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Transport properties for a quantum dot coupled to normal leads with a pseudogap
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We study transport properties for a quantum dot coupled to normal leads with a pseudogap density of states at
zero temperature, using the second-order perturbation theory based on the Keldysh formalism. We clarify that the
hybridization function �(ω) ∝ |ω|r (0 � r < 1) induces the cusp or dip structure in the density of states in the
dot when finite bias voltage is applied to the interacting quantum dot system. It is found that the current-voltage
characteristics and differential conductance are drastically changed at r = 1/2.
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Electron transports through the nanoscale systems have
attracted much interest. One of the fundamental systems is a
quantum dot (QD) [1], where the role of electron correlations
has been discussed. Among them, the Kondo effect [2] is one
of the central issues in these systems [3–5] and it has been
clarified that electrons around the Fermi level in leads screen
a localized spin in the QD at low temperatures, namely the
strong coupling (SC) state. The Kondo screening effect induces
the Kondo resonance peak at the Fermi level, which yields
finite conductance through the QD and the Fano-Kondo effect
[6–9]. The current-voltage characteristics have been examined
in terms of the perturbation theory with respect to the Coulomb
energy [10,11] and the the continuous-time quantum Monte
Carlo (CTQMC) method [12,13]. The role of the electronic
states in the lead in stabilizing the SC state has been discussed.
When a superconducting lead is attached, the Kondo effect is
suppressed due to the superconducting gap [14]. In this case,
the SC state competes with the singlet pairing superconducting
states, which has been discussed experimentally [15] and
theoretically [16–21]. It is also interesting to discuss the
stability of the SC state against the low density of states (DOS)
at the Fermi level.

Recently the systems with a power-law DOS ρ(ω) ∝ |ω|r
with r � 0 have been realized such as unconventional super-
conductors, graphene, and the surface states of the topological
insulators. For instance, magnetic adatoms on graphene (r =
1) are responsible for the Kondo effect [22,23]. This Kondo
effect can be controlled by external gate voltages [24,25],
and the screening effect can be observed using a scanning
tunneling microscope. In addition, a recent experiment shows
that the Kondo effect can be induced by lattice vacancies
[26]. The magnetic impurity model in fermions with the
power-law DOS, called the pseudogap Kondo model, shows
a competition between the SC and local moment (LM) states
and consequently a quantum phase transition between these
states takes place, which is missing for the conventional Kondo
model (r = 0). The pseudogap Kondo problem in equilibrium
has been studied intensively [27–35], to understand the nature
of the impurity quantum phase transition.

The ground state in equilibrium for the symmetric pseu-
dogap Anderson model has been discussed. For 1/2 < r , the
LM state is always realized while for 0 < r < 1/2 the SC
state is realized when the Coulomb energy is smaller than a

certain critical value. The boundary for the impurity quantum
phase transition between these two states has been determined
by the numerical renormalization group method [28–30]. The
perturbative renormalization group (RG) with respect to the
s-d coupling constant has been applied to determine the RG
flow diagram [31]. The CTQMC method has been applied to
discuss finite temperature scaling relations in the vicinity of
the quantum critical point [32].

It is still nontrivial how the competition between the SC and
LM states affects the transport properties at zero temperature
although the universal scaling in electron transport has been
found using the perturbative RG scaling [36]. Therefore,
it is desired to study how the pseudogap structure affects
the transport properties in the QD system. Here we address
the issue from the view of the second order perturbation
(SPT) theory [37] accompanying the nonequilibrium CTQMC
method. In the equilibrium system, the SC state is not
adiabatically connected to the LM state. Therefore, the simple
SPT cannot describe the LM state correctly. On the other hand,
when the bias voltage is applied, the DOS at the Fermi energy
in both leads is finite, which should allow us to perform the
SPT theory. We first check this point by comparing with
the CTQMC results. Then we discuss in detail the shape
of the local density of states as a function of r to demonstrate
a qualitative difference in the conductance through the QD.

We consider electron transport through a QD connected to
two leads. The system is described by the following Anderson
impurity Hamiltonian as

Ĥ =
∑
kασ

(εk − μα)ĉ†kασ ĉkασ +
∑
kασ

(vkαĉ
†
kασ d̂σ + H.c.)

+
∑

σ

εd d̂
†
σ d̂σ + Un̂↑n̂↓, (1)

where ĉkασ (ĉ†kασ ) annihilates (creates) an electron with wave
vector k and spin σ (=↑,↓) in the α(=L,R)th lead. d̂σ (d̂†

σ )
annihilates (creates) an electron at the QD, and n̂σ = d̂†

σ d̂σ .
εk is the dispersion relation of the lead, and vkα is the
hybridization between the αth lead and QD. εd and U are the
energy level and Coulomb interaction at the QD, respectively.
To discuss the transport properties in the system, we set the
chemical potentials as μL = V/2 and μR = −V/2, where V
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is the bias voltage. For simplicity we focus on the particle-hole
symmetric case with εd + U/2 = 0. We consider the following
hybridization function:

�(ω) = π
∑
kα

|vkα|2δ(ω − εk) = �

∣∣∣ω
�

∣∣∣r , (2)

with a constant � and 0 � r < 1. Here we have introduced
no cutoff in the hybridization function. Note that when V �=
0, �(μL) = �(μR) �= 0 while �(μL) = �(μR) = 0 at zero
voltage. All energy scales are measured in units of � below.

In the paper we apply the SPT to the model Hamiltonian (1)
using the Keldysh Green’s function method. This method has
an advantage in correctly dealing with the conventional An-
derson impurity model with particle-hole symmetry [38,39].
The self-energy is then given as [10,40]


α
σ = −U 2

∫∫
dω1

2π

dω2

2π
Gα

σ̄ (ω1)Gᾱ
σ̄ (ω1 + ω2 − ω)Gα

σ (ω2),

(3)

where Gα
σ (α =< , >) is the noninteracting Keldysh Green’s

function. To study the electron transport through the QD, we
first calculate the DOS in the QD, which is given as

ρ(ω) = − 1

π
Im

1

ω − �r (ω) − 
r (ω)
, (4)

where �r = −[tan(πr/2) sgn ω + i]�(ω) [28,37] and 
r is
the retarded self-energy. Its real and imaginary parts are given
as

Re 
r
σ (ω) = 1

π
P

∫
Im 
r

σ (x)

x − ω
dx, (5)

Im 
r
σ (ω) = i

2

[

>

σ (ω) − 
<
σ (ω)

]
, (6)

where P is the Cauchy’s principal-value integral. Calculating
the current I = ∫ V/2

0 ρ(ω)�(ω)dω and the differential conduc-
tance G(V ) = ∂I/∂V numerically, we discuss how ρ(ω) and
G(V ) depend on U and r .

Before we proceed with our discussion, we check the
validity of the SPT. To this end we also calculate I using
the CTQMC method in the continuous-time auxiliary field
formation [12,13]. In the method one can examine the time
evolution of physical quantities after the interaction quench.
Although it is hard to deduce the steady current precisely in
the large U regime, we can study the tendency of the physical
quantities against the interaction strength. The obtained results
with a fixed time t = tmax are shown in Fig. 1. When
r = 0.4(0.6), the increase of U decreases (increases) I . The
CTQMC results are in good agreement with the SPT ones;
even when U/� = 1.5, the discrepancy between the two
methods is within a few percent. Note that the consistency
for r = 0.6 is in contrast to that for the zero bias voltage
case since it is known that the SPT method is not applicable
when 1/2 < r < 1 for zero bias voltage [37]. These results
indicate that the SPT correctly describes the QD system with
the power-law hybridization (0 � r < 1) at finite bias voltage.

First, we study the shape of ρ(ω) as a function of r using
the SPT. Figure 2 shows the results for U/� = 8.0. When
r = 0 and V/� = 0.5, the Kondo resonance peak appears at
ω ∼ 0 together with the Coulomb peaks at ω ∼ ±U/2. As

FIG. 1. (Color online) The current I as a function of U at
V/� = 0.5 and T = 0 when r = 0.4 (a) and r = 0.6 (b). The solid
lines represent the results obtained from the SPT. The open circles
are obtained by the nonequilibrium CTQMC method with a fixed
maximum time tmax� = 50.0 (69.0) for the system with r = 0.4 (0.6).

the bias voltage increases beyond the Kondo energy scale, the
Kondo resonance peak smears out and two Coulomb peaks
are visible [11,41]. In the parameter space we could find no
double peaks at the chemical potentials ω ∼ μα since the
system is not in the large U limit [11,42]. As r increases,
these two peaks ω ∼ ±U/2 approach each other. For instance,
the peaks are located at ω ∼ ±0.5� when r = 0.6. Since its
energy is far from the bare Coulomb interaction, one may
regard them as the renormalized Coulomb peaks. In addition to
them, we find the cusp or dip structure around ω = 0 induced
by the introduction of r . This behavior is clearly found in
the logarithmic plot of ρ(ω), as shown in the right panel of
Fig. 2. In the case 0 < r < 0.5 with the low bias voltage
V/� = 0.5, the sharp cusp structure appears together with

FIG. 2. (Color online) Dashed (solid) lines represent the DOS for
the QD in the system with V/� = 0.5 (10.0) and U/� = 8.0, which
are shown in linear (left panel) and logarithmic (right panel) scales.
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the Kondo resonance peak. This is similar to the low-energy
structure in the equilibrium system (V = 0) with r > 0 [29],
which suggests that the steady state with 0 < r < 0.5 and
V/� = 0.5 should be characterized by the SC state. We also
find that the sharp peak structure remains even in the large
V case. Therefore, this sharp peak is distinct from the Kondo
resonance one. When 1/2 < r < 1, on the other hand, the dip
structure appears, namely the absence of the Kondo resonance.

To clarify how the cusp or dip structure appears in ρ(ω), we
numerically examine the self-energy around ω = 0 and then
find the following power-law dependence:

Re
r (ω) ∼
{

a ω
�
, 0 � r < 1/3,

a sgn(ω)
∣∣ω
�

∣∣2−3r
, r > 1/3,

(7)

Im
r (ω) ∼ −b + c

∣∣∣∣ω�
∣∣∣∣
2−3r

,

where the real coefficients a, b, and c are certain constants.
Substituting Eq. (7) into Eq. (4), the power-law behavior of
ρ(ω) around ω = 0 is classified into five cases:

ρ(ω) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
π(�+b)

{
1 + O

[(
ω
�

)2]}
, r = 0,

1
πb

[
1 − �

b

∣∣ω
�

∣∣r], 0 < r < 1/2,

1
πb

[
1 + c−�

b

∣∣ω
�

∣∣1/2]
, r = 1/2,

1
πb

[
1 + c

b

∣∣ω
�

∣∣2−3r]
, 1/2 < r < 2/3,

1
πc

cos2
[

π
2 (2 − 3r)

]∣∣ω
�

∣∣3r−2
, 2/3 < r.

(8)

When r = 0, the system is reduced to the conventional QD,
where ρ(ω) − ρ(0) ∼ O(ω2). When U > 0, ρ(0) is finite for
0 < r < 2/3 while ρ(0) = 0 for 2/3 < r < 1. When 0 < r <

1/2, ρ(ω) always has a local maximum at ω = 0 since �/b2 >

0. On the other hand, in the case 1/2 < r , we find c > 0, and
a dip structure appears around ω = 0. When r = 1/2, the low
energy structure of ρ(ω) depends on U since it determines
the ratio c/�. Figure 3 shows ρ(ω) with r = 1/2 for various
values of U . When U < U0 (U > U0), the cusp (dip) structure
appears, where U0 is the critical interaction at which c/� = 1.
We find U0/� ∼ 5 with little dependence on V .

We end up with the schematic diagram for ρ(ω) around
ω = 0, as shown in Fig. 4. We wish to note that, in the case
(I) with 0 < r < 1/2, the prefactor of the power-law �/b2

indicates that the cusp structure is formed by the cooperative
phenomenon between the interaction and the hybridization.
Therefore, it is expected that the steady state denoted by the
region (I) should be continuously connected to the SC state,
which is realized in the equilibrium system with r < 1/2 and
small U case. On the other hand, in the case (II) with r > 1/2,
the prefactor depends only on the self-energy. Therefore, we
can say that the steady state denoted by the region (II) is
connected to the LM state with the gap when V → 0. Then
we find that the obtained diagram is consistent with the ground
state phase diagram [28–30]. This means that the SPT based
on the Keldysh formalism captures the essence of ground state
properties.

Next, we discuss the transport properties in the system.
In Fig. 5 we show the current I obtained by the SPT and
CTQMC methods for U/� = 8.0. In the high voltage regime,

FIG. 3. (Color online) The DOS plots for the system with r =
1/2.

it displays the excellent agreement between the two methods.
Note that, in the weaker coupling case U � V , the increase
in r monotonically decreases the current in the high voltage
region. In the low voltage regime, it is hard to obtain the
steady current by means of the CTQMC method due to the
serious sign problem. The SPT results exhibit that the current
strongly depends on the power r , as shown in the inset of Fig. 5.
Namely, the introduction of the bias voltage linearly increases
the current in the case r < 1/2, while I is suppressed for
r > 1/2.

To make these clear, we also calculate the differential
conductance G, as shown in Fig. 6. At large voltages, G show
a broad peak determined by the high energy Coulomb peaks in
ρ(ω). Since the Coulomb energy is renormalized as r increases,
the broad peak shifts toward lower V . On the other hand, G

around V = 0 is affected by the low energy structure in ρ(ω).
When r = 0, the Kondo peak yields the unitary limit of G

at V = 0. Increasing the power r , the Kondo peak becomes
obscure and the cusp behavior is induced instead, as discussed
above. The sharp cusp leads to the sudden decrease on the
introduction of the voltage, as shown in Fig. 6. On the other

r

U/Γ
U0/Γ

O 1/2 1

region (I) region (II)

FIG. 4. (Color online) Phase diagram when the finite bias voltage
is applied. In the region I (II), the cusp (dip) structure appears in ρ(ω)
around ω = 0.
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FIG. 5. (Color online) The current I as a function of the bias
voltage V for U/� = 8.0. Open symbols represent the SPT results.
Solid symbols represent the results by the CTQMC method.

hand, when r > 0.5, the dip structure in ρ(ω) suppress G

around V . This is in contrast to the result for r < 1/2 although
G at V = 0 cannot be estimated directly. To see this difference
clearly, we show the logarithmic plot of G in the inset of Fig. 6.
It is found that, in the case r � 0.4, G is finite while it vanishes
in the case r = 0.6. In this way, the G-V characteristics can
display the difference between the regions (I) and (II) in
Fig. 4.

In the paper we have discussed transport properties in
the QD system with pseudogap structure. Since the current
through the quantum dot should be the order of the picoam-
pere [43], a drastic change in transport properties should
be observed. However, we did not consider more realistic
conditions such as the STM measurements of the graphene and
quantum dot system without particle-hole symmetry. These

FIG. 6. (Color online) The differential conductance G as a func-
tion of the bias voltage V in the system with U/� = 8.0.

are interesting problems for experiments, which is now under
consideration.

We have investigated transport properties through a QD
coupled to normal leads with the pseudogap density of states.
Using the second-order perturbation theory based on the
Keldysh formalism, we have examined the DOS for the QD.
The phase diagram with the LM and SC states is shown
for finite bias voltage. The G-V characteristics distinguish
between LM and SC states in the phase diagram.
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[1] L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog.
Phys. 64, 701 (2001).

[2] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[3] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-

Magder, U. Meirav, and M. A. Kastner, Nature (London) 391,
156 (1998).

[4] S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven,
Science 281, 540 (1998).

[5] W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M.
Elzerman, S. Tarucha, and L. P. Kouwenhoven, Science 289,
2105 (2000).

[6] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev.
Lett. 88, 256806 (2002).
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