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Cluster-based mean-field and perturbative description of strongly correlated fermion systems:
Application to the one- and two-dimensional Hubbard model
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We introduce a mean-field and a perturbative approach, based on clusters, to describe the ground state of
fermionic strongly correlated systems. In the cluster mean-field approach, the ground-state wave function is
written as a simple tensor product over optimized cluster states. The optimization of the single-particle basis
where the cluster mean field is expressed is crucial in order to obtain high-quality results. The mean-field nature of
the Ansatz allows us to formulate a perturbative approach to account for intercluster correlations; other traditional
many-body strategies can be easily devised in terms of the cluster states. We present benchmark calculations
on the half-filled 1D and (square) 2D Hubbard model, as well as the lightly doped regime in 2D, using cluster
mean-field and second-order perturbation theory. Our results indicate that, with sufficiently large clusters or to
second-order in perturbation theory, a cluster-based approach can provide an accurate description of the Hubbard
model in the considered regimes. Several avenues to improve upon the results presented in this work are discussed.
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I. INTRODUCTION

Despite some substantial recent progress, an accurate
and efficient description of the ground and excited states
of low-dimensional strongly correlated fermionic systems
represents an open problem in condensed matter physics and
quantum chemistry. A common feature in strongly correlated
systems is the collective behavior displayed by fermions in
low-lying states. Accordingly, approaches based on composite
particles have been proposed for treating these systems. One
notorious example is the resonating valence bond as a ground-
state candidate for high-Tc superconductors, as suggested by
Anderson [1].

In this work, we use composite many-fermion cluster states
to describe the ground state of strongly correlated systems.
Here, a cluster is simply a subset of all available single-fermion
states that we group (generally using a criterion of proximity in
real space). We presume that an accurate zero-order description
of the ground state of the full system can be prepared as
a product of cluster states, each being many fermion in
character. Two key aspects in obtaining an accurate description
are (1) the many-fermion state in each cluster is determined
in the presence of other clusters and (2) the single-particle
basis used to determine the grouping into clusters is fully
optimized. This optimization could in principle break the
real space localization criterion but in practice it generally
does not. The resulting cluster mean-field (cMF) state is,
by construction, guaranteed to provide a variational estimate
of the ground-state energy that is lower than Hartree-Fock
(HF), i.e., the standard mean-field of single particles. The
optimization provides not only the optimal cMF state, but
also a renormalized Hamiltonian expressed in terms of cluster
states. Traditional many-body approaches can then be used,
on this renormalized Hamiltonian, to account for the missing
intercluster correlations.

Our work is inspired by McWeeny [2,3], who first con-
sidered the properties of wave functions written as a tensor
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product of the state of several subsystems (or groups), which
are mutually orthogonal. McWeeny realized that the density
matrix of cluster product states can be easily expressed in
terms of the density matrices of the individual clusters. In
related work, Isaev, Ortiz, and Dukelsky [4] considered,
in their hierarchical mean-field (HMF) approach, a similar
Ansatz to ours for the 2D Heisenberg Hamiltonian. We note,
nevertheless, that the generalization to fermionic systems of
the HMF approach used in Ref. [4] is not straightforward if the
full Fock space within each cluster is treated. An attempt was
performed in Ref. [5] to split the Fock space in each cluster
according to its number parity: states with even (odd) parity
where treated as bosonic (fermionic) degrees of freedom. An
Ansatz for the ground state was constructed in Ref. [5] as
a tensor product of the bosonic and fermionic degrees of
freedom; this decoupling, however, may not be justified in
all cases and can potentially result in unphysical states.

Our approach differs from that used in Ref. [4], aside
from the application to fermionic systems, in not requiring the
individual clusters to share the same ground state. That is, the
ground state of each cluster is optimized independently allow-
ing for (translational and spin) symmetry-broken solutions. In
addition, we here consider Rayleigh-Schrödinger perturbation
theory (RS-PT) [6] to second order as a means to obtain a
correlated approach defined in terms of clusters.

A closely related cluster product approach was also
proposed by Li [7]. In that work, the ground state of each
cluster was, nonetheless, not optimized in the presence of
other clusters. The author did, on the other hand, go beyond
perturbation theory into a coupled-cluster Ansatz [so-called
block-correlated coupled cluster (BCCC)] as a way to correlate
the cluster product state. The BCCC approach has been
used with high success in quantum chemistry to describe
strongly correlated molecular systems using either a complete
active-space [8,9] or generalized valence-bond [10] reference
states.

A cluster product state is naturally connected with the tensor
network (TN) techniques that have been gaining popularity
for treating strongly correlated systems [11,12]. In essence,
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the cluster product state is the simplest possible TN, a simple
scalar (the bond or ancillary index dimension is set to 1),
although the elements defining the network are chosen as
cluster states rather than single-particle degrees of freedom as
often done. The consequence of using a scalar product is that
the clusters become disentangled; more general TNs such as
the matrix product states (MPS) used within the density matrix
renormalization group algorithm (DMRG) [13,14] introduce
entanglement in the Ansatz and can provide highly accurate
solutions for strongly correlated systems. The optimization of
TN states beyond the simple MPS is, however, nontrivial and
remains an area of active research [12].

Yet other wave function Ansätze that are related to the clus-
ter product states are the correlator product states (CPS) [15] or
entangled plaquette states (EPS) [16,17]. Here, a variational
Ansatz is expressed in terms of entangled cluster products,
as opposed to a simple uncorrelated product. The price to
pay is that the evaluation of matrix elements becomes more
cumbersome, and it often has to be carried out by stochastic
means (within a variational Monte Carlo framework). We
note that Ref. [18] proposed a nonstochastic algorithm for
optimizing CPS.

At this point, we want to clarify why we have decided to use
simple cluster product states even when more powerful Ansätze
are already available (such as more general TNs or CPS). In
our perspective, the power of a cluster mean-field approach
has not been fully realized. In particular, symmetry breaking
and orbital optimization can partially account for intercluster
correlations (when expressed in terms of the original set of
fermion states). Moreover, the fact that the cluster mean-field
state constitutes the ground state of a mean-field Hamiltonian
of which the full set of eigenstates can be easily constructed
has often been overlooked. This allows us to formulate a
perturbative strategy to introduce the missing intercluster
correlations. Yet more powerful many-body approaches (such
as coupled-cluster theory) can be easily introduced as done by
Li in the BCCC method.

Our objective with this work is thus twofold. First, we
present the cMF formalism as well as provide details of the
RS-PT formulation we use. (We refer to the second-order
perturbative result as cPT2 in the remainder of this paper.) We
describe in some detail the strategy used to optimize the one-
electron basis in which the cMF state is expressed. Our second
objective is to apply these techniques to the simplest paradigm
of strongly-correlated fermionic systems: the Hubbard model
[19] in one (1D) and two dimensions (2D) in a square
lattice. The 1D case is exactly solvable [20], while the 2D
model has been extensively studied. We refer the reader to
Refs. [21,22] for a survey of numerical methods applied to the
2D Hubbard model. We compare our results with second-order
unrestricted Møller-Plesset (UMP2) [23] and unrestricted
coupled cluster with singles and doubles (UCCSD) [24], as
well as with perturbative triples [UCCSD(T)], calculations.
MP2 constitutes second-order RS-PT based on a HF wave
function (using canonical orbital and orbital energies), while
coupled-cluster constitutes a nonperturbative approach that
involves an infinite-order resummation of diagrams. Our
results show that cMF (cPT2) significantly improves upon HF
(MP2) and can provide an accurate description of the ground
state of the Hubbard model.

The remainder of this work is organized as follows. In
Sec. II, we present the formalism behind cMF and cPT2.
Section III provides some practical computational details
regarding the calculations presented in this work. In Sec.
IV, we present the results of cMF and cPT2 calculations for
the half-filled 1D and 2D Hubbard model, as well as for the
lightly-doped 2D regime. A brief discussion following the
results is presented in Sec. V, along with some ideas as to
how to improve the calculations here presented. Lastly, Sec.
VI is devoted to some general conclusions. In Appendix A, we
show higher order perturbation results in a small lattice, while
in Appendix B, we discuss the applicability of cMF to weakly
correlated systems.

II. FORMALISM

A. Hubbard model

In this work, we focus our attention on the Hubbard model
in one- and two-dimensions (in a square lattice). The Hubbard
model [19] describes a collection of electrons in a lattice (of
finite size L) interacting through the Hamiltonian

Ĥ = −t
∑
〈ij〉,σ

(c†i,σ cj,σ + H.c.) + U
∑

i

ni,↑ ni,↓, (1)

where the notation 〈ij 〉 implies interaction only among nearest
neighbors. Here, c

†
i,σ (ci,σ ) creates (annihilates) an electron

with spin σ on site i of the lattice and ni,σ ≡ c
†
i,σ ci,σ . The

Hamiltonian contains one-electron hopping terms and an on-
site repulsion (U > 0) term. The hopping amplitude t is used
to set the energy scale.

B. Cluster mean field

Consider a set of single-fermion states {|k〉, k = 1, . . . ,M},
where M is the size of the basis, that satisfies the appropriate set
of boundary conditions for the system. These single-fermion
states may be different than the ones used to define the
problem; in the case of the Hubbard model, they may be
obtained by a rotation of the lattice (on-site) basis states:

|k〉 ≡ a
†
k|−〉, (2)

a
†
k = R̂ c

†
k R̂−1. (3)

We assume that a
†
k and ak satisfy standard anticommutation

rules (implying orthonormality of {|k〉}). A basis for many-
fermion states can be constructed from properly antisym-
metrized products of such single-fermion states.

Let the single-fermion states be grouped, according to some
criterion (such as proximity in real space), into clusters of
size l1,l2, . . . ln, where n is the number of such clusters. The
Fock space in each cluster can be constructed using the single-
fermion states that define it. Due to the orthogonality of single-
fermion states in different clusters, the Fock space of the full
system is simply given by the tensor product of the Fock spaces
of all clusters.

A second-quantized formulation in terms of cluster product
states can also be established. Let A†

I,c (AI,c) create (annihilate)
the I th many-fermion state in cluster c. This I th state is a linear
combination of many-fermion basis states {|μ〉c} (possibly
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mixing states with different number of fermions) constructed
as antisymmetrized products of the single-fermion states in the
cluster. We formally write

|I 〉c = A
†
I,c|−〉c, (4)

where |−〉c is the vacuum state in cluster c. (We emphasize
here that |−〉c does not correspond to the state with no fermions
in the cluster, but is simply a useful abstract construct.)

An arbitrary state |�〉 in the Fock space of the entire system
can be formed as

|�〉 =
∑

I

∑
J

· · ·
∑
Z

cI1;J2;...;Zn |I 〉1|J 〉2 · · · |Z〉n, (5)

where cI1;J2;...;Zn are linear coefficients. Here, the sum over
I spans the full Fock space in cluster 1, and so on. Each
state in the expansion above constitutes a cluster product state.
Formally, each cluster product state is built as

|I 〉1|J 〉2 · · · |Z〉n ≡ A
†
I,1 A

†
J,2 · · ·A†

Z,n|−〉, (6)

where |−〉 is an abstract vacuum state for the full system.
In this work, we consider a cluster product (mean-field)

state as a variational Ansatz for the ground-state wave function.
That is, the Ansatz |�0〉 for the ground state is given by

|�0〉 = |0〉1|0〉2 · · · |0〉n, (7)

where we have indicated that the ground state (hence the 0
label) in each cluster is used to build the product state. The
optimal cMF state is obtained by a variational minimization
scheme, as outlined in Sec. II D.

Having defined a ground-state cluster product configura-
tion, excited configurations can also be considered. We write
them as

|�Ii〉 = |0〉1 · · · |I 〉i · · · |0〉n, (8)

|�Ii;Jj 〉 = |0〉1 · · · |I 〉i · · · |J 〉j · · · |0〉n, (9)

|�Ii;Jj ;Kk〉 = |0〉1 · · · |I 〉i · · · |J 〉j · · · |K〉k · · · |0〉n, (10)

for singly-, doubly-, and triply-excited clusters. A full con-
figuration expansion can be written in terms of excited
configurations as

|�〉 = c0|�0〉 +
∑

i

∑
I �=0

cIi |�Ii〉

+
∑
i<j

∑
I �=0

∑
J �=0

cIi;Jj |�Ii;Jj 〉 + · · · . (11)

This provides exact eigenstates for the full system.
Before proceeding further, let us comment on the nature of

the cluster product states considered in this work. We indicated
above that the ground state of each cluster is expressed as a
linear combination of the many-fermion basis states in it. That
is,

|0〉c =
∑

μ

d
μ

0,c|μ〉c, (12)

with d
μ

0,c = c〈μ|0〉c, where μ is a compound index of occu-
pation numbers in the subset of single-fermion states of the
cluster. The expansion over states {|μ〉c} can be restricted,

i.e., some of the {dμ

0,c} coefficients may be set to 0. We note
that if a given cluster state is expanded in terms of even- and
odd-number parity (here referring to an even or odd number
of fermions) states, commutation rules between the operators
A

†
I,c and AJ,c′ are not simple, complicating the evaluation of

matrix elements as hinted below. All the calculations included
in this work restrict the expansion of cluster states to a given n↑
and n↓ (or, equivalently, n and ms) sector within the cluster, but
include the full Hilbert subspace with those quantum numbers.
This was done in order for the cluster product state |�0〉 to be
an eigenfunction of N̂↑ and N̂↓.

Consider the determinantal expansion of the full system.
The exact ground-state wave function is expressed as

|�〉 =
∑
μνλ···

cμνλ···|μνλ · · · 〉, (13)

including all possible many-fermion states {|μ〉c} within the
cluster. In cMF, the coefficients in the expansion above are not
independent, but are parametrized according to

cμνλ··· = d
μ

0,1 dν
0,2 dλ

0,3 · · · . (14)

This parametrization permits us to put cMF in the context of
TN states [11,12] and CPS [15–17]. In cMF, the coefficient of
each determinant is parametrized as a scalar product of cluster
states (with compound indices), that is, the cluster product
state has intracluster correlations, but lacks intercluster ones.
This is in contrast to a TN state, where ancillary or bond
indices include explicit entanglement in the Ansatz. While
in cMF the compound indices μ, ν, etc. refer to different
orbital subspaces, CPS use overlapping indices as a means of
introducing entanglement in the Ansatz. The optimization of
TN states and CPS is, nonetheless, more involved than that of
cMF states.

A cMF state constitutes a generalization of a single Slater
determinant, and thus HF can be written as a cMF where
the orbitals are grouped into clusters, as we next describe. It
should be stressed that this is only possible in the optimized
single-particle basis (or a unitary rotation of it that does not
mix particles with holes). The HF state is recovered in different
ways: as a product of two clusters (one fully occupied and
one fully empty), or as a product of M clusters (the holes
being occupied and the particles being empty), or related
constructions.

The model also contains other wave function Ansätze com-
monly used in quantum chemistry such as the antisymmetrized
product of strongly orthogonal geminals (APSG) [25–27].
Here, each cluster would contain two electrons in a subspace
of orbitals that define each geminal. It also encompasses
the multiconfiguration self-consistent-field (MC-SCF) [28,29]
model as well as the complete-active-space (CAS) [30,31]
variant of it. The latter can be considered as a three-cluster
state: the core is fully occupied, the virtual set of orbitals is
fully empty, and the state in the active space is expressed as
an optimized linear combination of all possible many-electron
basis states in the appropriate Hilbert subspace.

C. Matrix elements

We now turn to the evaluation of matrix elements over cMF
states. The (two-body) fermionic Hamiltonian is expressed in
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second-quantized form (in the basis that defines the clusters)
as

Ĥ =
∑
pr

〈p|t̂ |r〉a†
p ar + 1

2

∑
pqrs

〈pq|v̂|rs〉a†
p a†

q as ar , (15)

where 〈p|t̂ |r〉 are one-body and 〈pq|v̂|rs〉 are two-body
integrals. The Hamiltonian can be expressed as a sum of single,
two, three, and four-cluster interactions:

Ĥ =
∑

i

Ĥi +
∑
i<j

Ĥij +
∑

i<j<k

Ĥijk +
∑

i<j<k<l

Ĥijkl . (16)

Here, for instance,

Ĥij =
∑

p∈i,r∈j

(〈p|t̂ |r〉a†
p ar + 〈r|t̂ |p〉a†

r ap)

+ 1

2

∑
pr∈i,qs∈j

〈pq|v̂|rs〉 a†
p a†

q as ar + · · · , (17)

Ĥijkl = 1

2

∑
p ∈ i,q ∈ j,

r ∈ k,s ∈ l

〈pq|v̂|rs〉 a†
p a†

q as ar + · · · . (18)

Given that fermion operators {a†
p,ap} act on specific clus-

ters, the matrix elements can be evaluated straightforwardly if
all the cluster states have a well defined number parity (though
care has to be taken to respect fermionic anticommutation
rules). For instance,

if p ∈ 2 a†
p|�0〉 = ±|0〉1 a†

p|0〉2|0〉3 · · · , (19)

where the sign depends on the number parity of |0〉1. (The
action of a

†
p (ap) on a specific cluster can be easily expressed

in the occupation number basis {|μ〉c} within each cluster.) If
|0〉c is of mixed number parity, the evaluation becomes more
cumbersome. For instance,

if p ∈ 2 a†
p|�0〉 = +|0〉+1 a†

p|0〉2|0〉3 · · ·
−|0〉−1 a†

p|0〉2|0〉3 · · · , (20)

where |0〉+1 denotes the even-number parity projection out of
|0〉1, i.e., |0〉+1 ≡ |+〉〈+|0〉1.

We close this section by noting that, if the ground state in
each cluster preserves number parity, then expectation values
of single-fermion operators (such as c〈0|a†

p|0〉c, for p ∈ c)
vanish. This further implies that all three- and four-cluster
interactions vanish in 〈�0|Ĥ |�0〉. If the number of fermion
states within each cluster is fixed, then the expectation value
〈�0|Ĥ |�0〉 can be fully expressed in terms of the one- and
two-particle reduced density matrices within each cluster, as
first noted by McWeeny [2]. [Note that this implies that the
cost of evaluating the energy of a cMF state scales as O(n2),
where n is the number of clusters used.]

D. cMF optimization

In this section, we discuss how the cMF state is optimized,
that is, how the ground state |0〉c in each cluster c is determined.
We use a diagonalization strategy akin to that used in HF or
multiconfiguration self-consistent-field (MC-SCF) methods.

The optimal set of coefficients {dμ

0,c} cf. Eq. (12) can be
found by minimization of the energy subject to the constraint
that the state |0〉c remains normalized:

∂

∂d
μ∗
0,c

〈�0|Ĥ |�0〉 − ε0,cd
μ

0,c = 0, (21)

where ε0,c is introduced as a Lagrange multiplier. The above
equation can be cast as an eigenvalue equation that, at the same
time, defines a zero-order Hamiltonian Ĥ 0

c within the cluster,
i.e.,

Ĥ 0
c d

μ

0,c ≡ ∂

∂d
μ∗
0,c

〈�0|Ĥ |�0〉. (22)

The ground state of the cluster Hamiltonian is obtained as
its lowest energy eigenvector. (Note that this also gives ε0,c

the physical meaning of the energy in cluster c.) The cluster
Hamiltonian can be found trivially. As an example, if all cluster
ground states {|0〉c} have a fixed number of fermions, Ĥ 0

c is
given by

Ĥ 0
c =

∑
pr∈c

〈p|t̂ |r〉a†
p ar + 1

2

∑
pqrs∈c

〈pq|v̂|rs〉a†
p a†

q as ar

+
∑
pr∈c

a†
p ar

∑
c′ �=c

∑
qs∈c′

ρc′
sq(〈pq|v̂|rs〉 − 〈pq|v̂|sr〉).

(23)

Here, ρc′
sq = c′ 〈0|a†

q as |0〉c′ is the one-particle density matrix

in cluster c′. Because the cluster Hamiltonian Ĥ 0
c depends

on the ground state density matrices of other clusters, the
equations must be solved self-consistently. This represents
a generalization of the MC-SCF method, where there are
several active subspaces (the clusters) each with its own
multiconfigurational expansion.

E. Orbital optimization

As discussed in the introduction, in order to realize the
full capability of cMF states it is necessary to include the
optimization of the single-fermion basis in which the grouping
into clusters is defined, which we refer to as an orbital
optimization. Otherwise, a cMF state may yield an energy
that is even above HF, despite having significantly more
flexibility in the Ansatz. We describe in this section how
this is accomplished in our work. We note that the orbital
optimization in cMF states is akin to the same process
performed in traditional MC-SCF (and CAS, by extension)
calculations in quantum chemistry.

Given the single-particle basis {|k〉} in which the cMF state
is constructed, we aim to rotate this to a new basis {|k̄〉} in
order to lower the energy. We relate the two basis by a unitary
transformation (parametrized as the exponential of an anti-
Hermitian operator),

ā
†
k = exp(κ̂) ak exp(−κ̂), (24)

κ̂ =
∑
p<q

(κpq a†
p aq − H.c.). (25)
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In particular, we define an energy functional

E[κ] = 〈�0| exp(−κ̂) Ĥ exp(κ̂)|�0〉, (26)

where the (complex) elements {κpq} serve as variational
parameters.

With the optimized cMF state |�0〉 at hand, we can compute
the gradient with respect to orbital rotations at κ = 0 (i.e., the
gradient evaluated at zero rotation) as

Gpq ≡ ∂E

∂κ∗
pq

∣∣∣∣∣
κ=0

= −〈�0|[Ĥ ,a†
q ap]|�0〉. (27)

Similarly, the Hessian can be constructed as

H =
(

A B
B∗ A∗

)
, (28)

with

Apq,rs ≡ ∂2E

∂κ∗
ij ∂κkl

∣∣∣∣∣
κ=0

= −1

2
〈�0|[[Ĥ ,a†

q ap],a†
r as]|�0〉

+ q,p ↔ r,s, (29)

Bpq,rs ≡ ∂2E

∂κ∗
pq ∂κ∗

rs

∣∣∣∣∣
κ=0

= +1

2
〈�0|[[Ĥ ,a†

q ap],a†
s ar ]|�0〉

+ q,p ↔ s,r. (30)

The gradient (and Hessian) can be used to find a direction
of energy lowering with respect to orbital rotations. Several
comments are in order. (1) The energy and Hessian can be
evaluated following the strategy described in Sec. II C for the
evaluation of matrix elements. It can be shown that the cost
of building the full gradient and Hessian scales as O(n3) and
O(n4), respectively, where n is the number of clusters in the
system.

(2) Once a direction of energy lowering is found (defining
a nonzero κ), we perform a finite rotation (ακ , α > 0)
of the Hamiltonian integrals. The energy functional is re-
parametrized with respect to orbital rotations in terms of the
new single-particle basis.

(3) The above strategy (re-parametrizing the energy func-
tional at each step) is necessary as the evaluation of the orbital
gradient (and Hessian) is not as simple when κ �= 0. This also
prevents us from using a quasi-Newton strategy to perform the
orbital optimization.

(4) Care has to be taken of handling linear dependencies
between the orbital rotations and the coefficients in each cluster
expansion. For instance, if a cluster state |0〉c is expanded in
terms of a full Hilbert (or Fock) subspace, then orbital rotations
within the subset of orbitals that define the cluster c do not
lower the energy.

In this work, as we use a full Hilbert subspace to describe
each cluster, the orbital gradient and Hessian for intracluster
rotations are not considered as degrees of freedom.

F. Perturbation theory

In standard RS-PT [6], we aim to solve for the eigenstates
of the Hamiltonian Ĥ given the simpler Hamiltonian Ĥ 0, for
which all eigenstates are known. In RS-PT, the second-order
correction to the ground-state energy is evaluated as

E(2) =
∑
μ �=0

|V0μ|2
ε0 − εμ

, (31)

where V̂ = Ĥ − Ĥ 0 and V0μ = 〈�0|V̂ |μ〉. Here, μ labels the
eigenstates of Ĥ0 and εμ are the corresponding eigenvalues.

The cMF state, as outlined in Sec. II D, provides a natural
zeroth order Hamiltonian of which all eigenstates can be easily
constructed. This is expressed as a direct sum of the zero-order
Hamiltonians of each cluster:

Ĥ 0 = Ĥ 0
1 + Ĥ 0

2 + · · · . (32)

The eigenstates of such Hamiltonian are given by

Ĥ 0|I 〉1|J 〉2 · · · |Z〉n, = εI1;J2;··· ;Zn|I 〉1|J 〉2 · · · |Z〉n (33)

εI1;J2;··· ;Zn = ε1,I + ε2,J + · · · + εn,Z. (34)

As described in Sec. II C, Ĥ has up to four-cluster
interactions, while Ĥ 0 is, by construction, single-cluster in
character. If a full Hilbert subspace in each cluster is used,
matrix elements between the ground state |�0〉 and singly
excited (cluster) configurations vanish due to a generalized-
Brillouin condition. Therefore, only two, three, and four-
cluster interactions contribute to the second-order energy. The
evaluation of the corresponding matrix elements can be carried
out in a similar fashion as the evaluation of 〈�0|Ĥ |�0〉.
Naturally, computing the four-cluster interactions is the most
expensive step in evaluating the second-order energy, with a
computational scaling of O(n4) in the number of clusters.

As described in Sec. II B, in this work, we have chosen to
use cluster ground states which preserve the number of ↑ and
↓ electrons. In that case, several two, three, and four-cluster
interaction channels can be identified in the Hamiltonian, as
summarized in Table I. The cMF ground state |�0〉 interacts
with excited cluster configurations following these channels.

At this point, we clarify that in this work the zeroth order
cluster Hamiltonian is used, without any modification, to
generate the full Fock space within the cluster. It is possible to
tweak the definition of the noninteracting Hamiltonian (e.g.,
by adding a level shift) in specific Hilbert space subsectors in
order to improve the convergence properties of the perturbation
series.

III. COMPUTATIONAL DETAILS

The cMF and cPT2 calculations presented in this work
were carried out with a locally prepared code. Most of the
results use an unrestricted cMF (U-cMF) formalism, where
↑ orbitals are allowed to have a different spatial distribution
than ↓ ones. Some of the results in 1D lattices use a restricted
(R-cMF) formalism, where the spatial distribution is required
to be the same. Real orbitals are used in both cases. In all the
calculations, we use the same number of ↑ and ↓ orbitals in
each cluster, which we denote as l and refer to as the size of the

085101-5
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TABLE I. Summary of two-, three-, and four-cluster interaction channels between states with well defined n↑ and n↓. A sample two-body
interaction is provided for each channel.

# clusters typea sample interactionb restrictions

2 one-electron CT a†
p,σ a

†
q,σ ′ as,σ ′ ar,σ pqs ∈ i, r ∈ j

2 two-electron, opp spin, CT a†
p,σ a

†
q,−σ as,−σ ar,σ pq ∈ i, sr ∈ j

2 two-electron, same spin, CT a†
p,σ a†

q,σ as,σ ar,σ pq ∈ i, sr ∈ j

2 two-cluster spin flip a†
p,σ a

†
q,−σ as,−σ ar,σ ps ∈ i, qr ∈ j

2 two-cluster dispersion a†
p,σ a

†
q,σ ′ as,σ ′ ar,σ pr ∈ i, qs ∈ j

3 two-electron, opp spin, CT a†
p,σ a

†
q,−σ as,−σ ar,σ pq ∈ i, s ∈ j , r ∈ k

3 two-electron, same spin, CT a†
p,σ a†

q,σ as,σ ar,σ pq ∈ i, s ∈ j , r ∈ k

3 single-cluster spin flip + one-el CT a†
p,σ a

†
q,−σ as,−σ ar,σ ps ∈ i, q ∈ j , r ∈ k

3 one-electron CT + dispersion a†
p,σ a

†
q,σ ′ as,σ ′ ar,σ pr ∈ i, q ∈ j , s ∈ k

4 two-electron scattering a†
p,σ a

†
q,σ ′ as,σ ′ ar,σ p ∈ i, q ∈ j , s ∈ k, r ∈ l

aCT denotes charge transfer.
bOnly two-body interactions are shown. Here, a generic two-fermion interaction takes the form a†

p,σ a
†
q,σ ′ as,σ ′ ar,σ , with σ ′ = σ or −σ .

cluster. The number of ↑ and ↓ electrons in each cluster was
held fixed (thus preserving n and ms within each cluster).1

Although not enforced from the outset, R-cMF calculations
resulted in spin singlet eigenstates within each cluster.

The full relevant ms sector of Hilbert space within each
cluster was used in constructing the cluster ground state
|0〉c. For small cluster sizes, the ground state in each cluster
was found by a standard diagonalization of the local cluster
Hamiltonian. For larger cluster sizes, a Lanczos [32] or a
Jacobi-Davidson [33,34] algorithm was used to solve for the
ground state.

The orbital optimization was carried out using a Newton-
Raphson. approach. Namely, after optimizing the cluster
mean-field state, a Newton step was taken in the direction
of energy lowering (using the orbital gradient and Hessian).
A finite rotation provided a new single-particle basis in which
the cluster mean-field was reoptimized. These two steps were
alternated until convergence was achieved in both the cMF
state and the orbitals. This is akin to the most common
methods of optimizing MC-SCF wave functions in quantum
chemistry [35–37]. We note that a full Newton-Raphson
approach (with the mean-field and the orbital optimization
carried out concomitantly) should be preferred [38], but we
have not used it in this work.2 A globally convergent algorithm
was used to guarantee that the variational cMF energy is
reduced in each orbital optimization step. As described in detail
below, for 2D lattices, several local minima can be found in
the orbital optimization process. We have not attempted to use
an algorithm to locate the global minimum.

1Some exploratory calculations were carried out using the full Fock
space within each cluster. For half-filled systems in the on-site basis,
the additional flexibility in the Ansatz does not result in a lower
variational estimate of the ground-state energy. This, however, may
not be true for doped systems, or if a full orbital optimization is
carried out.

2The alternating optimization strategy adopted may have poor
convergence if the coefficients in the cluster mean-field state couple
strongly to the orbital optimization degrees of freedom. This problem
was indeed encountered for certain systems at low U/t .

In U-cPT2 calculations, all relevant cluster states were used
in computing the second-order energy for small cluster sizes
(l = 2 and 3). For l = 4 and 5, the four-cluster contributions
were computed using only 16 states in each Hilbert subspace
of a cluster, while two- and three-tile contributions used
all available states. In l = 6 calculations, we truncated the
number of states in each Hilbert subspace in three- (four)-tile
interactions to 64 (16), while no truncation was done in
computing two-tile interactions. An energy-based criterion for
the cluster states was used to carry out the truncation. We
should point out that the second-order energy appears to be
converged in all cases with respect to the number of states
included.

UCCSD and UCCSD(T) calculations were carried out
using the MRCC code of Kállay and co-workers [39,40]. Exact
solutions to the 1D Hubbard lattice were obtained by solving
the Lieb-Wu [20] equations.

IV. RESULTS

In this section, we present results of cMF and cPT2
calculations on the 1D and 2D Hubbard models. We start
by providing an illustrative example in Sec. IV A, where we
get into some practical details regarding the optimization of
cMF states and the way in which other results are presented.
In Sec. IV B, we consider the 1D half-filled case, for which
exact solutions are available. We then proceed to study the
2D half-filled case in Sec. IV C, and finally consider the
lightly-doped 2D case in Sec. IV D. Our 2D results are
compared to highly accurate numerical estimates from Refs.
[22,41].

A. Illustrative example

In this section, we discuss some practical aspects regarding
the optimization of cMF states. In this way, we hope that the
results presented in subsequent sections will become more
transparent to the reader. We consider a 12-site Hubbard
1D periodic lattice at half-filling and U/t = 4. For U-cMF
calculations, we typically start from an unrestricted HF (UHF)
solution; we take the resulting orbitals and perform a Boys
localization [42]. Figure 1 displays, in the top-left scheme,
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guess orbitals
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4

optimized orbitals
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FIG. 1. (Color online) In the top schemes we show an initial guess (left) and optimized (right) spin orbitals that define a single cluster in an
U-cMF calculation (12-site half-filled periodic 1D lattice, U/t = 4) using clusters of two ↑ and two ↓ orbitals with one ↑ and one ↓ electrons.
Orbitals are depicted (one per row) in the 12-site lattice (marked by small + signs) using the following conventions: ↑ (↓) orbitals are plotted
in blue (red); filled (empty) circles indicate a positive (negative) orbital coefficient; the area enclosed by the circle is proportional to |φ(j )|.
The guess orbitals (left) correspond to Boys-localized orbitals of the UHF solution (orbitals 1 and 2 are occupied; 3 and 4 are empty). The
U-cMF optimized orbitals (right) displayed are those that diagonalize the ↑ and ↓ one-particle reduced density matrix, with orbitals 1 and 2 (3
and 4) having occupation of 0.9 (0.1). Note that the orbitals remain fairly local in character within a subset of two lattice sites. Accordingly,
the bottom scheme shows a simplified representation of the optimized solution expressed in the on-site basis. This is characterized by local
dimer-like structures, which we connect by a solid blue line.

(localized) occupied and virtual spin orbitals mostly tied to
two sites, which are then used to define a cluster of two ↑ and
two ↓ orbitals in which a single electron of each spin is placed.
The optimized state in the cluster is expressed as a linear
combination of the four possible resulting configurations.

After setting the initial orbitals and the corresponding tiling
scheme (i.e., defining how orbitals and electrons are grouped
into clusters), the cluster mean-field state is optimized by
a self-consistent diagonalization of the appropriate cluster
Hamiltonians. The orbital gradient (and possibly the Hessian)
is then evaluated which determines how orbitals in different
clusters should be mixed in order to lower the energy. A
new orbital basis is defined by, e.g., a steepest-descent step,
and the cluster mean-field step is reoptimized in such basis.
The process is repeated until convergence is reached in both
the orbitals and the mean-field state. The top-right scheme
in Fig. 1 shows the converged orbitals that define a single
cluster in the calculation. In particular, the orbitals displayed
are the natural orbitals (those that diagonalize the ↑- and
↓- one-particle reduced density matrix) mostly tied to the
original two sites. The orbitals defining the cluster remain
well localized in two lattice sites (although there is a noticeable
spread into neighboring sites which becomes more pronounced
at lower U/t). This allows us to, for simplicity purposes,
characterize the optimized solution in terms of a tiling scheme
in the on-site basis (see bottom of the figure), although we
emphasize that this is only approximate. In this case, the
structure is defined by local dimers which are spin polarized
(with a nonzero magnetization in each site) to yield an overall
Néel-like configuration.

B. 1D: half-filling

We start by considering the half-filled 1D periodic case.
All calculations in this section, unless explicitly stated, were
performed in a periodic lattice with L = 120 sites, which
we deem large enough to provide near-thermodynamic limit
results for U/t � 1. Only uniform tiling schemes were
considered; clusters were defined in terms of a continuous
set of l lattice sites, each filled with l/2 electrons (for even

l). For U-cMF calculations with odd l, we have adopted a
staggered configuration: if a cluster of size l has (l + 1)/2
↑ electrons and (l − 1)/2 ↓ electrons, its neighbors have
(l + 1)/2 ↓ electrons and (l − 1)/2 ↑ electrons, respectively.
As described in Sec. IV A, some spreading of the orbitals
into neighboring sites is observed, particularly at low U/t .
We note that broken-symmetry U-cMF solutions maintain the
overall Néel-like structure observed in UHF, that is, a nonzero
magnetization develops on each lattice site.

We present in Fig. 2 the energy per site obtained in cMF
calculations at U/t = 2 (left) and U/t = 4 (right) as a function
of the inverse of the cluster size, using both restricted (R-cMF)
and unrestricted (U-cMF) optimized orbitals, as well as cMF
calculations in the on-site basis. We have also included, for
comparison, the results of (exact) calculations carried out in
a single cluster (L = l sites) using both open (OBC) and
periodic boundary conditions (PBC). The former energies
exactly match those of cMF calculations in the L = 120 lattice
performed in the on-site basis, without orbital optimization.
We note that L = l calculations using PBC do not provide a
variational estimate of the energy per site of the L = 120 lattice
(see Fig. 2 at U/t = 4, where the exact energy is approached
from below).

Comparing the results of cMF calculations that include
orbital optimization with those in the on-site basis, it is evident
that orbital optimization affords a significant improvement in
the variational estimate of the ground-state energy. In addition,
cMF calculations using unrestricted orbitals provide a sizable
improvement over the corresponding restricted calculations at
U/t = 4. We note that, at U/t = 4, cMF calculations do not
converge (in 1/l) as fast to the L = 120 limit as calculations
using PBC (L = l), though the former have the advantage
of being variational. On the other hand, at U/t = 2, cMF
provides better estimates than L = l calculations for l < 12,
suggesting that a finite-size extrapolation with cMF results
should be preferred. We emphasize the significance of this
given that, for arbitrary systems, an exact diagonalization can
currently only be performed up to lattices of size 18 or so.
A linear extrapolation in 1/l of U-cMF energies (using the
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FIG. 2. (Color online) Energy per site obtained in cMF calculations on a L = 120 half-filled periodic 1D lattice at U/t = 2 (left) and
U/t = 4 (right) as a function of the inverse of the cluster size l. l = 1 R-cMF and U-cMF results correspond to restricted HF and UHF,
respectively. We consider cMF results in the on-site basis and with a fully-optimized single-particle basis (opt). They are compared with (exact)
calculations on a single cluster (i.e., L = l) using open (OBC) and periodic (PBC) boundary conditions. The latter were computed by solving
the corresponding Lieb-Wu [20] equations. The energies of L = l calculations with OBC exactly match those of cMF calculations in the full
L = 120 lattice using the on-site basis.

l = 8, 10, and 12 results) yield the following estimates in
the l → L = 120 limit for the ground state energy E/(Lt):
−0.5709(2) and −0.8414(2) for U/t = 4 and 2, respectively.
These can be compared with the exact energies of −0.5738
and −0.8444.

We will often refer to the fraction of correlation energy
in assessing the quality of the ground-state energy. The
correlation energy is here defined as

Ecorr = Eexact − EUHF, (35)

i.e., the difference between the exact and the UHF energies.
(Note that this differs from the traditional quantum chemistry

definition based on restricted HF [43].) Figure 3 shows
the fraction of correlation recovered in R-cMF and U-cMF
calculations using clusters of increasing size (l = 2 to 12) as
a function of U/t . The inset shows −Ecorr/(Lt) as a function
of U/t . The latter peaks at ≈0.1 at U/t = 4.

The fraction of correlation in restricted calculations using
l = 2 seems to vanish at large U/t , indicating that the
Heisenberg limit predicted by this method is roughly the
same as the UHF limit. This is not the case in unrestricted
l = 2 calculations, which still recover around 50% of the
correlation in the large U/t limit. As l becomes larger, the
difference between restricted and unrestricted calculations gets
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FIG. 3. (Color online) Fraction of correlation (with respect to UHF) recovered in restricted (left) and unrestricted (right) cMF calculations
in a L = 120 periodic 1D lattice, as a function of U/t . (A log-2 scale is used in U/t for clarity purposes; results are shown from U/t = 1 to
16.) Cluster sizes from 2 to 12 were used. The inset in the right panel shows the total correlation energy per site, as a function of U/t .
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FIG. 4. (Color online) Fraction of correlation (with respect to
UHF) recovered in unrestricted cMF and cPT2 calculations in a
L = 120 periodic 1D lattice as a function of U/t . UMP2 and UCCSD
results are provided for comparison purposes.

smaller, as expected. U-cMF calculations with l = 12 are able
to recover 85% to 90% of the correlation energy across the
entire U/t domain plotted, which spans both the weak and the
strongly correlated regimes. Accordingly, the maximum error
in the energy per site in l = 12 U-cMF calculations is about
0.01 t at U/t = 4, which is remarkable given the simplicity of
the approach.

Figure 4 displays the fraction of correlation recovered in
U-cMF and U-cPT2 calculations; results are compared with
UMP2 and UCCSD. U-cPT2 energies significantly improve
over U-cMF results for small cluster sizes. For instance, with
l = 2 U-cPT2 recovers 90% (>75%) of the correlation energy
at small (large) U/t . Notice also that U-cPT2 results do not
overly deteriorate for large U/t as UMP2 does. UCCSD and
U-cPT2 (l = 6) recover �90% of the correlation energy across
the entire U/t . It is interesting to point out that at U/t = 1
UMP2 and UCCSD results are better than U-cPT2 results
with even l; U-cPT2 results with odd l, on the other hand,
slightly overshoot the exact result. Unfortunately, the steep
computational scaling of U-cPT2 rendered calculations with
l > 6 as too expensive with our current implementation.

Figure 5 displays the spectrum of a single cluster Hamil-
tonian in U-cMF calculations, using cluster sizes of 2, 4, and
6. As PBC are used along with a uniform tiling scheme, all
clusters end up displaying identical spectra, although we em-
phasize that this was not imposed. The eigenvalues are shown
in Fig. 5 according to the n↑ and n↓ quantum numbers within
the cluster, referenced to the half-filled case. Here, the ground
state in the (0,0) sector of each cluster is used to construct the
cMF state |�0〉. Although not shown in the figure, the spectrum
should resemble, as l becomes larger, that of a lattice of l sites
with OBC to the extent that orbitals remain fully localized.
If ε

(x,y)
0 denotes the ground state in the (x,y) sector, the

perturbation series is stable (i.e., all denominators are positive)
as long as the following conditions are met (we indicate in
parenthesis the relevant interactions): (1) the (0,0) sector is

-5

0
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15

20

ε/
t

(0, 0) (+1, 0) (−1, 0) (+1,−1) (+1, +1) (−1,−1)

l = 2 l = 4 l = 6

FIG. 5. (Color online) Spectrum of the cluster Hamiltonian Ĥ 0
c

in U-cMF calculations on a half-filled 1D lattice at U/t = 4, using
cluster sizes of 2, 4, and 6. All clusters in the L = 120 lattice display
an identical spectrum. The eigenvalues are classified according to
the n↑ and n↓ quantum numbers within the cluster. Here, (0,0)
corresponds to a half-filled cluster, with l/2 ↑ and ↓ electrons. Only
those Hilbert sectors relevant to the evaluation of the second-order
energy are shown. [Certain Hilbert sectors are missing as their
spectrum is identical to one that is displayed; e.g., the (+1,0) and
(0,+1) spectra are equivalent, and so are the (+1,−1) and (−1,+1).]

gapped (two-cluster dispersion), (2) 2ε
(0,0)
0 < ε

(+1,0)
0 + ε

(−1,0)
0

(charge-transfer), (3) 2ε
(0,0)
0 < ε

(+1,−1)
0 + ε

(−1,+1)
0 (spin-flip),

and (4) 2ε
(0,0)
0 < ε

(+1,+1)
0 + ε

(−1,−1)
0 (2 clusters, two-electron

charge-transfer). All the conditions are met in the cases plotted
in Fig. 5, although as l becomes larger, 2ε

(0,0)
0 ≈ ε

(+1,−1)
0 +

ε
(−1,+1)
0 . This near degeneracy is expected: as l → L, the

cluster spectrum should resemble that of the Hamiltonian; the
singlet and triplet ground states are nearly degenerate for large
L (exactly degenerate for L → ∞). Our cPT2 results appear
to be stable, though the divergences may show up only at high
order (see Appendix A). In situations where a perturbative
treatment is not appropriate, a nonperturbative many-body
approach may be used. Alternatively, a multireference (among
all the nearly degenerate states) many-body perturbation
strategy may be adopted (see, e.g., Ref. [24]).

We show in Fig. 6 the contributions of different channels
to the second-order energy in U-cPT2 calculations as a
function of U/t . Results from Fig. 6 indicate that two-cluster
spin-flip (two neighboring clusters undergoing a spin flip)
and two-cluster one-electron charge transfer (two clusters
interchanging a single electron) processes are the most
important contributors to the second-order energy. Beyond
that, the remaining two- and three-cluster interactions are small
but non-negligible for U/t < 4. Four-cluster interactions are
very small across all U/t .

We now turn our attention to the spin-spin correlations in
the ground state. As the cMF Ansatz breaks the translational
invariance of the Hubbard model, we have computed averaged
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FIG. 6. (Color online) Contributions to the second-order energy
in U-cPT2 calculations (L = 120 1D periodic lattice) using a cluster
size of 4 as a function of U/t . The notation used in the key takes
the form “# clusters: interaction type.” Here, CT stands for charge
transfer and SF refers to spin flip. The interaction channels are those
from Table I; two-electron charge transfer processes are of opposite
spin due to the nature of the Hubbard interaction.

spin-spin correlations, defined by

S̄(j) = 1

L

∑
j′

〈Sj′ · Sj−j′ 〉, (36)

where j labels a lattice site. We plot in Fig. 7 the (real-space)
spin-spin correlations obtained from R-cMF and U-cMF
calculations at U/t = 4.

It becomes evident that unrestricted calculations (left panel)
yield a structure with long-range order. R-cMF, on the other
hand, has nonvanishing spin-spin correlations only within
the cluster; intercluster correlations vanish due to the spin
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FIG. 8. (Color online) Fourier-transformed averaged spin-spin
correlations (L = 120 1D periodic lattice at U/t = 4) in U-cMF
and R-cMF calculations as a function of the inverse of the cluster
size. Two q values are plotted, namely, 0 and π (note that the q = 0
curve is enhanced by a factor of 50 for clarity purposes). U-cMF and
R-cMF calculations should tend to the same q = π finite value as
l → L. The l → L limit at q = 0 of U-cMF results should be 0 as
the exact ground state corresponds to a true singlet state.

singlet character of each cluster state. The long-range spin-spin
correlations in U-CMF are systematically decreased as the size
of the cluster is increased. In the short range, both R-cMF
and U-cMF yield significant corrections to RHF and UHF,
respectively. With l = 8, R-cMF and U-cMF display similar
correlations to the first few neighbors (small k), with hints
of the 1/k decay [44,45] present in the exact thermodynamic
limit solution at long range.

A cleaner picture of the spin-spin correlations can be
obtained by looking at them in reciprocal space. Figure 8
displays the (discrete) Fourier-transformed spin-spin
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FIG. 7. (Color online) Real-space spin-spin correlations computed from unrestricted (left) and restricted (right) optimized cMF states for
a L = 120 periodic 1D lattice at U/t = 4. The l = 1 result in the left panel corresponds to UHF, while that in the right panel corresponds to
restricted HF (i.e., a product of plane-wave states).
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correlations, at wave vectors q = 0 and π , obtained from
R-cMF and U-cMF calculations. (R-cMF results at q = 0 are
not shown as they identically vanish.) The two momenta are
the most relevant ones: the q = 0 result provides 〈Ŝ2〉, which
should identically vanish for a spin singlet, while q = π

provides the antiferromagnetic structure factor. We see that
both values are significantly decreased in U-cMF with respect
to what UHF predicts. Note that both R-cMF and U-cMF
should converge to the same value (the exact one) as l tends
to the L = 120 limit.

C. 2D: half-filling

We now consider the periodic two-dimensional, half-filled
square lattice. All the calculations in this section use a 12 × 12
periodic lattice, which should provide near-thermodynamic
limit estimates for U/t � 2. In 2D, we are able to find a
plethora of local minima (with respect to orbital rotations and
coefficients in the cMF expansion) corresponding to different
(approximate) tiling patterns. In principle, one could argue
that, given a fixed number of clusters with their associated
quantum numbers (n↑, n↓), an optimal solution (a global
minimum) exists which minimizes the energy. We did not
attempt to locate it but we did consider several uniformlike
patterns that converge to different local minima.

We show in Fig. 9 the tiling patterns adopted in U-cMF
calculations on the 12 × 12 lattice. A label used to identify
each pattern is also provided in the figure. In most of the
tilings displayed, a staggered configuration was chosen over
an otherwise uniform tiling as it leads to lower variational
energies. A staggered dimer configuration is used in clusters
of size 2. For clusters of size 4, we discuss results with a
square-based (staggered, 4S) tiling and a z-shaped (4Z) tiling.
We have considered a staggered configuration in terms of slabs
(6S1) and hats (6H1) in connection with clusters of size 6.
Clusters of size 8 with a staggered slab (4 × 2, 8S) and a
z-shaped (8Z) configuration are used, which can be thought of
as simple dimers of the considered size-4 clusters. We finally
also examined staggered plaquette configurations with clusters
of size 9 and 12.

We should point that, in constrast to Ref. [4], all the
considered tiling patterns lead to a qualitatively correct
description of the ground-state character, i.e., all structures
lead to a ground-state density with nonzero magnetization in
a Néel-type configuration. This is because the ground state of
each cluster was independently optimized, without requiring
that all the clusters share the same ground state.

The left panel of Fig. 10 shows the correlation energy
(divided by the UHF energy) predicted by U-cMF as a function
of U/t . [These can be contrasted with auxiliary-field quantum
Monte Carlo (AFQMC) results shown in Fig. 13.] Here,
size-12 U-cMF predicts that the correlation energy is ≈1.5%
(≈10%) of the UHF energy at U/t = 2 (U/t = 16). Large
differences in the correlation energy predicted are observed
as the clusters get larger, particularly at large U/t , which is
unsurprising. A larger cluster, irrespective of its shape, tends
to yield a larger correlation energy than a smaller one, but a
few exceptions are observed. When clusters of the same size
are compared in different tiling schemes (e.g., 4S and 4Z),
we observe that the more compact the cluster is, the better

the variational estimate for the ground-state energy becomes
at large U/t . Thus the square tiling pattern in size-4 clusters
yields a larger correlation energy than the z-shaped one.

The right panel of Fig. 10 shows the difference between
the double occupancy (D = ∑

i〈ni↑ni↓〉) per site predicted in
U-cMF calculations with respect to that of UHF (which is
shown in the inset). UHF overestimates (underestimates) the
double occupancy at small (large) U/t . A relatively systematic
improvement is observed in the double occupancy as the
cluster becomes bigger.

To show that other tiling patterns do not lead to funda-
mentally different results, we show in Fig. 11 the correlation
energy predicted in U-cMF calculations with different tiling
schemes using clusters of size 6. The additional tiling schemes
(aside from those in Fig. 9) are shown in Fig. 12. Several of
them lead to approximately the same ground-state energies.
As previously discussed, the more compact the clusters are,
the better the variational estimate of the ground state energy at
large U/t . The same may not be true at small U/t . For instance,
the lowest energies obtained at U/t = 2 corresponded to
structure 6Z.

We show in Fig. 13 the ground-state correlation energies,
divided over the UHF energy, obtained from U-cMF and U-
cPT2 calculations as a function of U/t . Results are compared
with UMP2, UCCSD, and AFQMC [22], which can be deemed
as numerically exact at half-filling. UMP2 displays the same
behavior observed in 1D, with the correlation energy vanishing
for large U/t . It is evident that the U-cMF results are not
competitive with UCCSD or AFQMC, even with the larger
clusters from Fig. 10. For instance, U-cMF using structure
6S1 recovers <50% of the correlation energy across all U/t .
On the other hand, U-cPT2 provides a sizable improvement
over U-cMF results, with structure 6S1 capturing ≈85% of the
correlation energy at U/t = 12. This is not far from UCCSD,
which recovers ≈90% of the correlation energy predicted by
AFQMC at U/t = 12. (Finite size effects account for most of
the difference between UCCSD and AFQMC at U/t = 2.)

Figure 14 displays the (discrete) Fourier-transformed av-
eraged spin-spin correlations, at wave vectors q = (0,0) and
q = (π,π ), obtained from U-cMF calculations at U/t = 8 in
the 2D lattice. As it was done in the 1D case, the spin-spin
correlations are averaged as the wave function Ansatz breaks
the translational invariance of the lattice. It becomes evident
that as the cluster becomes bigger (regardless of the specific
tiling pattern), the spin-spin correlations get reduced with
respect to UHF. In particular, large clusters display less than
half the spin-contamination per site [i.e., the deviation of
S̄(0,0) from 0] of UHF. The antiferromagnetic structure factor
is also reduced, though this should converge to a finite value
in the limit l → L.

D. 2D: lightly-doped regime

In the 2D lightly doped regime, we considered periodic
square lattices with 〈n〉 = 0.8 and 〈n〉 = 0.875, following
Ref. [22]. We have used a 10 × 10 lattice for the former case
and a 16 × 8 lattice for the latter case in order to have a lattice
commensurate with the striped order expected to develop, as
described below.
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8Z

6S1

2

9

6H1

4S

12

8S

4Z

FIG. 9. (Color online) Tiling patterns adopted in U-cMF calculations on a square 12 × 12 periodic 2D square lattice at half-filling. Sites
within the same cluster are connected by solid lines; fully enclosed regions are shaded. A key is provided to the left of each structure. Two
colors are used for clarity purposes in patterns where the clusters have different orientations.

Xu et al. [46] discussed the UHF phase diagram for the
2D Hubbard model in the half-filled and lightly doped regime.
For 〈n〉 � 0.9, the system transitions from a paramagnetic to
a linear spin density wave regime at U/t ≈ 1 (cf. Fig. 17 in
Ref. [46]). A phase transition to a regime with diagonal spin
density wave character occurs at U/t ≈ 4. Finally, the system
becomes ferromagnetic at large U/t . This UHF description
has guided our U-cMF calculations.

1. 〈n〉 = 0.8

We show in Fig. 15 the spin and hole density profiles of
UHF solutions with linear and diagonal spin density wave
character. The (approximate) tiling pattern adopted in U-cMF
calculations is superimposed in the figure. Clusters of size
6 with four electrons (two ↑ and two ↓) have been used to

describe the sectors with high hole density. On the other hand,
the remaining regions with Néel character have been described
in terms of a staggered dimer configuration in structures 1l and
1d, corresponding to the linear and diagonal spin wave charac-
ter, respectively. In 2l and 2d, the dimers have been combined
into half-filled clusters of size 4 as depicted in Fig. 15.

The resulting spin- and charge-density profiles obtained
from U-cMF calculations with structures 1l and 1d are
displayed in Fig. 16. The profiles resemble closely those
obtained from UHF itself and shown in Fig. 15. The main
difference is the partial shift of the hole density away from the
main stripes into the neighboring sites. This suggests that the
hole density is too localized in the UHF solution.

We show in Table II the resulting ground-state energies
from U-cMF and U-cPT2 calculations. Results are compared
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FIG. 10. (Color online) (Left) Correlation energy (with respect to UHF), divided by the UHF energy, recovered in U-cMF calculations in
a 12 × 12 periodic 2D square lattice, as a function of U/t . The tiling patterns considered are those displayed in Fig. 9. (Right) Difference with
respect to the double occupancy per site predicted by UHF in a variety of U-cMF calculations in a 12 × 12 periodic square lattice. The double
occupancy of UHF itself is shown in the inset.

with UHF, UMP2, UCCSD, and density matrix embedding
(DMET) calculations [41], which can be deemed as highly
accurate. U-cMF provides a significant improvement over
UHF energies, indicating the inaccurate treatment of short-
range correlations in the simple HF description. The error in
the UHF energies becomes very significant (>0.2 t) at large
U/t , sizably larger than the error in the half-filled regime.
Interestingly, the linear spin density wave character is favored
in U-cMF even at relatively large U/t . We cannot rule out,
nevertheless, that this is an artifact of the particular tiling
pattern chosen. The use of the size-4 clusters in place of the
Néel dimers in U-cMF provides an improvement of about
10−3 t in the ground-state energy for all U/t values quoted.

Second-order PT provides a significant improvement over
mean-field energies (both in HF and cMF). The UMP2 results
are, however, far from UCCSD at large U/t . The difference
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FIG. 11. (Color online) Same as Fig. 10. Different tiling patterns
with clusters of size 6 (cf. Figs. 9 and 12) are displayed.

between UCCSD(T) and UCCSD is also large in the strongly-
correlated regime, indicating the necessity of going beyond
double excitations in the coupled-cluster Ansatz. This is also
evident by comparing UCCSD and DMET results. U-cPT2(2l)
is competitive with UCCSD at U/t = 4 but outperforms even
UCCSD(T) in the large U/t regime.

2. 〈n〉 = 0.875

We now turn our attention to even lighter doping, namely
〈n〉 = 0.875. We show in Fig. 17 the spin and hole density
profiles of UHF solutions with linear and diagonal spin density
wave character. Note that kinks are needed in a 16 × 8 lattice
in the diagonal density wave profile; only a much larger 16 ×
16 lattice is commensurate with a fully diagonal profile. The
(approximate) tiling pattern adopted in U-cMF calculations
(with a linear density wave character) is superimposed in the
figure. As we did previously in the 10 × 10 lattice, the regions
with Néel character have been described in terms of a staggered
dimer configuration (structure 1), while the regions of high
hole density are tiled into clusters of size 6 (with rwo ↑ and
two ↓ electrons each). The Néel dimers have been combined
into half-filled clusters of size 6 and 4 in structure 2, following
the pattern indicated in Fig. 17.

Table III shows the ground-state energies obtained from
U-cMF and U-cPT2 calculations. Results are compared with
UHF, UMP2, UCCSD, and DMET. Just as in the 〈n〉 = 0.8
case, U-cMF improves significantly over UHF. It remains true
that second-order PT provides a nice refinement on top of
the mean-field result. The triples correction in UCCSD(T)
becomes significant at large U/t , signaling the deficiencies in
UCCSD. U-cPT2 is a bit shy of UCCSD quality at U/t = 4,
but becomes competitive with UCCSD(T) at U/t = 8.

Figures 18 and 19 depict the Fourier-transformed spin-
spin and density-density correlations obtained from U-cMF
calculations (using structure 1). Just as in the case of 1D, we
have performed a global average over sites in order to remove
the expected fluctuations due to the (spatial) symmetry broken
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6H2
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6H3

FIG. 12. (Color online) Some additional tiling patterns (with clusters of size 6) adopted in U-cMF calculations on a square 12 × 12 periodic
2D square lattice at half-filling.

character of the Ansatz. The spin-spin correlations show a
maximum at q = (7π/8,π ), which becomes more intense as
U/t is increased from 4 to 8. The density-density correlations
display their maximum at q = (π/4,0). These observed pro-
files are consistent with the linear spin density wave character

FIG. 13. (Color online) Same as Fig. 10. U-cMF and U-cPT2
calculations are compared with UMP2, UCCSD, and AFQMC.
AFQMC results, from Ref. [22], correspond to thermodynamic limit
estimates.

of the UHF charge and spin densities. Symmetry-projected
calculations in Refs. [47,48] also show the same features. We
refer the reader to Ref. [49] for a discussion of the emergence
of spin and charge order in the doped Hubbard model.
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FIG. 14. (Color online) Fourier-transformed averaged spin-spin
correlations (12 × 12 half-filled periodic 2D square lattice at U/t =
8) in U-cMF calculations as a function of the inverse of the cluster
size. UHF (l = 1) results are also displayed. Two q values are plotted,
namely, (0,0) and (π,π ).
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FIG. 15. (Color online) Hole and spin density profiles of UHF
solutions (10 × 10 periodic lattice, 〈n〉 = 0.8) obtained at U/t = 8
with linear (left) and diagonal (right) spin density wave character.
The magnitude of the hole density is proportional to the area of the
green circles. The magnitude of the spin density is proportional to
the size of the arrows. Superimposed on them we display the tiling
patterns adopted in U-cMF calculations. Clusters with six orbitals and
four electrons (solid blue) have been used in the high hole density
sectors, while the Néel regions are described in terms of staggered
dimers (solid red); this leads to structures 1l and 1d , respectively, for
linear and diagonal order. We have additionally considered a tiling
pattern where the staggered dimers are combined into size 4 clusters,
following the dotted lines, leading to structures 2l and 2d .

V. DISCUSSION

In Sec. II, we have described the cluster mean-field
approach to treat strongly-correlated fermionic systems. A
cMF state (including the orbital optimization degrees of
freedom) is used as a variational Ansatz for the ground-state
wave function. This, by construction, is guaranteed to provide
better variational estimates than HF when the size of the
cluster (assuming uniform tiling) is larger than 1. Because
of the simple nature of the Ansatz, an RS-PT scheme can be
adopted to account for the missing intercluster correlations.
The results presented in Secs. IV B–IV D provide evidence
that a cluster-based approach can provide a (semi)-quantitative
description of the ground state of the half-filled 1D and 2D
Hubbard models, as well as for the lightly doped regime in 2D
square lattices.

FIG. 16. (Color online) Hole and spin density profiles from U-
cMF calculations (10 × 10 lattice, 〈n〉 = 0.8) at U/t = 8 with linear
(left, 1l) and diagonal (right, 1d) ordering. The magnitude of the hole
density is proportional to the area of the red circles. The magnitude
of the spin density is proportional to the size of the arrows.

TABLE II. Ground-state energies predicted with a variety of
methods for a Hubbard 2D periodic 10 × 10 lattice with 〈n〉 = 0.8.

Method U = 2t U = 4t U = 6t U = 8t U = 12t

DMETa −1.3062(4) −1.108(2) −0.977(4) −0.88(3)
UHF (diag) −1.2165 −0.9646 −0.7933 −0.6815 −0.5501
UHF (linear) −1.2678 −0.9774 −0.7843 −0.6597 b

UMP2c −1.3114 −1.0760 −0.8832 −0.7767 d

UCCSDc −1.3094 −1.0925 −0.9208 −0.8246 d

UCCSD(T)c −1.3108 −1.1045 −0.9357 −0.8444 d

U-cMF(1d) e e −0.8417 −0.7396 e

U-cMF(2d) e e −0.8429 −0.7406 e

U-cMF(1l) e −1.0217 −0.8520 −0.7460 −0.6271
U-cMF(2l) e −1.0227 −0.8536 −0.7478 −0.6288
U-cPT2(1l) −1.0865 −0.9380 −0.8450 −0.7394
U-cPT2(2l) −1.0889 −0.9435 −0.8526 −0.7513

aResults extrapolated to the TDL from Refs. [22,41].
bUHF fails to converge with this order.
cCalculations use the lowest energy UHF structure shown.
dLower-energy UHF solutions appear at large U/t .
eU-cMF optimizations failed to converge.

In the half-filled 1D model, results with comparable
accuracy to UCCSD can be obtained by U-cMF using a
sufficiently large cluster or by using U-cPT2 with smaller

FIG. 17. (Color online) Hole and spin density profiles of UHF
solutions (16 × 8 periodic lattice, 〈n〉 = 0.875) obtained at U/t = 8
with diagonal (top) and linear (bottom) spin density wave character.
The magnitude of the hole density is proportional to the area of the
green circles. The magnitude of the spin density is proportional to the
size of the arrows. Superimposed on the bottom scheme we display
the tiling pattern adopted in U-cMF calculations. The Néel regions
are described in terms of staggered dimers (solid red), leading to
structure 1, while regions of high hole density are described with
slab-shaped clusters of size 6 (solid blue). We have also considered
a pattern (structure 2) where the dimers are combined into half-filled
clusters of size 6 and 4, following the dotted lines.
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TABLE III. Ground-state energies predicted with a variety of
methods for a Hubbard 2D periodic 16 × 8 lattice with 〈n〉 = 0.875.

Method U = 2t U = 4t U = 6t U = 8t U = 12t

DMETa −1.2721(6) −1.031(3) −0.86(1)
UHF (diag) b b −0.7184 −0.6008 −0.4682
UHF (linear) −1.2270 −0.9109 −0.7128 c c

UMP2d −1.2732 −0.9858 −0.7833 −0.6594 e

UCCSDd −1.2719 −1.0093 −0.8305 −0.7147 e

UCCSD(T)d −1.2738 −1.0195 −0.8446 −0.7299 e

U-cMF(1) f −0.9476 −0.7633 −0.6477 −0.5176
U-cMF(2) f −0.9500 −0.7667 −0.6514 −0.5210
U-cPT2(1) −1.0004 −0.8289 −0.7204 −0.5965
U-cPT2(2) −1.0040 −0.8347 −0.7276 −0.6068

aResults extrapolated to the TDL from Refs. [22,41].
bUHF (diag) becomes UHF (linear) at low U/t .
cUHF fails to converge with this order.
dCalculations use the lowest energy UHF structure shown.
eLower-energy UHF solutions appear at large U/t .
fU-cMF optimizations failed to converge.

cluster sizes. Not only the energy is improved in U-cMF
with respect to UHF, but also other ground-state properties
such as spin-spin correlations. Due to the local nature of the
interactions in the Hubbard Hamiltonian, contributions to the
second-order energy arise mostly from two-cluster (spin flip
and one-electron charge transfer) interactions.

In the half-filled 2D square model, U-cMF was not as
accurate as it was in the 1D case, even when using clusters
of size 12. This difference can be understood in terms of the
missing intercluster correlations and the area-law of entangle-
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FIG. 18. (Color online) Fourier-transform S̄(qx,qy) of the av-
eraged spin-spin correlations obtained from U-cMF (structure 1)
calculations in a 16 × 8 (〈n〉 = 0.875) lattice at U/t = 4 (top) and
U/t = 8 (bottom).
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FIG. 19. (Color online) Fourier-transform N̄ (qx,qy) of the aver-
aged density-density correlations obtained from U-cMF (structure
1) calculations in a 16 × 8 (〈n〉 = 0.875) lattice at U/t = 4 (top)
and U/t = 8 (bottom). The strong peak at (0,0) (= N2/L) has been
removed for clarity purposes.

ment entropy [50]. Whereas in 1D the size of the boundary
(which determines the missing intercluster correlations) of a
given cluster remains fixed, in 2D it scales as the perimeter of
the cluster itself. This also explains why more tightly packed
clusters provide better energetic variational estimates for large
U/t , as the clusters become more localized. A significant
improvement to the ground-state energy is obtained with
U-cPT2, where results are again comparable (although slightly
poorer) than UCCSD.

In the lightly-doped regime, we have used ad hoc tiling
schemes that mostly respect the underlying spin density wave
profile obtained with UHF. Following this strategy, results
will be relevant to the extent that UHF itself provides a
qualitatively correct description of the character of the ground
state. Our calculations suggest that it does. U-cMF results
provide a sizable improvement over the UHF description and
U-cPT2 results are competitive with UCCSD at small U/t

and with UCCSD(T) at large U/t . The predicted U-cPT2
energies are still above the DMET estimates, indicating that
part of the long-range correlations expected to develop in the
lightly-doped regime are still unaccounted for. These may be
described with higher order RS-PT or other more powerful
many-body approaches.

At this point, we should comment on the nature of the tiling
pattern adopted for the lightly-doped calculations. The reader
may be left with the impression that this has to be carefully
selected in order to obtain good results. We do not think
it is necessary. (Unfortunately, the doped two-dimensional
Hubbard model is particularly challenging in this regard as
even HF itself displays several solutions.) Ideally, an educated

085101-16



CLUSTER-BASED MEAN-FIELD AND PERTURBATIVE . . . PHYSICAL REVIEW B 92, 085101 (2015)

initial guess for the orbitals is available that also provides some
intuition into how to best tile the system by partitioning into
clusters and distributing electrons. Nonetheless, it should be
clear that, with optimized HF orbitals, any tiling scheme with
clusters larger than 1 provides a better variational estimate
than HF itself. A global optimization strategy may be used to
locate the lowest energy configuration.

We note that it is generally true that describing intercluster
correlations (here via second-order RS-PT) improves the
ground-state energy to a larger extent than enlarging the size
of the cluster in mean-field calculations. (A clear exception to
this is the fact that U-cMF with a cluster of size 2 provides
better results at large U/t than UMP2.) The good quality
of U-cPT2 results suggest that the renormalized Hamiltonian
(expressed in terms of cluster states) is more amenable to a
perturbative treatment than in the case of the HF particle-hole
transformation. Thus traditional many-body approaches (such
as second-order RS-PT) can be built on top of the cluster
mean-field description to provide a high quality answer. This
is further explored in Appendix A, were we show the results
of high-order RS-PT calculations in a small lattice. In the
remainder of this section, we discuss possible strategies that
can improve the results presented in this manuscript.

Perhaps the simplest strategy is to increase the flexibility
in the mean-field variational Ansatz, which can be done in a
variety of ways. The full Hilbert space (i.e., not restricted to a
given ms sector) or, in fact, the full even- or odd-number parity
Fock space within each cluster can be used.3 In doing this, it is
not necessary to use a more general form for the single-particle
transformation that defines the orbital optimization. The latter
can be done in addition to (or in place of). Thus in systems
where local number fluctuations are essential, a Bogoliubov-de
Gennes single-particle transformation can be used.

The local character of the clusters can be exploited in cPT2
calculations by, e.g., truncating the computed interactions
according to some distance criterion. This could alleviate
significantly the computational cost in cPT2 calculations
(bringing them to linear scaling in the number of clusters)
while also facilitating carrying out the cPTn expansion to
a higher order. In order to deal with the large number
of interacting clusters and states, a stochastic sampling of
contributing processes can be performed.

At this point, we would like to comment on the nature
of the states used to carry out the perturbation expansion.
In this work, we have used an energy criterion to truncate
the number of cluster states when this was imperative. Other
criteria may be used, such as a density matrix based criterion
(akin to the one used in DMRG [13,14]). Here, one would
diagonalize the Hamiltonian of the cluster interacting with
part of its environment. The resulting ground-state wave
function is projected into the cluster states; those states with
highest occupation constitute the optimal subset of states to
use. Our main concern regarding this strategy is that the

3It is not strictly necessary to restrict the number parity of the Fock
space in mean-field calculations, that is, if a simple product state
will be considered. Nevertheless, a mixed-number parity description
in each cluster complicates the evaluation of matrix elements in
correlated approaches.

resulting cluster + (relevant) environment may become too
large to solve (exactly) for its ground state. For instance, the
environment around a four-site square cluster in a 2D lattice
should include at least eight additional sites/orbitals.

Of course, other strategies to account for intercluster
correlations may be used. One possible alternative in the case
where there are a few nearly degenerate states in each cluster,
is to diagonalize the full Hamiltonian in the direct product
basis spanned by the relevant cluster states. This is part of
the essence of the contractor renormalization group (CORE)
algorithm [51–53] and has also been used in the active space
decomposition (ASD) [54,55] method in quantum chemistry.
Recently, a DMRG algorithm using cluster states has been
proposed [56].

We think a coupled-cluster based approach such as the one
proposed by Li in BCCC [7] is among the most promising
avenues. In particular, a coupled-cluster Ansatz should provide
an improved description of the missing intercluster correla-
tions in the mean field than low-order RS-PT. Given that the
cluster-based Hamiltonian contains up to four-tile interactions,
it appears that the minimal coupled-cluster model should
include up to quadruple excitations. Nevertheless, we have
observed that two-tile interactions dominate the contribution to
the second-order energy. It may not be unreasonable to restrict
the excitation to singles and doubles. Moreover, locality can
also be exploited within a coupled-cluster framework.

Lastly, we would like to point out that even though we
have used the cMF approach to study strongly interacting
systems, it may be used in other contexts. In particular,
systems which can be effectively represented in terms of
weakly interacting fragments of otherwise strongly-correlated
fermions (see Appendix B) can be very efficiently described
by low-order perturbation theory based on a cMF state.

VI. CONCLUSIONS

We have introduced a cluster mean-field variational ap-
proach and discussed its applicability to describe the ground
state of strongly-correlated fermion systems. In this work,
the full optimization of the cluster mean-field state has been
carried out, including orbital optimization, with the restriction
that the cluster state has well-defined n and ms quantum
numbers. The restrictions are imposed in order to preserve N

and Ms in the full system. The cluster product state constitutes
an eigenstate of a mean-field (zeroth order) Hamiltonian,
which allows us to formulate a RS perturbative approach to
improve upon the mean-field description.

We have presented mean-field and second-order perturba-
tive results of the ground-state energies (and other observables)
of the periodic 1D and square 2D Hubbard models. In the
half-filled 1D case, our U-cMF results become as accurate as
UCCSD across all U/t for sufficiently large clusters. U-cPT2
results on smaller clusters also provide a consistent description
across all interaction strengths. In 2D at half-filling, U-cMF
is poorer than in the 1D case yet U-cPT2 provides ground-
state energies of near UCCSD quality. In the lightly-doped
regime of the 2D model, U-cPT2 results remain competitive
with UCCSD although they are still not competitive with
DMET estimates. In general, we observe that U-cPT2 energies
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FIG. 20. (Color online) Convergence of the UMPn and U-cPTn perturbation series for a half-filled L = 8 periodic 1D lattice at U/t = 4
(left) and U/t = 8 (right). A cluster size of 2 has been used in U-cPTn calculations. The exact ground-state energy is denoted by a dashed line.
Due to the divergent nature of the U-cPTn series at U/t = 8, we have truncated at order n = 48.

with small clusters are often better than U-cMF results with
significantly larger ones.

Overall, the results of this work suggest that a cluster
mean-field approach can provide an excellent starting point
and a path to a highly accurate, efficient description of
strongly correlated fermionic systems, and the Hubbard model
in particular. Several strategies to improve the mean-field
description as well as the correlated approaches built on top of
it have been suggested.
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APPENDIX A: HIGH-ORDER PERTURBATION THEORY

For sufficiently small systems, the standard RS perturbation
series can be evaluated to high order by direct solution of the
RS-PT equations:

(Ĥ0 − E(0))|�(m)〉 = V̂ |�(m−1)〉 −
m−1∑
l=0

E(m−l)|�(l)〉, (A1)

E(m) = 〈�(0)|V̂ |�(m−1)〉, (A2)

where we have assumed intermediate normalization
(〈�(0)|�(m)〉 = 0 ∀ m > 0). We have evaluated the UMPn

(i.e., RS-PT using canonical UHF orbitals and orbital energies)
and U-cPTn (as formulated in Sec. II, using a cluster of size 2)
perturbation series for a half-filled L = 8 1D periodic lattice
at U/t = 4 and U/t = 8. The energy as a function of n is
displayed in Fig. 20.

The UMPn series approaches the exact energies very
slowly, particularly at large U/t . On the other hand, U-cPTn

is much faster approaching the exact energy, although the
series has a divergent nature at U/t = 8. This is likely due
to the near degeneracies expected to appear at large U/t in
the spectrum of each cluster. It is possible that a convergent
nature can be restored by tweaking the definition of the zeroth
order Hamiltonian. Alternatively, nonperturbative many-body
approaches based on cMF can be used. In spite of that, these
results support the premise that once correlations within the
cluster have been described accurately, the ground state of
the resulting renormalized Hamiltonian can be expressed by a
many-body expansion that is more rapidly convergent than the
common UMPn series.
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FIG. 21. (Color online) UHF, U-cMF, and U-cPT2 ground-state
energies for a half-filled L = 8 periodic 1D dimerized Hubbard lattice
[cf. Eq. (B1)] as a function of the ratio t2/t1, with U/t1 = 4. U-cMF
and U-cPT2 calculations employ clusters of size 2.
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APPENDIX B: DIMERIZED HUBBARD MODEL

Consider a Hubbard lattice tiled into clusters. As the clusters
become noninteracting, the cMF approach becomes exact.
In this section, we assess the quality of the cMF and cPT2
ground-state energies as a function of the interaction between
clusters. Being more specific, we consider the dimerized
periodic Hubbard 1D model (see, e.g., Ref. [57]), given by
the Hamiltonian

Ĥ = − t1
∑

odd j,σ

(c†j+1,σ cj,σ + H.c.)

− t2
∑

even j,σ

(c†j+1,σ cj,σ + H.c.) + U
∑

j

nj,↑ nj,↓. (B1)

Figure 21 shows the UHF, U-cMF, and U-cPT2 ground-
state energies obtained in a half-filled L = 8 periodic 1D

lattice, as a function of the ratio t2/t1 with U/t1 = 4.
Clusters of size 2 have been used in cMF and cPT2
calculations.

At t2/t1 = 0, the exact ground-state energy reduces to
four times the energy of an L = 2 half-filled lattice with
OBC. Naturally, U-cMF reproduces this result, while UHF
converges to an energy that is equal to four-times the energy
of the corresponding UHF result for the L = 2 lattice. U-
cMF (U-cPT2) remains highly accurate up to t2/t1 ≈ 0.3
(t2/t1 ≈ 0.6). On the other hand, U-cMF and U-cPT2 are not
nearly as accurate in the vicinity of t2/t1 = 1, yet they still
provide sizable improvements over the UHF description. The
mean-field approach recovers ≈35% of the correlation energy,
while U-cPT2 is able to capture around 65% of it. These results
suggest that a simple cluster-based approach can accurately de-
scribe weak interactions among otherwise strongly correlated
fragments.
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