
the modes, we can convert the sum over the independent kz
modes to an integral which generates a factor of Lz

2π 2bz. We
thus find

δλS
(T ot)
bdry = −e2Lzbz

2πh

∫
dydtερσ ∂ρAσλ, (142)

which exactly cancels the variation coming from the bulk
action. Equation (142) is called the consistent anomaly. The
consistent anomaly leads to an anomalous Ward identity for
current conservation on the edge,

∂μj
μ

bdry = −e2Lzbz

2πh
ερσ ∂ρAσ = −e2Nc

2h
ερσ ∂ρAσ , (143)

where Nc is the total number of modes in the inter-
face/boundary Fermi arc.

Going back to the bulk-current response in Eq. (139),
we see that the current naturally splits into two terms:
(i) jαbulk = e2

πh
εαμρσ bμ∂ρAσ and (ii) j̃ αbdry = e2

2πhε
αμρσAσ ∂ρbμ.

For our interface configuration we find

j̃ αbdry = − e2

2πh
εαzxσAσbzδ(x − x0). (144)

If we integrate this current density over x and z, we can
combine this current with the current from the consistent
anomaly to arrive at the Ward identity for the covariant
anomaly (the anomaly that contains all contributions to the
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boundary current),

∂α
(
jαbdry + j̃ αbdry

) = −e2Lzbz

πh
εασ ∂αAσ . (145)

This covariant anomaly precisely matches the bulk-current
inflow from jxbulk into the boundary/interface. Note that
although we have assumed a model which has simple Fermi
arcs, the chiral anomaly result is very robust and does not
depend on the exact form of the surface-state dispersion, or any
other details, only that the states are chiral. Thus, we expect
it to hold in any generic model, even in the cases when the
Fermi arcs are not straight-line segments, but are curved. This
result clearly shows that while the bulk action would predict a
gauge-variant response, it is compensated by the surface Fermi
arcs states. The same is true when we do not have a physical
boundary, but a region in which bμ varies in space-time. When
bμ varies there are two contributions to the boundary current,
one arising from the bulk action itself, and the other from the
consistent anomalous current required of the boundary states
in order to preserve gauge invariance of the bulk and boundary.

4. Numerical results

After these analytic arguments let us explicitly test the
predictions with numerical calculations. For illustration, we
probe two effects: (i) the CME, which we have tried analyzing
using a mapping to the 1D model, and (ii) the charge density
response in a system with an inhomogeneous �b. We do this in
the context of the two-band WSM lattice model,

H = γ sin kzI + sin kxσ
x + sin kyσ

y

+ (2 − m − cos kx − cos ky − cos kz)σ
z, (146)

where γ generates a nonzero b0. It is important to note that
to perform our numerical calculations we fill the states up to
E = 0; i.e., all states with E � 0 are filled. To illustrate an
example of the CME, in Fig. 18 we have plotted the current
along the z direction as a function of b0 in the presence of
a uniform magnetic field, but no electric field. The predicted
current density from the model, assuming a magnetic field in
the z direction, is given by

jz = −eb0Bz

πh
. (147)

The lattice calculation is shown in Fig. 18, and we find
exactly this result. For this calculation the magnetic field
is implemented using Peierls substitution. We use a Landau
gauge to retain translation invariance in one of the directions
in the xy plane, and the z direction is also translation invariant.
The magnetic field is restricted to have rational flux per unit
cell for the spectrum to remain periodic in momentum space.

Another simple effect to test is the density response at an
interface where �b changes. With Bz �= 0, we should have

ρ = ebzBz

πh
. (148)

So, if we vary bz in the x direction (with open boundary
conditions the xz surfaces host nontrivial surface states), one
would expect a varying charge density. In fact, one can see that
this is exactly reproduced in numerics and the resultant charge
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FIG. 18. (Color online) The current is plotted vs b0 for the two-
band model of the WSM. The current is linear and the slopes match
almost exactly. This plot is generated for Lx = 30 and the flux per
plaquette is φ = −2π/Lx . We use Ly = 30, Lz = 30, and bz = π

2 to
generate this plot.

density is plotted in Fig. 19. The bulk charge follows what is
predicted by the action in the continuum calculation.

B. Electromagnetic response of a 3D Dirac semimetal

There has been a lot of recent work predicting and mea-
suring materials candidates for 3D Dirac semimetals [44–48];
however, we are interested in the so-called Z2 nontrivial 3D
Dirac semimetals [46,49], where the Dirac nodes appear in
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FIG. 19. The charge density is plotted vs position in the x

direction with open boundary conditions. The system is composed
of a WSM with bz,L = π/5 for 0 < x < Lx/2 and bz,R = π/3
for Lx/2 < x < Lx . The total number of sites in the x direction
was Lx = 30 with magnetic flux per unit cell in the x-y plane
φ = −2π/30. Also, Lz = 30 and Ly = 30. The bulk charge density
is given by Nx = −LzLybzBz/4π 2 = −3,−5, as predicted by the
action.
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pairs and can exist at generic points in the BZ, as recently
measured in Na3Bi. In this section, we discuss an interesting
EM probe of this type of 3D DSM and show that it can be
derived from the response properties of the 2D time-reversal
invariant quantum spin Hall insulator [3,21,22,62,91,92].

In fact, analogous to all of our previous constructions,
we can think of the 3D DSM as a layered 2D TI, and in
this case it is formed from coupled layers of the quantum
spin Hall (QSH) system. The layer construction has aided the
discussion and analysis of the other topological semimetals,
and we will see that it is very helpful in this case as well.
Thus, we begin this section by first examining the response
of the QSH insulator itself, since the results can immediately
be generalized to stacks of QSH insulators and, hence, the 3D
DSM. After reviewing the response of the QSH insulator, we
discuss the analogous properties of the DSM and numerically
validate our analytical calculations.

The QSH system has an unusual EM response given by
[3,62]

S[A] = e

2π

∫
d3x εμνσAμ∂ν�σ , (149)

where �μ is a gauge field which encodes configurations of
inhomogeneous adiabatic perturbations. We clearly define
what this means in the following section. Essentially, the
configurations of �μ are related to possible mass-inducing
perturbations of a Dirac-type Hamiltonian. As a consequence
of this response term, a magnetic film deposited at the
edge of the QSH insulator can generate a localized charge
density or adiabatic current if the magnetization is space or
time dependent, respectively [3,62]. The edge of the QSH
insulator is itself a robust 1D massless Dirac fermion if we
preserve time-reversal symmetry. A magnetization on the edge
will open a gap, and through the well-known Jackiw-Rebbi
mechanism [93] a spatial domain wall in the magnetization will
trap a low-energy midgap mode. This mode signals a bound
charge of Qb = ±e/2. Additionally, if the magnetization on
one side of the domain wall begins to rotate as a function of
time, a quantized adiabatically pumped charge current can flow
along the edge through the magnetic junction. Reference [3]
showed that both of these phenomena could be derived from
Eq. (149). This is the EM signature of the QSH insulator and
is closely tied to the response of the 3D DSM.

Now we can construct a stack of QSH insulators. If the
layers are weakly coupled, then we will get the conventional
WTI state [73,94,95]. If we increase the strength of the
interlayer coupling so that we close the bulk gap, we will
generate the 3D DSM phase. Just as with the WSM, the edge
states of the QSH layers forming the DSM will survive in
a certain region of momentum space and will connect the
various 3D Dirac nodes with Fermi-surface arcs. We can easily
extrapolate the response action of the QSH insulator to the 3D
DSM to find

S[A] = e

2π2

∫
d4xεμνρσ bμAν∂ρ�σ . (150)

We discuss the consequences of this action below, but first we
more carefully recount the analysis for the 2D QSH insulator
since its formulation is not as widely known, and we wish for
this article to be relatively self-contained.

1. Response from the second Chern number

The discussion in this section closely follows the arguments
in Ref. [3], although we only reproduce the necessary ingredi-
ents for our discussion of the 3D DSM and leave out some of
the details which can be found in the aforementioned reference.
In general, the response of the QSH insulator is derived from
the second Chern number C2, which is a 4D topological
invariant. Since the QSH exists in 2D, the Bloch Hamiltonian is
only parametrized by two numbers kx,ky , which is not enough
to generate a nonzero C2. Thus, to probe the EM response
properties of the QSH state, we need to couple the system
to two additional parameters θ (x,t),φ(x,t), which represent
adiabatic parameters which vary slowly in space and time so
that momentum space is still approximately well defined. The
gauge field �μ introduced above is a function of space and
time, but only through its dependence on θ and φ.

To be explicit, consider the QSH Hamiltonian given by

HQSH(k,n̂) = sin kx	
1 + sin ky	

2 + (cos kx + cos ky − 2)	0

+m
∑

a=0,3,4

n̂a	
a, (151)

in which m > 0, 	a are the 4 × 4 Dirac matrices and n̂ =
(n3,n4,n0) is a 3D unit vector. The 	1,2,3,4 are all odd
under inversion and time reversal (T 2 = −1), while 	0 is
even under both. The unperturbed QSH insulator will have
n3 = n4 = 0 but n0 �= 0. If we let n̂ vary slowly as a function
of space-time, we can parametrize it using two adiabatic
space-time-dependent parameters via n̂(x,t) = (sin θ (x,t)
cosφ(x,t), sin θ (x,t) sinφ(x,t), cos θ (x,t)). The results of
Ref. [3] show that in the low-energy continuum limit of HQSH

expanded around the 	 point, the gauge curvature of � is
directly related to the skyrmion density of the unit vector n̂ as

∂μ�ν − ∂ν�μ = 1
2 n̂ · ∂μn̂ × ∂νn̂. (152)

Using Eq. (149) we can write the current in terms of this
skyrmion density as

jμ = e

8π
εμνρn̂ · ∂νn̂ × ∂ρn̂. (153)

Now let us consider an important example case. Assume that
we have a QSH sheet with a static edge parallel to the y

direction and a pair of static magnetic films next to each
other on the edge. If the magnetizations of the two films are
opposite, this will produce a domain wall on the edge with
a magnetization that varies as a function of y. In that case
we find the parametrization θ = θ (x) and φ = φ(y). At the
location of a θ domain wall between θ = 0 and θ = π there
will be an edge. At the location of a φ domain wall between
φ = 0 and φ = π there will be a magnetic domain wall. In this
geometry we find

j 0 = e

4π
n̂ · ∂xn̂ × ∂yn̂ = e

4π
sin θ × dθ

dx

dφ

dy
. (154)

Due to the dependence on the derivatives of θ and φ, the charge
density is localized wherever θ (x) and φ(y) are both changing.
If we have a sharp magnetic domain wall on a sharp edge, then
all of the charge density will be localized at the magnetic
domain wall, i.e., where the θ and φ domain walls intersect.
The total charge in the neighborhood of this intersection can
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be calculated by integrating over x,y. The integration is easily
performed since the integrand is a total derivative in x and y.

We just get the integral over the solid angle swept out by θ and
φ, which for this configuration is half the sphere, i.e., ±2π.
This yields a bound charge Qb = ±2π e

4π = ± e
2 .

We can similarly find an adiabatic pumping current by
having a static edge [θ = θ (x)] and sweeping the relative
magnetization between the two magnetic films on the edge as
a function of time [φ = φ(t)] [62]. Everything carries through
in exactly same way and we find

jy = e

4π
sin θ × dθ

dx

dφ

dt
. (155)

We can again integrate over x,t to get the total charge
transported as the relative magnetization angle sweeps through
a full cycle to find, as φ : 0 → 2π , we have 
Q = e. This
current is localized wherever θ has a sharp change in its value,
i.e., on the edge.

We can understand the physics underlying the QSH re-
sponse from the microscopic behavior of the edge states. In
the low-energy limit near the Dirac point, we can write the
Hamiltonian for one of the edges of the QSH system (say an
edge at x = 0) as

Hedge(k) = kσ z, (156)

where k is the momentum of the coordinate along the edge and
we have set the edge velocity to unity. Coupling the magnetic
layer to the edge will induce a gap from the proximity exchange
(Zeeman) coupling. If the magnetization lies in the plane, then
the effective Hamiltonian becomes

Hedge + H ′ = kσ z + mxσ
x + myσ

y. (157)

Let us choose a configuration with mx = 0 and my = m(y)
is a shifted step function which goes from a negative value
to a positive value at y = 0. It is well known [93] that this
Hamiltonian has an exponentially localized zero mode at the
domain wall of m(y) given by

ψ = e− ∫ y

0 m(y ′)dy ′ 1√
2

(
1
1

)
, (158)

when the mass jumps from negative to positive as y increases.
On a periodic edge, m(y) will have to have two domain walls
to maintain the proper boundary conditions, and the edge will
have two zero modes, one at each domain wall. These localized
zero modes carry a half charge each. This is the same result
found from Eq. (154). To complete the story in the language
above, the QSH system itself has a nontrivial value of the
Z2 invariant θ = π [3,91]. Thus, its boundary gives a natural
place where θ has a jump from π to 0. The spatial dependence
of the φ parameter is due to the magnetization-induced mass.

We can also generate an adiabatically pumped current. To
see this we can add a slow, time-dependent perturbation to the
edge Hamiltonian,

Hedge(k) = kσ z + m sinφ(t) σy + m cosφ(t) σx, (159)

where φ(t) = 2πt/T . The mass terms are periodic in time
with a period of T . From the original work by Thouless [80]
we know that as φ → φ + 2π an integer amount of charge
will be pumped, in this case just a single electron per cycle.
This is the same current which is reported in Eq. (155).

2. Response of the Dirac semimetal

Now that we have finished the discussion for a single QSH
layer, we are ready to move on to the 3D DSM. We can start
from the QSH Hamiltonian, but we need to modify it to include
tunneling in the z direction due to the coupled layers. The
following model can be used:

HDSM3(k,n̂) = sin kx	
1 + sin ky	

2 + (cos kx + cos ky

+ tz cos kz − 3)	0 + m
∑

a=0,3,4

n̂a	
a. (160)

If the 2D layers are in the QSH phase, then when the tunneling
term tz is weak, the system will be in a WTI phase. As it
becomes stronger, eventually the gap will close at one of the
time-reversal invariant momenta along the kz axis and generate
a pair of Dirac nodes, hence entering the 3D DSM phase. In
a recent work [49] this has been called a Z2 nontrivial Dirac
semimetal. From the previous patterns of the EM response, and
the known response of the QSH insulator, we can immediately
write the response action

S3D = e

2π2

∫
d3xdtεμνρσ bμAν∂ρ�τ (161)

for the 3D DSM, where 2bμ is the energy-momentum
separation of the Dirac nodes. We now have a natural family of
2D Bloch Hamiltonians parametrized by kz Hkz (kx,ky). Each
of the 2D Hamiltonians, for kz not at a Dirac node, represents
at 2D time-reversal invariant insulator and is classified by the
same Z2 invariant as the QSH insulator. As kz passes through
a Dirac node the Z2 invariant jumps from trivial to nontrivial,
or vice versa. Thus, one of the regions of kz between the Dirac
nodes will harbor nontrivial topological QSH insulators and
thus generate edge states. For each kz in the topological range
we have a contribution of one layer of QSH to the total EM
response. This is the meaning of Eq. (161). Reference [49] has
shown that this type of semimetal requires a uniaxial rotation
symmetry to locally stabilize the Dirac nodes. Our model has
such a symmetry (C4 rotation around the z axis) and thus
represents a stableZ2 nontrivial DSM. We leave a more general
symmetry analysis of the EM response to future work.

Let us look at some examples of the physical phenomena
associated with Eq. (161). Just like the case of a single QSH
layer, to get a nontrivial response we need to apply a magnetic
film to a boundary with nontrivial surface states. As shown
in Fig. 20, for Dirac nodes separated in kz we can coat the
xz boundary plane with a magnetic layer. A translationally
invariant magnetic domain wall parallel to the z axis in the
magnetic layer (see Fig. 20) will create a line of low-energy
modes which do not disperse with kz. Thus, for each kz
that contributes a boundary mode we bind a half charge. We
numerically calculated the bound charge at a domain wall as
a function of kz and the result is shown in Fig. 21. In this
figure we see exactly e/2 charge contributed for each value of
kz between the Dirac nodes. For this calculation we used the
mass parameter m = 0.5 and varied φ and θ as functions of y
and x, respectively, according to Eq. (160).

The bound charge response will also occur in a time-reversal
invariant WTI system; however, a new phenomenon which is
not available in the WTI is the generation of a current along the
domain wall in the direction along which the Dirac nodes are
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FIG. 20. (Color online) Setup to generate an EM response in a
3D Dirac semimetal. To get a nonzero response, there must be
two adiabatic parameters θ and φ. The parameter θ represents an
interpolation between a 3D Dirac semimetal with, for example, bz �= 0
to a trivial insulator with bz = 0. The parameter φ represents a
magnetization domain wall on the xz surface plane. There will be
a branch of low-energy fermion modes trapped on the domain wall
which can bind charge or can carry current if b0 �= 0.

separated. This can occur if the Dirac nodes are not at the same
energy, and it is the 3D DSM analog of the CME in WSMs.

We can generate an energy difference, i.e., 2b0, in our
Hamiltonian by adding the term γ sin kzI to the Hamiltonian
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FIG. 21. The localized charge on a magnetic domain wall on the
surface of a 3D DSM resolved vs kz, i.e., the direction in which the
Dirac nodes are separated in momentum space. We note that there is
a half charge bound at the domain wall only for each state satisfying
|kz| < cos−1 m. In the plot, we have used m = 0.5, which means
bz = π
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FIG. 22. (Color online) The total current localized at the mag-
netic domain wall is plotted vs b0 for the 3D DSM. The expected
value of the total current localized on the domain wall is eb0

2π . The
system size is a cube of L = 30 lattice sites in every direction with
bz = π

2 . We used open boundary conditions in both the x,y directions
and periodic boundary conditions in the z direction. The red dots are
the theoretical result and the black line is the numerical result. The
deviation arises due to the importance of lattice effects at larger values
of b0.

in Eq. (160). When we have a magnetic domain wall and a
nonzero b0, the localized domain wall states will disperse with
energyEdw = 2γ sin kz and this leads to a nonzero current. We
calculated this current numerically as shown in Fig. 22. With a
b0 �= 0, the current is being generated due to the dispersion of
the localized edge modes which now have to traverse between
the two Dirac nodes in a continuous fashion. The total current
localized on the domain wall is given by

Jz = eb0

2π2

∫
d2x (∂x�y − ∂y�x)

= eb0

2π2

∫
dθdφ

1

2
sin θ = eb0

2π
, (162)

which matches the numerical calculation well until b0 is
large enough for lattice effects to become important. This
mechanism for current generation is reminiscent of the
orbital magnetization generation due to currents produced by
dispersing edge states in the 2D Dirac semimetal.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have explored the EM responses of
topological semimetals with pointlike Fermi surfaces in
various spatial dimensions. We have seen that, generically,
the quasitopological contribution to the response depends on
a 1-form bμ = (b0,�b), which represents an energy difference
(2b0) and momentum separation (2bi) of the nodes. To study
these systems we first introduced a simple 1D model of a metal,
which illustrated some of the general physical principles as
well as helped to understand some response properties of the
3D WSM in a uniform magnetic field. This approach works
because of the fact that the 1D response is embedded in the
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3D WSM response, similar to the 1D TI charge-polarization
response being embedded in the 3D axion electrodynamic
response [3].

After 1D we then moved on to the case of the 2D
Dirac semimetal which was constructed from layered 1D
TIs that are stacked and coupled together. The gapless Dirac
nodes which occur in this model each have a Chern-Simons
response which, when written in terms of the EM gauge
field, gives a polarization/magnetization which can be defined
for a semimetal and is encoded in the momentum-space
positions and energies of the nodes. In this case, an energy
difference between the nodes led to an edge current (bulk
orbital magnetization) and a momentum separation between
the nodes led to a a boundary charge (bulk polarization).
The T I symmetry ensures that the Dirac nodes are locally
stable and immediately leads to the viable definition of charge
polarization even in this gapless system.

We then moved onto 3D, where we studied the properties
of the WSM and tested the predictions of the continuum field
theory results with some numerical examples. Furthermore,
we showed the precise anomaly cancellation calculation that
connects the surface and bulk degrees of freedom. From there,
the 3D DSM was then analyzed from the perspective that
it is a layered QSH system. The 3D Dirac nodes separate
Z2 trivial regions of momentum space from Z2 nontrivial
regions, and the resultant response follows from the existence
of these nontrivial QSH layers. As such, when a magnetic
film is applied to a boundary with nontrivial surface states, we
get boundary modes, and bound charge, localized on domain
walls of the magnetization. Additionally, a nonzero energy
difference in the 3D Dirac nodes produces a localized current
which runs along the domain wall.

There are several natural areas to pursue from this point.
We have shown that we can understand some topological
semimetals, i.e., those with point Fermi surfaces, by stacking
topological states in one dimension lower. We only considered
the simplest cases in this article, and we have barely scratched
the surface of the different 1D and 2D states that could
be coupled together to form 2D and 3D semimetal states.
Additionally, one could take 1D topological wires and stack
them into planes and then subsequently take those planes
and stack them into 3D to get a secondary WTI, or, if the
interwire coupling is strong enough, a 3D semimetal with
line-node Fermi surfaces. In this case the Lorentz violation
enters as a 2-form bμν that will couple to the EM field via∫
d4xεμνρσ bμνFρσ . In the simplest case, this will give rise

to lines of Dirac nodes which will have a polarization and
magnetization response controlled by bμν.

Along with determining the EM response, the stacking
construction is also useful for discussing the properties of
dislocations in WTIs and topological semimetals [17,96].
Additionally, the general pattern of metal/semimetal responses
is as follows. For a D-dimensional sample, a conventional
Fermi surface is a (D − 1)-dimensional surface in momentum
space. The response of this metal is given by a D-form
bμ1···μD

, which is equivalent to a current via the identification
jα(b) ∼ εαμ1···μDbμ1···μD

. Generically, when the Fermi surface
has dimension D − q (codimension q), then the response
is controlled by a D − q + 1 form. These higher forms are
sure to yield interesting physical predictions and connections

with protected boundary modes. We will explore both of these
directions further in Ref. [72].

Another immediate application of our results is to the bulk
response action of the 3D topological crystalline insulator
protected by mirror symmetry [7,97,98]. It has been shown
that alloys of PbSnTe exhibit a mirror-symmetry protected
topological phase. If we consider the [001] surface, then there
will be four Dirac nodes which all have the same helicity
[97], i.e., in our notation for the 2D Dirac semimetal χa = +1
for a = 1,2,3,4. To define the response, we also need to
know the momentum positions of the Dirac nodes and the
sign of the local mass terms at the Dirac nodes. Since the
four nodes are symmetrically arranged in the surface BZ,
let us parametrize their 2D momenta as �K1 = (K,0), �K2 =
(0,L), �K3 = (−K,0), and �K4 = (0,−L).

The two relevant possibilities for the response coeffi-
cients are the Chern number C1 = 1

2

∑4
a=1 gaχa and �b =

1
2

∑4
a=1 gaχa

�Ka. Since the chiralities are all the same, we

can replace these with C1 = 1
2

∑4
a=1 ga and �b = ∑4

a=1 ga
�Ka ,

where we recall that ga is the sign of the local mass term at
the ath Dirac node. Reference [97] showed that there are four
possibilities for the ga due to inversion-breaking perturbations,
one particular case being g1 = g4 = −g2 = −g3 = 1. For this
set of mass signs C1 = 0 and �b = (−K,L). If we include
the other choices of mass sign, we get the four possibilities
�b = (±K,±L). This is interesting because if the top surface
and bottom surface have different values of �b, then there will
be an interfacial region where the polarization changes and
there will be bound charge proportional to the difference.
Microscopically, this bound charge arises because the domain
wall between the two regions of the surface will bind low-
energy fermion modes. It would be interesting to explore this
further to develop the full response theory, but we will leave
this for future work.

ACKNOWLEDGMENTS

We acknowledge useful conversations with B. A. Bernevig,
G. Y. Cho, V. Chua, V. Dwivedi, and especially O. Parrikar.
We acknowledge support from ONR Award No. N0014-12-1-
0935.

APPENDIX A: TRANSFORMATION FROM A DIRAC
SEMIMETAL ON THE SQUARE LATTICE TO THE

HONEYCOMB LATTICE

In this section, we show that graphene can be thought of
as an array of (1 + 1)-dimensional TI wires. Let us begin with
the 1D TI given by the Bloch Hamiltonian

H (k) = tx(1 + m − cos kxa)σx + tx sin kxa σ
y, (A1)

where tx,m are parameters and a is the lattice constant.
The system is gapped for all values of m except m = 0 or
m = 1. Let us now induce tunneling in the y direction. In the
following, the assumption of y being perpendicular to x is
not needed. We could have this tunneling along an oblique
direction and orthogonality is not required. In this case the
BZ is not a simple square, but it can be a parallelogram.
With hopping in the y direction, consider the modified
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Hamiltonian

H (k) = [tx + txm − tx cos kxa

− tθ cos(kxa cos θ + kya sin θ )]σx

+ [tx sin kxa + t θ sin(kxa cos θ + kya sin θ )]σy,

(A2)

where we have parametrized the y direction by an angle θ with
respect to the initial x axis.

Let us now look at the graphene Hamiltonian. It is given by

HG(k) = −(t1 + t2 cos �k · �a1 + t3 cos �k · �a2)σx

+ (t2 sin �k · �a1 + t3 sin �k · �a2)σy, (A3)

where �a1,2 = √
3a(cos(π/6),± sin(π/6)). For an easier com-

parison, let us rotate this system in the counterclockwise
direction in real space by an angle π/6. The two lattice vectors
are now given by �a1 = √

3a(cos(π/3), sin(π/3)) and �a2 =√
3a (1,0). Labeling

√
3a = b, we reduce the Hamiltonian to

HG(k) = −[t1 + t2 cos(kxb cosπ/3 + kyb sinπ/3)

+ t3 cos kxb]σx + [t3 sin kxb

+ t2 sin(kxb cosπ/3 + kyb sinπ/3)]σy. (A4)

We note that the Hamiltonians in Eqs. (A4) and (A2) are
the same with the following identifications. t1 → −(tx + txm),
t2 → tθ , t3 → tx with the additional constraint tθ = t θ .

Let us now set all parameters in our model (A2) to 1 except
for t θ . From our previous statement we know that this will be
exactly the same as graphene when t θ = tθ = 1. We want to
show that the effect of deforming t θ away from this point is
to move the Dirac nodes around in the BZ. Let us look at the
gapless points of our model which are the solutions to

sin(kxa) + t θ sin(kxa cos θ + kya sin θ ) = 0, (A5)

cos(kxa) + cos(kxa cos θ + kya sin θ ) = 1 + m. (A6)

In the limit that t θ = 1, we have (±1
a

cos−1( 1+m
2 ),

∓(1+cos θ)
a sin θ cos−1( 1+m

2 )) as the gapless points. On the other hand,
if t θ = 0, we have (0,± cos−1(m)) as the gapless points. As
long as |1 + m| < 2, and 0 � t θ � 1, we get two gapless points
in the spectrum but their location depends generically on the
model parameters. In this paper, we always use the model in
Eq. (A2) in the limit of tx = 1, tθ = 1, t θ = 0 for describing
Dirac semimetal physics with two bands.

APPENDIX B: EXACT SOLUTION FOR BOUNDARY
STATES IN TOPOLOGICAL SEMIMETAL

LATTICE MODELS

In this Appendix we study the edge states of the various
topological semimetal lattice models. The solution can be
found analytically for the Dirac-type models we have been
using following the results of Refs. [23,99]. We begin by
solving for the edge states of the two-band lattice Dirac model,
i.e., the minimal model for (1 + 1)- and (2 + 1)-dimensional
TIs. We then go on to modify these models to form Dirac and
WSM states and solve for their boundary modes.

1. Exact solution for edge states of the lattice Dirac model

Consider the model given by

H = ε(k)I2×2 + da(k)σa,

da(k) = (A sin(k1),d2(k2),M(k)), (B1)

M(k) = M − 2B[2 − cos(k1) − cos(k2)],

where d2(k2) is an unspecified, but odd, function of k2 and
A,B,M are model parameters. Let us fix the sign of A > 0
and B > 0. Additionally, we assume that ε(k) = 0 for now,
but we add it back in later. Note that with ε(k) = 0 and
d2(k2) = −d2(−k2) the model is particle-hole symmetric with
the symmetry operator C = σx ; it is also inversion symmetric
with I = σ z. The energy eigenvalues are given by

E± = ±
√
dada

= ±
√
A2 sin2(k1) + d2

2 (k2) + M2(k). (B2)

This spectrum is a gapped insulator as long as
√
dada �= 0.

One gapless critical point of this model occurs when k1 =
k2 = M = 0 and for M < 0 (M > 0) the model is in a trivial
(topological) insulator phase.

When the system is tuned to the nontrivial phase there
are gapless edge states which can be shown explicitly in a
finite strip geometry or a cylinder geometry. Let us assume
that the system has boundaries at x1 = 0,L and is infinite in
the x2 direction. Since we have an inhomogeneous system
with open boundaries, we need to Fourier transform the Bloch
Hamiltonian back from k1 to x1 via the substitution

c�k = 1√
L

∑
j

eik1x1(j )ck2,j . (B3)

This reduces the Hamiltonian to

H =
∑
k2,j

(
Mc

†
k2,j

ck2,j + T c†k2,j
ck2,j+1 + T †c†k2,j+1ck2,j

)
,

M = A sin(k2)σ 2 − 2B

[
2 − M

2B
− cos(k2)

]
σ 3, (B4)

T = iA

2
σ 1 + Bσ 3.

Since we are interested in the exponentially localized edge
states, we focus on a solution ansatz of the form

ψα(j ) = λjφα, (B5)

where λ is a complex number, j is the site index in the x1

direction, and φα is a two-component spinor with α = 1,2. We
first look for a solution at k2 = 0, and since the Hamiltonian
is particle-hole symmetric, the midgap edge state for this
momentum will occur at E = 0. Acting with the Hamiltonian
at k2 = 0 on our ansatz yields the equation[

iA

2
(λ−1 − λ)σ 1 + B(λ + λ−1)σ 3 + M(0)σ 3

]
φ = 0.

Multiplying this equation on both sides by σ 3 gives us

A

2
(λ−1 − λ)(iσ 3σ 1)φ = −[B(λ + λ−1) + M(0)]φ. (B6)
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The operator iσ 3σ 1 has eigenvalues ±1. First consider
iσ 3σ 1φ = −φ, under which Eq. (B6) becomes a quadratic
equation in λ, which can be solved to find

λ(1,2) = −M(0) ±
√
M2(0) + (A2 − 4B2)

A + 2B
. (B7)

Thus, from the quadratic equation we have two λ solutions for
the −1 eigenvalue (chirality) of iσ 3σ 1. For every solution λ

we find that λ−1 is a solution for iσ 3σ 1φ = +φ, and thus for
each eigenvalue of iσ 3σ 1 there are two possible values of λ.
Let us label the eigenstates of iσ 3σ 1 as φ± corresponding to
the chiralities. The most general edge state can by written as

ψj (k2 = 0) = (
aλ

j

(1) + bλ
j

(2)

)
φ+ + (

cλ
−j

(1) + dλ
−j

(2)

)
φ−,

(B8)
but to satisfy open boundary conditions we must have a = −b

and c = −d since φ± are linearly independent. Additionally,
since the mode must be normalizable, we can only keep
positive or negative powers ofλ and thus only one normalizable
mode exists (on each edge) as long as the λ do not lie on
the unit circle, i.e., |λ(1,2)| �= 1. If |λ(1,2)| = 1 an edge-state
solution does not exist at all. We also note that solutions with
eigenvalues λ and λ−1 are localized on opposite edges of the
system based on the form of Eq. (B8).

Now let us generalize this solution for k2 �= 0. We see that
the term cos(k2) simply acts as a shift of the parameter M and
can be easily accounted for. We also see that [iσ 3σ 1,σ 2] =
0 and clearly [iσ 3σ 1,I2×2] = [σ 2,I2×2] = 0. So the terms
d2(k2)σ 2 and ε(k2)I2×2 can simply be included as k2-dependent
shifts of the energy. These terms change the energy dispersion
of the edge states, but the eigenstates remain the same. The
energy for the edge state for any k2 is given by

E±(k2) = ε(k2) ∓ d2(k2). (B9)

Importantly, this dispersion does not hold across the entire k2

BZ because there will exist some values of k2 where the values
of λ coming from a solution of

λ(1,2)(k2) = −m(k2,M) ±
√
m(k2,M)2 + (A2 − 4B2)

A + 2B
,

m(k2,M) = −2B[2 − M/2B − cos(k2)], (B10)

do not yield normalizable modes. For the edge states to be
normalizable, we have to satisfy the condition that |λ(1,2)| �= 1,
which can be reduced to

−2B < m(k2,M) < 2B (B11)

for each k2. The special points in k2 space where the inequali-
ties become equalities are places in the energy spectrum where
the edge states merge with the delocalized bulk states. Beyond
these special values of k2 the edge states no longer exist.
This result, which consists of the dispersion, wave functions,
and conditions for normalizability, represents the full analytic
solution of the lattice edge states.

2. Edge theory for two-dimensional semimetal

Based on the solution for the two-band Dirac model we
can immediately adapt it to the case of topological semimetal
states with minor modifications. First, let us consider the (2 +
1)-dimensional Dirac semimetal including the possibility of

the inversion-breaking (mA) and time-reversal-breaking (mB)
mass terms discussed in Sec. III. The Hamiltonian takes the
form

H = ε(k)I2×2 + da(k)σa,

da(k) = (A sin k1,mA + mB sin k2,M(k)),

M(k) = M − 2B[1 − cos k1 − cos k2],

ε(k) = γ sin(k2).

Depending on the values of M and B, this Hamiltonian can
have Dirac nodes at (0,±k0) where k0 = cos−1(−M/2B). For
a cylinder geometry with open boundary in the x1 direction and
periodic boundary conditions in the x2 direction, this model
will have edge states when the Dirac nodes exist. The edge
states will occur between the Dirac nodes, but depending on
the values of M and B they either stretch between the nodes
within the BZ or across the BZ boundaries. For a choice such
that they stretch within the BZ, the energies of the edge-state
branches on the two edges are given by

E± = γ sin(k2) ∓ |mA + mB sin(k2)| |k2| < k0. (B12)

The restriction on the range of k2 arises from a modified
condition on normalizability through the relation

−2B < m(k2,M) < 2B,
(B13)

m(k2,M) = −2B[1 − M/2B − cos(k2)].

We can observe several interesting details from Eq. (B12).
First we see that if we let mA = γ = 0 but mB �= 0, then
the dispersion matches that of the edge states of the (2 + 1)-
dimensional Chern insulator [28], as it must since the mB

term is exactly the mass term required to convert a 2D Dirac
semimetal into a Chern insulator. If only mA is nonzero and
mB = γ = 0, then we get two flat bands, one band on each
edge. Finally, if we have γ �= 0 and mA �= 0 but mB = 0,
then the two flat bands from the previous case will each
disperse, and at half filling there will be bound currents on each
edge that, in the limit mB → 0 give rise to the magnetization
discussed in Sec. III. This matches our expectation because
if M and B are tuned to values where k0 �= 0, as we have
assumed, then for nonzero γ there will be an energy difference
between the two Dirac nodes given by 
E = 2|γ sin k0|.

3. Edge theory in the case of the Weyl semimetal

The WSM also has a Hamiltonian which is given by the
form of Eq. (B1) where

H = ε(k2,k3)I2×2 + da(k)σa,

da(k) = (A sin k1,A sin k2,M(k)),

M(k) = M − 2B[2 − cos k1 − cos k2 − cos k3],

where we can let ε(k) be a generic function of k2,k3. This
Hamiltonian has two gapless Weyl nodes for |M/2B| < 1
at (k1,k2,k3) = (0,0,±k0) where k0 = cos−1(−M/2B). Let us
assume again that our system has boundaries at x1 = 0,L and
that it is periodic in the other two directions. The main change
between this case and the previous ones is that the condition for
existence of these edge states at each momentum gets modified
because the mass m(k,M) is now parametrized by k2 and k3.
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The new normalizability condition that must be satisfied is
given by

−2B < m(k,M) < 2B,
(B14)

m(k,M) = −2B[2 − M/2B − cos k2 − cos k3].

The edge-state energies in this case are given by E± =
ε(k2,k3) ∓ |A sin k2|.

Let us consider a simple case first where ε(k) ≡ 0. We
want to consider the structure of the boundary modes on a
surface with the normal vector in the x direction and the surface
BZ in the (k2,k3) plane. If we set the chemical potential to
zero, we see that there exist Fermi arcs in this plane when
E± = ∓|A sin k2| = 0, which allows for k2 = 0,π and does
not explicitly depend on k3. The correct value of k2 depends on
the particular choice ofM andB, so, without loss of generality,
let us choose k2 = 0. The boundary-state existence condition
of Eq. (B14), which does depend on k3, can be simplified to
give us the condition that boundary states are only present
when |k3| < k0. Thus, for this case there exist Fermi arcs that
are straight lines which go from (k2,k3) = (0,−k0) to (k2,k3) =
(0,k0) in the surface BZ.

To get more nontrivial Fermi-arc shapes, inversion sym-
metry needs to be broken to lift the degeneracy between
the arcs on the two edges. Let us consider the Hamiltonian
given by (B14) with ε(k) = γ sin k3. The energy is given by
E± = γ sin k3 ∓ |A sin k2|. With the chemical potential again
set at μ = 0 and, for example γ = A/2, we see that the points
in the Fermi arc must satisfy sin k3 = ±2 sin k2 and Eq. (B14).
The solutions to these constraints are complicated functions of
(k2,k3) and must, in general, be solved numerically.

4. Tunneling between edge states

In this section, we use our model of the boundary states
for the topological semimetals to study properties at inter-
faces between semimetals with different Lorentz-violating
parameters, and thus different boundary-state structures. Let
us consider the interface between two, semi-infinite 2D DSMs
first. Assume that the interface is at x = 0, with parameters for
x � 0 given byA,B,M,γ and for x > 0 given byA′,B ′,M ′,γ ′.

The lattice Hamiltonian for x � 0 is given by

H =
⎡
⎣ j=−1∑
j,k2=−∞

Hj (k2)

⎤
⎦ + Mc

†
0,k2

c0,k2

+ T c†0,k2
c1,k2 + T †c†1,k2

c0,k2 , (B15)

where Hj is the lattice Hamiltonian we have been previously
using. To be specific,

M = γ sin k2I + (mA + mB sin k2)σ 2

− 2B

[
1 − M

2B
− cos k2

]
σ 3, (B16)

T = iA

2
σ 1 + Bσ 3.

The Hamiltonian for x > 0 has a similar form, just with
different parameters. We notice that there is a natural hopping
term to connect the two systems. The matrix element for

tunneling from site 0 to site 1 is T † and the matrix element for
tunneling from site 1 to site 0 is T .

Assume that the edge states are of chiralities c,c′ which
take on the values +1,−1. The chirality of the state is simply
defined as its eigenvalue under the iσ 3σ 1 matrix discussed in
the previous section. The states on the left edge and right edge
are given by φc,φc′ , respectively. The Hamiltonian in the edge
subspace is given by

H =
(〈φc|M|φc〉 〈φc|T |φc′ 〉

〈φc′ |T †|φc〉 〈φc′ |M′|φc′ 〉
)
. (B17)

We can evaluate the matrix elements in each case
by using the fact that |φ±〉 are eigenstates of −σ 2.
When the chiralities are opposite, i.e., cc′ < 0, we have
〈φ±|M|φ±〉 = γ sin k2 ∓ (mA + mB sin k2), 〈φ+|T |φ−〉 =
〈φ+|T |φ−〉† = B − A/2. Off-diagonal terms turn out to be
zero if cc′ > 0, i.e., we have 〈φ+|T |φ+〉 = 〈φ−|T |φ−〉 = 0.
So, in the case of cc′ > 0, which is to say we have the same chi-
rality for the edge states, the tunneling Hamiltonian is given by

H = γ + γ ′

2
sin k2I ±

[
mA +

(
mB + γ − γ ′

2

)
sin k2

]
σ 3.

(B18)

We see that the edges do not mix and are only completely
gapped when the inversion symmetry is broken (i.e., mA

nonzero). When they are of opposite chiralities, the tunneling
Hamiltonian is given by

H = γ + γ ′

2
sin k2I

±
[
mA +

(
mB + γ − γ ′

2

)
sin k2

]
σ 3 + (B − A/2)σ 1.

(B19)

We see that the term B − A/2 when nonzero acts like a mass
term and gaps the edge out in this case. In the models we
consider, A = 1,B = −1/2 and A − B/2 �= 0. In the case
when the edge modes have the same chirality the ± signs
in Eq. (B18) refer to the chirality itself. In the case when
the edge modes have the opposite chirality the ± signs in
Eq. (B19) refer to whether the left edge has + or − chirality.

An important thing to notice is that M and M ′ do not enter
the edge Hamiltonians; however, it still has an important effect.
The above analysis tells us that the edge modes can gap each
other out when they both exist at the same momentum k2.
However, it is M and M ′ that control where the Dirac nodes
are and therefore the domain of existence of the edge states
in k2. So, those edge states on one edge with a momentum k2

which do not have a counterpart on the other edge will remain
gapless regardless. Thus, the edge states will only be removed
if the domain of existence overlaps in the two systems.

5. Tunneling in Weyl semimetals

Let us start off with the Hamiltonian which is of the same
flavor as before with

M = A sin k2σ
2 − 2B

[
2 − M

2B
− cos k2 − cos k3

]
σ 3,

T = iA

2
σ 1 + Bσ 3. (B20)
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Let us assume that again that we have an edge at x = 0 and
the same setup as the 2D Dirac semimetal. For x � 0 we
have parameters A,B,M and for y > 0 we have parameters
A′,B ′,M ′. Our analysis from the previous section helps us
immensely here. The edge states |φc〉 are again eigenvectors
of −σ 2. The edge Hamiltonian when we have same chiralities
on the two edges is again given by

H = ±A sin k2I. (B21)

On the other hand, when the edge states have opposite
chiralities, the edge Hamiltonian is

H = ±A sin k2σ
3 + (B − A/2)σ 1. (B22)

So, yet again, when the edges have opposite chiralities, the
term B − A/2 acts like a mass term and gaps the modes out.
This is, of course, only valid if the edge states exist at the
same k3. Edge states with a momentum k3 which do not have
a counterpart on the other edge will remain gapless. The ±
signs are related to the same definitions in the previous section.
There could be more complications when a term ε(k2,k3)I is
added to the Hamiltonian. This modifies the surface Fermi arcs
from being straight lines to some other complicated structure.
When this happens, only those states on the surface which are
degenerate at the same momenta k2,k3 gap each other out.

APPENDIX C: K -MATRIX FORMALISM

The action in Eq. (99) can be rewritten as

Seff = e2

4h

∫
d3xKabε

μνρA(a)μ∂νA(b)ρ, (C1)

where Kab = χagaδab. From these independent currents and
gauge fields we can extract the EM response which couples
democratically to each Dirac cone via a 2N -dimensional
“charge” vector tEM = (e,e, . . . ,e,e)T , where e is the electron
charge. The Hall conductivity is then σxy = 1

2h t
T
EMKtEM. We

can also define a valley charge vector tV = (χ1,χ2, . . . ,χ2N )T .
We can define a valley Hall conductivity via σV

xy = 1
h
tTEMKtV ,

which determines the valley current in response to an EM
field. Finally, we can define a valley-valley Hall conductivity
via σVV

xy = 1
2h t

T
V KtV , which determines the amount of valley

current that flows in response to a valley EM field (generated,
for example, by strain).

In general, we may have other interesting types of charge
vectors tS if we have more symmetries, e.g., spin-rotation
symmetry, or point-group symmetries, that correspond to
the quantum numbers carried by the corresponding Dirac
cones. We can define charge and valley Hall conductivities
of those additional quantum numbers by σS

xy = 1
h
tTEMKtS

and σVS
xy = 1

h
tTV KtS. As an example, suppose that we have

translation symmetry in space-time, which gives rise to
conserved momentum and energy. For translation along the
x direction, each Dirac cone has a momentum component
kx(i), leading to a charge vector tx = �(kx(1),k

x
(2), . . . ,k

x
(2N))

T .
We could use this to define the charge polarization along the y
direction as P

y

1 = 1
2h t

T
EMKtx . This can be written in a more

covariant way as P a
1 = 1

2hε
abtTEMKtb and M = 1

2h t
T
EMKtε ,

where tε = �(ε(1),ε(2), . . . ,ε(2N))T .

Let us consider a few explicit examples. The simplest case
is N = 1, where the the Dirac cones are specified, without
loss of generality by (+,P(1),ε1,g1) and (−,P(2),ε2,g2). Up to
global signs, the two possible K matrices are K1 = I and
K2 = σ z. The K matrix K1 (K2) corresponds to the case
of a time-reversal symmetry (inversion symmetry)-breaking
anomalous response. The EM and valley charge vectors for
both K matrices are tEM = (e,e)T and tV = (1,−1)T . For K1

we easily find σxy = e2/h, σV
xy = 0, and σVV

xy = 1/h. For K2

we have σxy = σVV
xy = 0 and σV

xy = e
h
.

Now let us consider translation invariance so that we
can construct a charge vector associated with the energy
and momentum of each Dirac point tx = (k(1)x,k(2)x), ty =
(k(1)y,k(2)y), tε = (ε(1),ε(2)). We can see that the polarization
would be P a

1 = 1
4π ε

ab(k(1)b + k(2)b) when K = I and P a
1 =

e
4π ε

ab(k(1)b − k(2)b) when K = σ z. The magnetization would
be given by M = e

4π (ε(1) − ε(2)) when K = σ z and M =
e

4π (ε(1) + ε(2)) when K = I.
We can also consider a more complicated example with

N = 2 which will have four Dirac cones. As an explicit exam-
ple, take χ1 = χ2 = 1 and χ3 = χ4 = −1. The EM and valley
charge vectors are tEM = (e,e,e,e)T and tV = (1,1,−1,−1).
We can also define two other useful, linearly independent
charge vectors tU = (1,−1,−1,1) and tW = (1,−1,1,−1).
There are 24 = 16 possible K matrices but we only need to
consider eight since the other eight differ by an overall sign.
These eight are

K1 = diag[1,1,1,1], K2 = diag[1,1,−1,−1],

K3 = diag[1,−1,−1,1], K4 = diag[−1,1,−1,1],

K5 = diag[1,1,−1,1], K6 = diag[1,−1,1,1],

K7 = diag[−1,1,1,1], K8 = diag[1,1,1,−1]. (C2)

We can tabulate their (dimensionless) EM responses via
1
2 t

T
EMKtα , where α = EM, V, U, and W. We find⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EM V U W

K1 2 0 0 0
K2 0 2 0 0
K3 0 0 2 0
K4 0 0 0 2
K5 1 1 1 1
K6 1 −1 1 −1
K7 1 −1 −1 1
K8 1 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C3)

We note that while all of these results are simple and
appealing, we must be careful to handle the cases when the
response coefficients have a Z2 nature, i.e., when they are
connected to the charge polarization. As shown in the main
text, handling the possibility of Z2 cancellation can be taken
care of by modifying the product χaga for certain nodes. This
could, in general, give rise to a modified K matrix, but after
that the rest of the formulation would go through. Additionally,
since this formalism was derived from independent continuum
flavors of Dirac fermions, it may be necessary to modify the
sign of certain response coefficients to match the lattice results.
Such a sign may be present, for example, for the charge
polarization. We called this extra factor � in the main text.
We leave a full discussion of these issues to future work.
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