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Finite-temperature Gutzwiller approximation from the time-dependent variational principle
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We develop an extension of the Gutzwiller approximation to finite temperatures based on the Dirac-Frenkel
variational principle. Our method does not rely on any entropy inequality, and is substantially more accurate than
the approaches proposed in previous works. We apply our theory to the single-band Hubbard model at different
fillings, and show that our results compare quantitatively well with dynamical mean field theory in the metallic
phase. We discuss potential applications of our technique within the framework of first-principle calculations.
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The Gutzwiller approximation (GA) [1–3] is a very useful
tool in order to study the ground state of complex strongly cor-
related electron systems. This important many-body technique
has been also formulated and implemented in combination
with density functional theory (DFT) [4], e.g., in the LDA+GA
approach [5–7], which has been applied successfully to many
real materials [7–15]. For strongly correlated metals, the
accuracy of the GA is comparable with dynamical mean field
theory (DMFT) [16,17], even though the GA is much less
computationally demanding. This property makes it an ideal
theoretical tool, as numerical speed is essential for the purpose
of studying and discovering new materials.

In order to study several temperature-dependent phenom-
ena, such as structural and magnetic transitions and coherence-
incoherence crossovers, it would be highly desirable to have
at our disposal an extension to finite temperatures of the
GA as accurate as the ordinary theory for the ground state.
In fact, this would enable us to study these properties
also for correlated systems so complex to be out of the
reach of the presently available methods, such as DMFT.
These motivations have stimulated several previous efforts to
generalize the GA to finite temperatures [18–23]. In particular,
the extension of the GA derived in Refs. [22,23], which is
based on an exact entropy inequality, enables one to evaluate
the free energy [23] more accurately than in previous works
[18–20]. However, estimating the entropy using an
inequality—rather than calculating it exactly—constitutes a
source of approximation not present in the GA theory for the
ground state, thus leading to finite-temperature results less
accurate than at zero temperature.

In this work we introduce an extension of the GA to
finite temperatures based on the Dirac-Frenkel variational
principle [24–26] and, in particular, on the time-dependent
GA theory [27–30] (that we generalize to mixed states). Our
method does not rely on any entropy inequality, but only on
the variational principle and the Gutzwiller approximation—
which are the same approximations done in the ordinary zero-
temperature GA. Consequently, as we are going to show, our
theory improves considerably the method of Refs. [22,23], and
gives results in good quantitative agreement with DMFT for
correlated metals, even though it is much less computationally
demanding.

*Corresponding author: lanata@physics.rutgers.edu

Imaginary-time evolution. Let us consider a generic system
of correlated electrons represented by a Hamiltonian Ĥ, and
define the imaginary-time evolution of a given initial density
matrix ρ̂0 as follows:

ρ̂(τ ) = e−Ĥτ ρ̂0e
−Ĥτ , (1)

i.e., according to the following differential equation:

∂τ ρ̂(τ ) = −[Ĥρ̂(τ ) + ρ̂(τ )Ĥ] ≡ −{Ĥ,ρ̂(τ )}. (2)

Our aim consists in approximating the imaginary-time dy-
namics defined above and using it to construct the state of N

electrons at temperature T . In fact, if τ = β/2 and ρ̂0 = P̂N

is the projector onto the subspace with N electrons, Eq. (1)
reduces to P̂Ne−βĤ, which represents a thermal state with
T ≡ 1/β [31].

In order to derive our approximation scheme, it will be
useful to think of ρ̂ as the density matrix corresponding to an
ensemble of pure states {|�n〉},

ρ̂(τ ) ≡
∑

n

pn|�n(τ )〉〈�n(τ )|, (3)

where pn are fixed probability coefficients. Within this
definition, evolving ρ̂ according to Eq. (1) amounts to evolving
all of the pure states of the ensemble according to the equation

d|�n(τ )〉 = −Ĥ|�n(τ )〉dτ. (4)

Note that Eq. (4) resembles a Schrödinger evolution in
imaginary time, as it can be obtained from the ordinary
real-time Schrödinger evolution

d|�n(t)〉 = −iĤ|�n(t)〉dt (5)

by substituting dt → −i dτ .
Real-time Dirac-Frenkel scheme. Let us introduce the

following action [26]:

S{pn}[{�n(t)}] =
∫ tf

ti

dt L{pn}[{�n(t)}], (6)

L{pn}[{�n}] ≡
∑

n

pn〈�n| i∂t − Ĥ |�n〉

=
∑

n

pn〈�n| i∂t |�n〉 − E, (7)

where E ≡ ∑
n pn〈�n| Ĥ |�n〉. Note that S{pn} depends para-

metrically on the probability coefficients pn, which are fixed
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and depend only on the initial condition. From now on we
refer to Eq. (6) as the Dirac-Frenkel action.

It can be readily verified that, regardless of the values of pn,
the exact solution of the Lagrange equations for the ensemble
of states {|�n(t)〉} is given by Eq. (5).

The key advantage of the Dirac-Frenkel characterization of
the time evolution outlined above is that it allows us to build
up a well-founded variational approximation scheme for the
time evolution [Eq. (5)] as follows.

Let us assume that we want to solve approximately the time-
dependent problem by restricting the search of the solution
within a subset M of trial ensembles {|�n〉}. Once we are
able to evaluate the action S along any given trajectory in
M, the Dirac-Frenkel variational principle provides us with a
prescription to approximate the instantaneous time evolution
of any {|�n〉} ∈ M. Note that, by construction, this time
evolution is such that {|�n(t)〉} ∈ M ∀t .

Application to the GA. For the sake of simplicity, in this
work the method will be formulated for the single-band
Hubbard model:

Ĥ =
∑
R �=R′

∑
σ=↑,↓

εRR′ c
†
Rσ cR′σ + U

∑
R

c
†
R↑cR↑c

†
R↓cR↓, (8)

where R is the site label and σ is the spin label. This model
will be studied at generic filling N/N = 1 + δ, where N
is the number of sites and δ is the doping. Furthermore,
a paramagnetic solution will be assumed. The extension
to multiband Hubbard models is straightforward, and its
numerical implementation will be discussed in a future work.

Here we want to search for the saddle point of the Dirac-
Frenkel action within the set MG of ensembles of Gutzwiller
states represented as follows:

{|�n〉} = {P̂G |�0n〉} ≡ MG, (9)

where |�0n〉 are Slater determinants and P̂G ≡ ∏
R P̂R is

an operator whose local components are defined as P̂R ≡∑


′ �

′ |R,
〉〈R′,
|, where �

′ are generally complex

numbers and |R,
〉〈R,
′| act onto the corresponding local
many-body states |R,
〉 ∈ {|0〉,|R,↑〉,|R,↓〉,|R,↑↓〉}. Note
that from the assumptions that P̂R conserves the number of
electrons and is spin rotationally invariant it follows that the
off-diagonal elements of � are zero.

The physical density matrix corresponding to the ensemble
[Eq. (9)] is

ρ̂G ≡ P̂Gρ̂∗
0 P̂

†
G, (10)

where

ρ̂∗
0 ≡

∑
n

pn|�0n〉〈�0n|
/ ∑

n

pn〈�0n|�0n〉 (11)

is called variational density matrix. We assume that ρ̂∗
0 can

be represented as the Boltzmann distribution of a generic
noninteracting Hamiltonian ∀t .

Note that the variational form of ρ̂G is exactly the same as
in Ref. [23]. Consequently, the same procedure can be applied
to evaluate the total energy corresponding to ρ̂G, which is
necessary to evaluate the Dirac-Frenkel action [see Eq. (7)].
Let us summarize the main steps of this procedure. (1) The
set of ensembles MG is restricted by the so-called Gutzwiller

constraints [22,23,32]:

Tr[ρ̂∗
0 P̂

†
RP̂R] = 1, (12)

Tr[ρ̂∗
0 P̂

†
RP̂R c

†
Rσ cRσ ] = Tr[ρ̂∗

0c
†
Rσ cRσ ] = [1 + δ]/2. (13)

(2) The Gutzwiller approximation is assumed [3], which is an
approximation scheme that, as DMFT [16], becomes exact in
the limit of infinite coordination lattices. As in Ref. [23], we
introduce the matrix of slave-boson amplitudes:

φ

′ = δ

′�



√
P 0


, (14)

P 0

 ≡ Tr[ρ̂∗

0 |R,
〉〈R,
|]. (15)

(3) Within the above definitions and the Gutzwiller approxi-
mation, the Gutzwiller constraints can be represented as

Tr[φ†φ] = 1, (16)

Tr[φ†φF †
σFσ ] = Tr[ρ̂∗

0c
†
Rσ cRσ ] = [1 + δ]/2, (17)

where [Fσ ]

′ ≡ 〈
 |cRσ | 
′〉. (4) Furthermore, it can be
shown that φφ† represents the local reduced density matrix in
the basis {|R,
〉}, while the expectation values of the intersite
single-particle density-matrix operators is given by

Tr[ρ̂Gc
†
Rσ cR′σ ] = |R|2Tr[ρ̂∗

0c
†
Rσ cR′σ ] ∀R �= R′, (18)

where R = Tr[φ†F †
σφFσ ]/[1 − δ2]1/2.

The above equations enable us to evaluate the total energy
E [23], which enters in the definition of the GA Dirac-Frenkel
Lagrange function [see Eq. (7)]. The term of Eq. (7) involv-
ing the time derivative can be readily evaluated following
Ref. [29]. In conclusion, thanks to the equations above, the GA
Dirac-Frenkel Lagrange function can be rewritten as follows:

L{pn}[{�0n}; φ,R,R∗,D,D∗]

=
∑

n

pn〈�0n| i∂t − |R|2
∑
R �=R′

∑
σ=↑,↓

εRR′c
†
Rσ cR′σ |�0n〉

+N Tr[φ†i∂tφ] − N Tr[Uφφ†F †
↑F↑F

†
↓F↓]

−N
∑

σ=↑,↓
(Tr[Dφ†F †

σφFσ ] − DR[1 − δ2]1/2 + c.c.).

(19)

Note that, following Ref. [7], we have formally enforced the
definition of R using the Lagrange multiplier D.

The Lagrange equations for the real-time dynamics induced
by Eq. (19) are the following:

[
i∂t − ĤRe

qp [R,R∗]
]|�0n〉 = 0 ∀n, (20)

[
i∂t − H Re

emb[D,D∗]
]
φ = 0, (21)

R = Tr[φ†F †
σφFσ ][1 − δ2]−1/2, (22)

D = 2[1 − δ2]−1/2Tr

[
ρ̂∗

0
∂

∂RĤRe
qp [R,R∗]

]
, (23)
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where

ĤRe
qp [R,R∗] ≡ |R|2

∑
R �=R′

∑
σ

εRR′c
†
Rσ cR′σ , (24)

H Re
emb[D,D∗]φ ≡ δ

δφ†

{
Tr[U φφ† F

†
↑F↑F

†
↓F↓]

+
∑

σ

(Tr[D φ†F †
σφFσ ] + c.c.)

}
φ. (25)

Note that the generator of the instantaneous evolution is
quadratic and identical for all of the |�0n〉, and that also
the evolution of φ resembles formally a time-dependent
Schrödinger equation.

The instantaneous real-time evolution described by the
equations above corresponds to applying well-defined incre-
ments on all of the states of MG [see Eq. (9)]. We may
represent these increments as follows:

d|�n〉 = [(∂t P̂G)|�0n〉 + P̂G(∂t |�0n〉)]dt. (26)

Imaginary-time dynamics. Our goal consists in modifying
the real-time GA dynamics defined above in order to approxi-
mate the imaginary-time evolution [Eq. (4)].

The formal similarity between Eqs. (4) and (5) suggests
that it is possible to approximate the imaginary-time evolution
of {|�n〉} simply by substituting dt → −i dτ in Eq. (26). It
can be readily verified that this prescription would amount to
updating the Gutzwiller variational parameters [see Eqs. (14)
and (15)] as follows [33]:

[
∂τ + ĤRe

qp [R,R∗]
]|�0n〉 = 0 ∀n, (27)

[
∂τ + H Re

emb[D,D∗]
]
φ = 0. (28)

Unfortunately, Eqs. (27) and (28) violate the Gutzwiller
constraints [see Eqs. (16) and (17)]. Consequently, similarly
to Ref. [34], it is necessary to define a “projection scheme” in
order to enforce them at every time step.

Here we propose to enforce Eqs. (16) and (17) by using the
following prescription:

[
∂τ + ĤIm

qp [R,R∗,E0]
]|�0n〉 = 0 ∀n, (29)

[
∂τ + H Im

emb[D,D∗,λc,Ec]
]
φ = 0, (30)

where the “generators” have been modified as follows:

Ĥ
qp ≡ ĤRe

qp − E0, (31)

H Im
embφ ≡ H Re

embφ + δ Tr
[
λc

∑
σ φ†φF †

σFσ − Ecφ†φ
]

δφ† φ, (32)

and E0(τ ) is constructed in order to enforce the normalization
condition of ρ̂∗

0 [see Eq. (11)], while Ec(τ ) and λc(τ ) are
constructed in order to enforce Eqs (16) and (17), respectively.

We point out that the procedure defined above enables us to
recover the ordinary GA theory for the ground state at τ → ∞.
In fact, within the formulation of Ref. [7], the GA parameters
of the ground state are obtained as the ground states of ĤIm

qp and

H Im
emb, which correspond to a fixed point of our imaginary-time

dynamics.
It can be readily verified that Eq. (29) implies that the

imaginary-time evolution of the variational density matrix is
given by

ρ̂∗
0 (τ ) = P̂Ne−2

∫ τ

0 dτ ′[Z(τ ′)
∑

R �=R′ ,σ εRR′ c†Rσ c
R′σ −E0(τ ′)], (33)

where Z(τ ′) ≡ |R(τ ′)|2 is the Gutzwiller quasiparticle weight,
and E0(τ ′) is constructed in order to enforce the normalization
condition of ρ̂∗

0 (τ ) for all imaginary times. In fact, Eq. (33)
satisfies

∂τ ρ̂
∗
0 (τ ) = −{

H Im
qp (τ ),ρ̂∗

0 (τ )
}
, (34)

which is consistent with Eq. (29), and enables us to avoid
keeping track of the time evolution of all of the states of MG

(which would be practically impossible).
Note that, since we are in the thermodynamical limit, the

expectation values with respect to ρ̂∗
0 (τ ) can be evaluated in

the grand-canonical ensemble, i.e., we can assume that

ρ̂∗
0 (τ ) ∝ e−β∗

0 (τ )[
∑

R �=R′ ,σ εRR′ c†Rσ c
R′σ −μ∗

0(τ )N̂], (35)

where β∗
0 (τ ) ≡ 2

∫ τ

0 dτ ′Z(τ ′), N̂ is the number operator, and
μ∗

0(τ ) is such that the system has N electrons on average.
The imaginary-time evolution of the slave-boson ampli-

tudes is obtained by substituting Eq. (35) into the other
Lagrange equations and solving them numerically. A possi-
ble numerical implementation is explained in detail in the
Supplemental Material [35].

Numerical results. Let us now discuss our numerical
calculations of the Hubbard model [see Eq. (8)]. We assume
a semicircular density of states (corresponding to a Bethe
lattice in infinite dimensions) [36] and set the half-bandwidth
D as the unit of energy. For comparison, we perform
DMFT calculations using the continuous time quantum Monte
Carlo method [37,38] as impurity solver, as implemented in
TRIQS [39].

Note that in the following calculations the entropy will
not be calculated directly from the GA variational parameters
(which could be done only approximately [23]), but will be
evaluated as a by-product of the imaginary-time evolution of
the total energy, i.e., by using the thermodynamical identity
dS = dE/T and fixing the constant of integration in such a
way that at S(T = ∞) is exact.

In Fig. 1 is shown the evolution of the double occupancy
d ≡ 〈c†R↑cR↑c

†
R↓cR↓〉 (upper panel) and the total energy (lower

panel) as a function of the temperature at half-filling for several
values of U . In the inset is shown the corresponding entropy
for U/D = 1.95. The GA results are shown in comparison
with DMFT and the Gutzwiller data of Ref. [22].

The agreement between the GA and DMFT+CTQMC is
quantitatively satisfactory, especially for smaller values of
U and higher temperatures (i.e., when the system is less
correlated). Indeed, our method substantially improves the
results obtained within the approximation scheme of Ref. [22].
The slight quantitative discrepancy with DMFT for larger
U ’s reflects the known fact that the Mott insulator is not
well described by the GA, but is approximated by the simple
atomic limit, which is a state with d = 0. However, as long
as the system is metallic, our extension of the GA to finite
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FIG. 1. (Color online) GA calculations of the single-band Hub-
bard model at half-filling (N/N = 1) in comparison with
DMFT+CTQMC and the data of Ref. [22]. Upper panel: Temperature
dependence of the double occupancy. Lower panel: Temperature
dependence of total energy per site. Inset of the lower panel:
Temperature dependence of the GA entropy per site in comparison
with DMFT.

temperatures is remarkably accurate. Also the GA entropy
is in reasonable agreement with DMFT and, in particular, it
displays the expected plateau at S � ln(2) [40]. However, since
the integral of dS over the whole range of temperatures is not
exact, the GA entropy does not vanish at T → 0, even though,
as pointed out before, the GA solution is actually a pure state in
this limit. Note that DMFT does not suffer this inconvenience
because it is an exact theory in infinite dimensions, while the
GA is a variational approximation in this limit.

Let us now consider the Hubbard model away from half-
filling. In particular, we consider the case of N/N = 0.8
electrons per site (i.e., δ = −0.2). In the upper panel of Fig. 2
is shown the temperature dependence of the double occupancy
for several values of U , while in the lower panel is shown the
evolution of the total energy E . Finally, in the inset of the lower
panel is shown the temperature dependence of the entropy for
U/D = 4, in comparison with the DMFT entropy calculated
in Ref. [40].

The agreement between the GA and DMFT+CTQMC is
even better for N/N = 0.8 than for half-filling (which is to
be expected, as the doped system is metallic for all U ’s).

FIG. 2. (Color online) GA calculations of the single-band Hub-
bard model away from half-filling (N/N = 0.8) in comparison with
DMFT+CTQMC. Upper panel: Temperature dependence of the
double occupancy. Lower panel: Temperature dependence of the total
energy per site. Inset of the lower panel: Temperature dependence
of the GA entropy per site in comparison with the DMFT data of
Ref. [40].

It is especially remarkable the fact that the behavior of S

is satisfactory for U/D = 4, which is the largest interaction
strength considered. In particular, we point out that the position
of the plateau is in excellent agreement with DMFT, and is
consistent with the expected value based on the atomic limit:
S � −(1 + δ) ln( 1+δ

2 ) + δ ln(−δ). Note that for the doped
system the value of S at T → ∞ is −(1 + δ) ln( 1+δ

2 ) − (1 −
δ) ln( 1−δ

2 )], which is slightly smaller than ln(4).
In conclusion, using the Dirac-Frenkel variational principle,

we have developed an extension of the GA to finite tempera-
tures as accurate as the ordinary GA theory for the ground
state. We have performed benchmark calculations of the
single-band Hubbard model at different fillings, and compared
our results with DMFT+CTQMC, finding good quantitative
agreement between the two methods in the metallic phase.
We believe that our method will enable us to calculate from
first principles several important physical quantities—such as
the specific heat, the entropy, and the temperature-dependent
structural properties—of strongly correlated systems presently
too complex to be studied with more accurate methods,
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such as DMFT. It will also be interesting to see whether
the imaginary-time scheme proposed in this work can be
used to develop an efficient numerical alternative strategy
to calculate the GA ground state of complex multiband
systems.
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[14] N. Lanatà, Y. X. Yao, C. Z. Wang, K. M. Ho, J. Schmalian, K.
Haule, and G. Kotliar, Phys. Rev. Lett. 111, 196801 (2013).
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