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Exchange and collective behavior of magnetic impurities in a disordered helical metal
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We study the exchange interaction and the subsequent collective behavior of magnetic impurities embedded
in a disordered two-dimensional helical metal. The exchange coupling follows a statistical distribution whose
moments are calculated to the lowest order in (pF �)−1, where pF is the Fermi momentum of itinerant electrons
and � is the mean free path. We find that (i) the first moment of the distribution decays exponentially, and
(ii) the variance of the interaction is long range, however, it becomes independent of the orientation of the
localized magnetic moments due to the locking between spin and momentum of the electrons that mediate the
interaction. As a consequence, long-range magnetic order tends to be suppressed, and a spin glass phase emerges.
The formalism is applied to the surface states of a three-dimensional topological insulator. The lack of a net
magnetic moment in the glassy phase and the full randomization of spin polarization at distances larger than �

excludes a spectral gap for surface states. Hence, nonmagnetic disorder may explain the dispersion in results for
photoemission experiments in magnetically doped topological insulators.
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A topological insulator is a system that supports metallic
edge/surface states within the bulk gap, whose existence and
integrity are protected by time-reversal symmetry [1]. In the
case of a three-dimensional (3D) topological insulator, the
surface states disperse as Dirac quasiparticles; the minimal
Hamiltonian consists in a Bychkov-Rashba spin-orbit coupling
of the form (� = 1)

HBR = vF (σ × p)z, (1)

where vF is the Fermi velocity of surface electrons and
σ = (σx,σy) is a vector of Pauli matrices acting on electron
spin. The inclusion of a mass term in the Hamiltonian, Mσz,
reflects the breakdown of time-reversal symmetry. This may
arise as a Zeeman term due to a weak magnetic field [2] or
the proximity exchange coupling to a magnetic thin film [3].
In this scenario, the system becomes a two-dimensional
(2D) quantum Hall liquid, a perfect platform for several
magnetoelectric effects [4].

An interesting possibility is the deposition of magnetic
adatoms, in such a way that, for high enough concentrations,
nm, and at low enough temperatures, T , a spontaneous ordering
opens a gap in the spectrum, being the mass M proportional
to the net magnetic moment in the out-of-plane direction
ẑ [5–7]. Experimentally, this possibility does not seem to
be completely clear. Angle-resolved photoemission (ARPES)
and scanning tunnel spectroscopy (STS), together with x-ray
magnetic circular dichroism (XMCD) and magnetotransport
experiments generate results that are in agreement with a
gap opening in some cases [8] and a gapless spectrum in
others [9] for similar experimental conditions. In the particular
case of Fe adatoms deposited directly on the surface of
Bi2Se3, for example, a gap of the order of 100 meV at
T ∼ 15 K was reported in an ARPES experiment [10], whereas
later on, another ARPES experiment in similar conditions of
Fe concentration and even lower temperatures reported no
gap opening [11], further confirmed by STS and XMCD
experiments [12]. This dispersion in experimental results
motivates the present study about the impact of disorder in
the collective behavior of magnetic adatoms placed on the
surface of a 3D topological insulator.

We consider first the problem of the exchange interaction
between localized spins associated with magnetic impurities
embedded in a weakly disordered helical metal. The Hamilto-
nian reads in general

H = Hit + Hloc,

where the first terms refers only to the itinerant electrons and
the second term describes the coupling with localized spins,

Hloc = Jz

∑
i∈m

sz(Ri) · Sz
i + J‖

∑
i∈m

s(Ri) · Si ,

where the sum runs over the magnetic impurities. Here Sz
i ,

Si = (Sx
i ,S

y

i ) are the spin operators of the impurity and sz(Ri),
s(Ri) = (sx(Ri),sy(Ri)) are the spin density operators of the
metal evaluated at the magnetic impurity sites,

sα(Ri) =
∑

r

δ(2)(Ri − r)σα(r).

The exchange is taken to be anisotropic due to the 2D nature
and strong spin-orbit coupling of the system. In-plane isotropy
is assumed, Jx = Jy ≡ J‖.

The single-particle Hamiltonian for itinerant electrons
can be written as Hit = HBR + V (r), where the first term
corresponds to Eq. (1), and the second describes the effect
of disorder, V (r) = ∑

i∈nm Vimp(r − Ri). Here Vimp(r) is the
potential created by a nonmagnetic impurity or any source
of disorder that preserves time-reversal symmetry. Since we
do not possess a detailed expression for Vimp(r) and the
distribution of impurities changes from sample to sample,
we employ a statistical description in terms of different
disorder realizations forming an ensemble of macroscopically
identical replicas of the system. Assuming that the typical
decay length of the impurity potential is smaller than the
mean separation between scattering centers, we consider a
Gaussian distribution of disorder configurations, determined
by the mean free path �, or equivalently, the scattering time
τ = �/vF , and characterized by correlators of the form

〈V (r1)V (r2)〉dis = 1

2πγ τ
δ(2)(r1 − r2),
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FIG. 1. (Color online) Sketch of the RKKY interaction mediated
by itinerant electrons in a disordered helical metal.

where γ is the density of states at the Fermi level, γ =
pF /(2πvF ). The itinerant electrons mediate the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [13] between the
localized magnetic moments. For a dilute concentration of
magnetic impurities this can be studied within second order
perturbation theory. Then, the effective exchange coupling
is determined by the static spin susceptibility of the helical
electron gas. In the presence of nonmagnetic disorder, this
follows a statistical distribution whose moments can be
computed by standard diagrammatic techniques. The first
moment of the distribution is defined as χαβ(R = Rj − Ri) ≡
〈χαβ(Ri ,Rj )〉

dis
, where we emphasize with the notation that

translation invariance is restored on average. To the lowest
order in (pF �)−1 we can write

χαβ(R) = − 1

β

∑
iω

Tr[σαĜ(iω,R)σβĜ(iω, − R)],

where Ĝ(iω,R) ≡ 〈Ĝ(iω,Ri ,Rj )〉dis is the disorder-averaged
Green operator in the Matsubara frequencies domain, and the
trace is taken in the spin indices. Here we are neglecting vertex
corrections, which is strictly valid at R ≡ |R| � �, whereas
the self-energy corrections are introduced by means of τ in the
self-consistent Born approximation. The hierarchy of length
scales of the problem for which this equation strictly applies is
p−1

F 	 � 	 R, as illustrated in Fig. 1. This corresponds to a
classical diffusive regime: helical electrons connecting a pair
of localized spins describe a classical diffusion path suffering
several collisions with nonmagnetic scatterers. In the T → 0
limit, the disorder-averaged RKKY interaction reads

〈HRKKY〉dis = − pF e−R/�

4π2vF R2

∑
i,j∈m

[
J 2

z sin(2RpF )Sz
i S

z
j

+ J 2
‖ sin(2RpF )(R̂ · Si) · (R̂ · Sj )

− JzJ‖ cos(2RpF )(Si × Sj )ẑ×R̂

]
. (2)
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FIG. 2. Diffuson and cooperon ladder contributions to χαβχα′β ′ .
The latin indices refer to spin components of the diffuson/cooperon
kernel, and the greek indices label the spin operators at the vertex.

Jz controls the exchange between the out-of-plane spin com-
ponents, and J‖ between the projections along the direction
linking the two magnetic impurities. The last term is a
Dzyaloshinskii-Moriya coupling. In the diffusive regime, the
three components decay exponentially as in a conventional
2D electron gas [14]. This must not be interpreted as an
exponential suppression of the RKKY interaction, but as the
result of the randomization of its characteristic oscillatory
tail [15]. Consequently, higher moments of the distribution
must be studied.

The calculation of the second moment of the distribu-
tion, χαβχα′β ′ (R = Rj − Ri) ≡ 〈χαβ(Ri ,Rj )χα′β ′(Ri ,Rj )〉

dis
,

is analogous to the calculation of the universal conductance
fluctuations in a disordered conductor [16]. To the lowest order
in (pF �)−1, the second moment is given by both diffuson and
cooperon ladder contributions (see Fig. 2). In the absence of
time-reversal symmetry breaking perturbations (excluding the
localized spins) both contributions are equal. We can write

χαβχα′β ′(R) = (2πγ τ )2

2β2

∑
iω1,iω2

∑
μ,ν,μ′,ν ′

Dμν(iω1 − iω2,R)

×Dμ′ν ′(iω1 − iω2, − R)

× Tr[σασμσα′σν ′ ]Tr[σβσμ′σβ ′σν],

where the diffuson modes are introduced as

Dμν(iω,R) ≡ 1
2 [σμ]jiDiji ′j ′ (iω,R)[σν]i ′j ′ .

Here σ0 corresponds to the identity and the contraction in
spin indices (latin labels) is assumed. Diagrammatically, Diji ′j ′

corresponds to the boxes in the first diagram of Fig. 2. At this
point, it is useful to introduce the matrix

D̂ ≡

⎛
⎜⎝

D00 D0x D0y D0z

Dx0 Dxx Dxy Dxz

Dy0 Dyx Dyy Dyz

Dz0 Dzx Dzy Dzz

⎞
⎟⎠.

In the diffusive regime, |ω|τ 	 1, with ω = ω1 − ω2 and
sgn(ω1) �= sgn(ω2) (otherwise, the diffuson ladder is zero),
the diffuson satisfy the equation

⎛
⎜⎜⎜⎝

|ω|τ − τD∇2 0 0 0

0 1
2 + |ω|τ − τD∇2 0 1

2τvF ∂x

0 0 1
2 + |ω|τ − τD∇2 1

2τvF ∂y

0 − 1
2τvF ∂x − 1

2τvF ∂y 1 + |ω|τ − τD∇2

⎞
⎟⎟⎟⎠D̂(iω,r,r′) = δ(2)(r − r′), (3)
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where D = 1
2v2

F τ is the diffusion constant. The triplet modes
(μ,ν = x,y,z) are coupled by precession terms and only
the singlet mode D00 remains gapless. Therefore, the triplet
modes yield to an exponentially vanishing contribution to
χαβχα′β ′ (R), similarly to what happens in a 2D electron gas
with strong spin-orbit scattering [17]. Only the singlet mode
contribution survives, leading in the T → 0 limit to

χαβχα′β ′(R) = p2
F

24π4v2
F R4

δαα′δββ ′ . (4)

As is evident from this result, the RKKY coupling is still a
long-range interaction; however, the variance of the interaction
becomes independent of the orientation of the localized spins,
〈(HRKKY)2〉dis ∼ S2

i S2
j .

Different magnetically ordered phases have been proposed
in the literature [5–7]. In diffusive media, however, these
phases are expected to be suppressed due to the exponential
decay of the first moment of the distribution for the exchange
coupling, Eq. (2), since, according to mean-field arguments,
it is this quantity what determines the critical temperature
below which long-range magnetic order is possible. On the
other hand, disorder introduces non-negligible fluctuations of
the exchange coupling. In the particular case of a helical
metal, the locking between momentum and spin of carriers
makes the spin response independent of the orientation of
the localized spins, Eq. (4). Due to these fluctuations, we
expect that localized spins freeze to a nonzero value at low
temperatures, but with no spatial correlation between them
and zero net magnetization. In such a glassy phase, a global
spectral gap is excluded.

We focus on the collective behavior of magnetic adatoms
assuming that their spatial distribution is completely random.
The clean limit with the Fermi level lying at the Dirac point
was analyzed in Ref. [7]. The form of the interaction in
that case makes the in-plane interactions frustrated. Then,
different behaviors are expected as a function of δ ≡ J‖/Jz.
For δ 	 1, an Ising-like ferromagnetic phase is expected at
low temperatures, with magnetization along the out-of-plane
axis. Hence, a gap in the spectrum of surface states is
expected. In the opposite limit, δ � 1, the frustrated in-plane
interactions dominate, giving rise to a spin glass separated from
the Ising ferromagnet by a quantum critical point estimated
to be located at δc ≈ 1.3 [7]. Similarly, fluctuations in the
exchange interaction due to disorder tend to destroy long-range
order, and the system freezes to a glass for sufficiently low
temperatures.

We analyze in detail the situation when δ 	 1. The spin
Hamiltonian reads

HRKKY = −
∑
i,j

Jij S
z
i S

z
j ,

where the couplings Jij follow a certain statistical distribution.
The first and second moments can be written in general as

〈Jij 〉dis = J 2
z

∑
{R}

P({R})χzz(R),

〈(Jij )2〉dis = J 4
z

∑
{R}

P({R})χzzχzz(R).

Here P({R}) describes the statistical distribution of mag-
netic adatoms over the surface of the topological insulator. We
assume for simplicity that they are uniformly distributed, so
then we can approximate the above equations by [18]

〈Jij 〉dis ≈ J 2
z

A

∫
d2R χzz(R) = nmJ 2

z pF

4vF N
+ O

(
1

pF �

)
, (5)

and similarly for the second moment,

〈(Jij )2〉dis ≈ J 4
z

A

∫
d2R χzzχzz(R)

= nmJ 4
z p2

F

12π3v2
F N

∫ ∞

�

dR
1

R3
= nmJ 4

z p2
F

24π3v2
F �2N

. (6)

Here A is the area of the system and N = nmA, the number
of localized spins. Note that the integral in Eq. (6) is infrared
divergent, but the result of Eq. (4) is strictly valid at R � �;
therefore, there is a natural cutoff for this integral determined
by the mean free path, which allows one to estimate 〈(Jij )2〉dis

to the leading order in (pF �)−1.
We assume that higher moments of the distribution do

not affect the thermodynamic properties of the system,
which can be studied within the Sherrington-Kirkpatrick (SK)
model [19]. Following SK, the saddle-point equations read

m =
∫ ∞

−∞

dz√
2π

e−(1/2)z2
tanh

(
TFM

T
m + TSG

T
q1/2z

)
, (7)

q =
∫ ∞

−∞

dz√
2π

e−(1/2)z2
tanh2

(
TFM

T
m + TSG

T
q1/2z

)
, (8)

where m = 〈 1
N

∑
i∈m〈Sz

i 〉T 〉dis is the magnetization per spin
and q = 〈 1

N

∑
i∈m〈Sz

i 〉2
T 〉dis is the Edwards-Anderson order

parameter [20], and we have introduced

TFM = nmJ 2
z pF

4vF kB

and TSG = J 2
z pF

2πvF kB

√
nmndis

6π
.

Here we have taken � ∼ n
−1/2
dis , where ndis represents the

concentration of nonmagnetic strong scatterers.
For low concentration of scatterers the model predicts a

second order phase transition to a ferromagnetic state at T =
TFM ∝ nm. In the opposite limit, fluctuations in the couplings
destroy long-range order, and a spin glass phase characterized
by q �= 0 but m = 0 is stabilized below TSG ∝ √

nmndis . The
phase diagram is shown in Fig. 3. Numerical solution of
Eqs. (7) and (8) predicts a region of the parameter space where
the system passes from a paramagnetic to a ferromagnetic
to a reentrant spin glass phase (dashed line in Fig. 3) as the
temperature is reduced. This is strange since at intermediate
temperatures, where entropy plays a role, the system is ordered,
but as T → 0 one finds that a disordered phase is preferred.
This is associated with the instability of the saddle-point
solution of the SK model and the replica symmetry breaking.
From Parisi’s solution [21] we predict a transition from the
spin glass to a modified ferromagnetic phase (sometimes called
mixed phase, where the replica symmetry is broken) at ndis =
3π3

2 nm. The boundary between this modified ferromagnetic
phase and a conventional Ising ferromagnet can be estimated
from the Almeida-Thouless line [22].
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FIG. 3. (Color online) Phase diagram of magnetic adatoms ran-
domly distributed over the surface of a 3D topological insulator,
showing paramagnetic (PM), ferromagnetic (FM), modified ferro-
magnetic (FM′) and spin glass (SG) behavior. The results are based
on the SK model for δ 	 1.

Within this mean-field scenario, the formation of a spin
glass at temperatures well below TSG can be seen as quenched
fluctuations of a mass term in Eq. (1). Net magnetization is
absent beyond the disorder threshold ndis = 3π3nm

2 , and the
situation resembles the quantum percolation picture of the
plateau transition of the quantum Hall effect [23], where the
mass plays the role of the control parameter. These fluctuations
are marginally irrelevant in the renormalization group sense,
whereas higher moments are marginal at the tree level, what
justifies our previous assumptions.

In summary, we have computed the first moments of the
distribution for the RKKY interaction in a weakly disordered
helical metal and applied the results to infer some trends
in the collective behavior of magnetic adatoms on a 3D
topological insulator. For Jz � J‖, our analysis reveals that
the ensemble of localized spins freezes to a spin glass

phase above the disorder threshold ndis = 3π3nm

2 . In-plane
exchange interactions may help to stabilize this phase for
weaker disorder due to frustration. The randomization in the
orientation of the spins of the magnetic adatoms due to the
helicity of carriers enforces this picture. In the spin glass
phase, a spectral gap is precluded due to the lack of a net
magnetic moment. This means that an ARPES experiment
would report no gap opening in this scenario. Therefore, the
presence of disorder may explain the dispersion in results for
photoemission experiments in magnetically doped topological
insulators. Nevertheless, a local probe [24] could test the
consequences of the breakdown of time-reversal symmetry
due to the freezing of the moments of the magnetic adatoms.

Finally, it is worth mentioning that the effect of a time-
reversal symmetry breaking in the electron gas that mediates
the interaction is not taken into account in a self-consistent
way. In a recent calculation, the authors of Ref. [25] showed
that a gap opening does not change the general structure of
the RKKY interaction. Similarly, effects of dissipation can
be neglected at first glance based on the argument that the
RKKY interaction depends on electronic states deep inside the
Fermi sea, not only at the Fermi surface, whereas dissipative
phenomena as the Kondo effect is purely a Fermi-surface
effect [26]. In other words, a rearrangement of the low energy
part of the spectrum does not dramatically affect the RKKY
interaction. Nevertheless, interesting novel physics beyond the
scope of this work may appear at low temperatures, particularly
in the disordered phase.
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