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Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy
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A general expression for the thermodynamic potential of the model of semi-infinite jellium is obtained. By
using this expression, the surface energy for the infinite barrier model is calculated. The behavior of the surface
energy and of the chemical potential as functions of the Wigner-Seitz radius and the influence of the Coulomb
interaction between electrons on the calculated values is studied. It is shown that taking into account the Coulomb
interaction between electrons leads to growth of the surface energy. The surface energy is positive in the entire
area of the Wigner-Seitz radius. It is shown that taking into account the Coulomb interaction between electrons
leads to a decrease of the chemical potential.
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I. INTRODUCTION

The development of a quantum-statistical theory of Fermi
systems with interfaces is one of the most important prob-
lems of contemporary statistical physics. In particular, the
richness of surface phenomena and the rapid development of
experimental methods of investigation of surfaces requires the
development of a theory of such systems.

The most popular theoretical method for studying this area
of research is the density functional theory [1–3], which has
been developed from the well-known Thomas-Fermi method
for atoms. By construction, the density functional theory
is a one-particle approach and can not properly take into
account the many-body correlation effects. Therefore the
energy functionals for inhomogeneous systems are mostly
used in the local density approximation [2], namely, the
electron density distribution n(r) is substituted by the average
electron density n = const in the well-known expressions
of the theory for homogeneous systems. This approach is
questionable [4], since the presence of the interface brings both
quantitative and qualitative changes of various characteristics
of an electronic system, e.g., the image forces, which cannot
be obtained from the density functional theory in principle.

The surface energy of semi-infinite jellium calculated in
the density functional theory turns out to be negative for large
values of the electron concentration (rs < 2.5 aB, where rs is
the Wigner-Seitz radius) [5]. This is physically incorrect. The
surface energy must be positive, otherwise the metal would
spontaneously split. At present, the general belief is that the
cause of negativity of the surface energy is the replacement
of the discrete ionic lattice by a uniform positive background.
Thus, in the work of Lang and Kohn [5], a discrete lattice is
accounted for by using the first-order perturbation theory in
the pseudopotential. As a result, the surface energy becomes
positive and is satisfactorily consistent with the experimental
data for a number of simple metals [5]. A variational procedure
has been developed by Monnier and Perdew [6,7] to take into
account the averaged effect with the introduction of discrete
additions to the potential inside a metal, which depends on
the structure of the lattice and the surface. The obtained
results for the surface energy were very close to the results
of Lang and Kohn and were in better agreement with the
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experimental data. Later, Appelbaum, and Hamann [8] used
the local density approximation and performed calculations
for the Cu(111) surface, with the account of the discrete
ionic lattice without perturbation theory. They have obtained
a good agreement with the experimental data. The authors of
all these studies have assumed that the nonlocal exchange-
correlation effects are negligible and can be omitted. In the
works found in Refs. [9,10], the calculations of the surface
energy were performed with a varying position of the last
(exposed) ion layer and a good agreement with experimental
data for the surface energy of simple metals was obtained. In
Refs. [11–13], a stabilized jellium model has been proposed. In
this model, the pseudopotential correction, which is averaged
over the Wigner-Seitz cell, is incorporated into the effective
potential inside the metal. This model yields positive values
for the surface energy. Thus the consideration of a discrete
ionic lattice permits to solve the problem of negative values of
the surface energy.

However, it is not clear that neglecting the discreteness
is the principal and only reason of discrepancy between
the theory and experiment. Probably, the theory could be
improved, still remaining in the framework of the jellium
model. There have been attempts to go beyond the local
density approximation. Namely, Schmit and Lucas [14],
Craig [15], and Peuckert [16] have considered certain nonlocal
contributions to the exchange-correlation term to the surface
energy, due to the change of zero energy of plasmons and the
appearance of surface modes during the separation of crystal
into fragments. From a good agreement of this contribution
with the experimental data for the surface energy, the authors
of these works proposed to identify this contribution with
the total surface energy, suggesting that other contributions,
which have not been accounted for, canceled each other. This
approach is actively debated in Refs. [17–24]. The expressions
for the exchange-correlation energy of a bounded electron gas
have been obtained by Harris and Jones [22,23], Wikborg and
Inglesfield [25], and Johnson and Srinivasan [27], focusing
on the analysis of nonlocal effects. The exchange part of the
surface energy was calculated for electrons in a potential box
with infinitely high walls [22,23], and the exchange-correlation
and exchange parts were calculated in the random phase
approximation [25]. A comparison of these results with those
calculated in the local density approximation has showed
that the exchange-correlation parts differ by about 10%, the
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exchange parts differ by 50%, and the correlation parts differ
by six times. The local density approximation works much bet-
ter for the sum of the exchange and correlation parts of energy
rather than for each individual contribution (see also Ref. [26]).
Further calculations, using more realistic models of the surface
barrier [28–32], namely, the gradient expansions [32–39], and
the analysis of Langreth and Perdew [38,39], have found a
decisive contribution of the local density approximation to the
exchange-correlation part of energy as well. In particular, the
calculations [35] show that the nonlocal corrections do not
exceed 16%, although the relative contribution of nonlocality
into the total surface energy can be much larger (up to 40%)
because for many metals the exchange-correlation part of the
surface energy is greater than the total surface energy [5].

More recent studies have renewed the debate about the
correctness of the application of the local density approxima-
tion in the calculation of the surface energy. Using the Fermi
hypernetted-chain equations [40,41] previous calculations
obtained significantly higher values of the surface energy
than calculated by Lang and Kohn in the local density
approximation [5]. In contrast, the values of the surface
energy obtained in the calculations using density functional
theory [42] with the nonlocal functional of Langreth and
Mehl [43] are much closer to the results obtained with
the local density approximation. Calculations of the surface
energy with the quantum Monte Carlo method [44,45] have
shown that the values of the surface energy obtained at high
concentrations (rs � 2.07 aB) are in a good agreement with
the results obtained using a nonlocal functional, but at lower
concentrations (rs � 3.25 aB) they are in good agreement with
the results of Krotscheck and Kohn [40,41]. On the other hand,
Pitarke has concluded that the local density approximation
leads to a small error in the exchange-correlation of the
surface energy [46]. In this work, the long-range correlations
are taken into account self-consistently in the random phase
approximation, while the short-range correlations are included
in the time-dependent local density approximation [47,48].

In Ref. [49], the surface energy is calculated by using the
one- and two-particle distribution functions of electrons, which
are obtained in Ref. [50] by taking into account the Coulomb
interaction between electrons. It is found that the surface
energy is positive in the entire range of electron concentrations.

Takahashi and Onzawa have calculated the electron density
distribution and the surface energy of the noninteracting
electron gas for the finite barrier model [51]. It is interesting
that the electron density without self-consistency is very close
to the self-consistent calculations of Lang and Kohn [5],
and the surface energy is positive for all concentrations of
electrons. Moreover, their result is close to the result of Lang
and Kohn at low concentrations.

In the present work, our principle objective is to construct
a consistent quantum-statistical theory of a simple metal with
the “metal-vacuum” interface in the framework of the jellium
model. An effective potential of interelectron interaction,
which we have studied recently in Refs. [52–56], is crucial
for calculating the general expression for the thermodynamic
potential. It is shown that within certain approximations the
thermodynamic potential can be represented as a functional of
the one- and two-particle distribution functions of electrons.
At low temperatures, the nonlinear algebraic equation for the

chemical potential and a general expression for the internal
energy are obtained from the thermodynamic potential. It is
shown that the obtained equation for the chemical potential
of a nonhomogeneous system is similar to the equation for
a homogeneous system. The chemical potential is calculated
as a function of the Wigner-Seitz radius. The one particle
distribution function of electrons is calculated for the infinite
barrier model. Expressions for the extensive and surface
contributions to the internal energy are obtained. For the same
model, a calculation of the surface contribution to the internal
energy, which is the surface energy at low temperature, is
performed. The behavior of the surface energy as a function
of the Wigner-Seitz radius is studied. We have found that the
surface energy calculated in the present work is positive in
the entire concentration range typical for metals, and at low
concentrations is consistent with the calculations of Lang and
Kohn [5]. The influence of the Coulomb interaction between
electrons on the calculated characteristics is studied. Detailed
calculations of these properties are given in Ref. [57].

II. MODEL

We consider a system of N electrons in the volume V = SL

in the field of positive charge with the distribution

�jell(R) ≡ �jell(R||,Z) ≡ �jell(Z)

= �0θ(−Z) =
{
�0, Z � 0
0, Z > 0 , (1)

where Z = 0 is the dividing plane, θ(x) is the Heaviside
step function, R|| = (X,Y ), X,Y ∈ [−√

S/2,+√
S/2], Z ∈

[−L/2, + L/2]. The condition of electroneutrality is satisfied,

lim
S,L→∞

∫
S

dR||
∫ +L/2

−L/2
dZ �jell(R||,Z) = eN, e > 0, (2)

moreover, in the thermodynamic limit, we have

lim
N,S,L→∞

eN

SL
= lim

N,V →∞
eN

V/2
= �0. (3)

This model system is known as “semi-infinite jellium” and
it is one of the simplest models of semi-infinite metal, which
satisfactorily describes simple metals. The Hamiltonian of the
model is

Hjell = − �
2

2m

N∑
i=1

�i + 1

2

N∑
i �=j=1

e2

|ri − rj |

−
N∑

j=1

∫
V

dR
e�jell(R)

|rj − R|

+ 1

2

∫
V

dR1

∫
V

dR2
�jell(R1)�jell(R2)

|R1 − R2| , (4)

where rj is the position of j -th electron; the first term is the
kinetic energy of electrons (m is the electron mass), the second
term is the potential energy of the interelectron interaction,
the third term is the energy of interaction of electrons with a
positive charge, and the fourth term is the potential energy of
the positive charge.
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From Hamiltonian (4), we extract the Hamiltonian of the
infinite jellium model H unif

jell :

H unif
jell = − �

2

2m

N∑
i=1

�i + 1

2

N∑
i �=j=1

e2

|ri − rj |

−
N∑

j=1

∫
V

dR
e2N/V

|rj − R|

+ 1

2

∫
V

dR1

∫
V

dR2
(eN/V )2

|R1 − R2| ; (5)

here, the physical meaning of the terms is similar to the terms
of Hamiltonian (4).

Thus we get

Hjell = H unif
jell +

N∑
j=1

Vsurf(rj ) + 1

2

∫
V

dR1

∫
V

dR2

× �jell(R1)�jell(R2) − (eN/V )2

|R1 − R2| , (6)

where

Vsurf(rj ) =
∫

V

dR
e(eN/V − �jell(R))

|rj − R| (7)

is the surface potential acting on the electron. This potential
is formed by the deviation of the positive charge distribution
from the uniform one. So, if instead of �jell(R) we put the
uniform distribution eN/V , then the surface potential and the
last term in the Hamiltonian (5) disappear and one obtains

lim
�jell→ eN

V

Hjell = H unif
jell .

It should be noted that as a consequence of the symmetry
of the model, the surface potential Vsurf(r) is a function of the
normal to the dividing plane coordinates of the electron only,
the motion of the electron in a plane parallel to the dividing
plane is free, i.e.,

Vsurf(r) ≡ Vsurf(z).

In order to calculate the thermodynamic potential of the
system, it is convenient to present Hamiltonian (6) in the
second quantization representation.

III. SECOND QUANTIZATION REPRESENTATION

We introduce the single-particle wave functions �a(r) and
the corresponding energies Ea of the electron in the field of
the surface potential Vsurf(z),[

− �
2

2m
� + Vsurf(z)

]
�a(r) = Ea�a(r), (8)

which we use to construct the representation of the second
quantization.

Since the potential in the stationary Schrödinger equa-
tion (8) depends only on the normal to the dividing plane
coordinate of the electron, the variables can be separated. Then

we obtain

Ea = �
2k2

||
2m

+ εα, a = (k||,α), (9)

�a(r) = 1√
S

eik||r||ϕα(z), (10)

where r|| is the two-dimensional coordinate of the electron in
the plane parallel to the dividing plane, k|| is the wave vector
of the electron in this plane, and

k|| = (k||x,k||y), k||x,y = 2πnx,y√
S

, nx,y = 0,±1,±2, . . . ,

(11)

α is some quantum number that depends on the form of
the surface potential, the functions ϕα(z) satisfy the one-
dimensional stationary Schrödinger equation[

− �
2

2m

d2

dz2
+ Vsurf(z)

]
ϕα(z) = εαϕα(z).

In the second quantization representation constructed by
means of the wave functions (10), the Hamiltonian of the
system becomes

H =
∑
k||,α

Eα(k||)a†
α(k||)aα(k||) − 1

2S
N
∑
q �=0

ν(q,0)

+ 1

2SL

∑
q �=0

∑
k

νk(q)ρk(q)ρ−k(−q), (12)

where a†
α(k||), aα(k||) are the operators of electron creation and

annihilation, respectively, in the state (k||,α), and the standard
commutation relations are

{aα1
(k||1),a†

α2
(k||2)} = δk||1,k||2δα1,α2 , (13)

N =
∑
k||,α

a†
α(k||)aα(k||) (14)

is the particle number operator, ν(q,0) = 2πe2

q
, νk(q) =

4πe2/(q2 + k2) is the Fourier transform of the Coulomb
interaction, qx,y = 2π√

S
mx,y , mx,y = 0,±1,±2, . . ., k = 2π

L
n,

n = 0,±1,±2, . . ., and

ρk(q) =
∑

k||,α,α′
〈α|e−ikz|α′〉a†

α(k||)aα′ (k|| − q) (15)

is the mixed Fourier representation of the local density of
electrons,

〈α| · · · |α′〉 =
∫ +L/2

−L/2
dz ϕ∗

α(z) · · ·ϕα′ (z). (16)

It is worth noting that in Eq. (12), there are no terms
with q = 0, due to the electroneutrality condition (2). The
Hamiltonian in form (12) is convenient for the calculation
of the thermodynamic potential by the functional integration
method.
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IV. THERMODYNAMIC POTENTIAL

A. Functional representation

The grand partition function,

� = Sp exp[−β(H − μN )], (17)

which determines the thermodynamic potential of the system,

� = − 1

β
ln �, (18)

and other thermodynamic functions, in the interaction repre-
sentation becomes

� = �0 exp

⎛⎝ β

2S
〈N〉0

∑
q �=0

ν(q,0)

⎞⎠�int, (19)

where �0 = Sp exp(−β(H0 − μN )), H0 =∑k||,α Eα(k||)
a†

α(k||)aα(k||) is the Hamiltonian of the noninteracting system,
μ is the chemical potential,

〈. . .〉0 = 1

�0
Sp(e−β(H0−μN) . . .),

〈N〉0 =
∑
k||,α

〈a†
α(k||)aα(k||)〉0 =

∑
k||,α

nα(k||), (20)

nα(k||) = 1

eβ(Eα (k||)−μ) + 1
is the Fermi-Dirac distribution,

�int = 〈S(β)〉0,

S(β) = T exp

⎡⎣− 1

2SL

∫ β

0
dβ ′∑

q �=0

∑
k

νk(q)

×ρk(q,β ′)ρ−k(−q,β ′)

⎤⎦, (21)

ρk(q,β ′) = eβ ′(H0−μN)ρk(q)e−β ′(H0−μN), (22)

where T is the symbol of chronological ordering of “times”,
β = 1/θ , and θ is the thermodynamic temperature.

For further calculations, it is convenient to switch to the
spectral representation:

ρk(q,ν) = 1

β

∫ β

0
dβ ′eiνβ ′

ρk(q,β ′), (23)

ρk(q,β ′) =
∑

ν

e−iνβ ′
ρk(q,ν), (24)

where ν = 2π
β

n (n = 0,±1,±2, . . .) are Bose frequencies.
Then (21) becomes

S(β)

= T exp

⎡⎣− 1

2SL

∑
q �=0

∑
k

∑
ν

νk(q)ρk(q,ν)ρ−k(−q,−ν)

⎤⎦.

(25)

In order to simplify the approximation S(β) accord-
ing to (20), we switch to a functional representation for

S(β) [58,59], using the Stratonovich-Hubbard identity [60]

exp

[
−1

2
yTAy

]
= (detA)−1/2

∫ +∞

−∞
(dx) exp

[
−1

2
xTA−1x + i xTy

]
, (26)

where (dx) = ∏n
k=1

dxk√
2π

, yT = (y1, . . . ,yn), xT = (x1, . . . ,xn),
and A is a positively defined matrix. Then, for (25), we obtain

S(β) =
∏
q �=0

∏
k

∏
ν

(
β

SL
νk(q)

)−1/2 ∫
(dω)

× exp

⎡⎣−1

2

∑
q �=0

∑
k

∑
ν

(
β

SL
νk(q)

)−1

ωk(q,ν)

×ω−k(−q,−ν)

⎤⎦
× T exp

⎡⎣i
∑
q �=0

∑
k

∑
ν

ωk(q,ν)ρk(q,ν)

⎤⎦, (27)

where (dω) is the element of the phase space:

(dω) =
∏
q>0

∏
k�0

∏
ν�0

dωc
k(q,ν)√

π

dωs
k(q,ν)√

π
,

ωk(q,ν) = ωc
k(q,ν) + iωs

k(q,ν),

ωc
k(q,ν) = ωc

−k(−q,−ν), ωs
k(q,ν) = −ωs

−k(−q,−ν).

Note that due to the fact that the operator variables ρk(q,ν) are
under sign T ordering in (27), it is impossible to perform an
integration by β ′ in Eq. (23).

By making an average of S(β) according to (20), we obtain

�int = 〈S(β)〉0 =
∏
q �=0

∏
k

∏
ν

(
β

SL
νk(q)

)−1/2 ∫
(dω)J (ω),

(28)

where

J (ω) = exp

[
−1

2

∑
q �=0

∑
k

∑
ν

(
β

SL
νk(q)

)−1

×ωk(q,ν)ω−k(−q,−ν)

]
× exp

[∑
n�2

1

n!

∑
q1 �= 0,k1,ν1

. . . . . . . . . . . . . . .

qn �= 0,kn,νn

M
0
k1,...,kn

(q1,ν1, . . . ,qn,νn)

×ωk1 (q1,ν1) . . . ωkn
(qn,νn)

]
, (29)

M
0
k1,...,kn

(q1,ν1, . . . ,qn,νn) = in〈Tρk1 (q1,ν1) . . . ρkn
(qn,νn)〉0,c

∼ δq1+q2+...+qn,0 δν1+ν2+...+νn,0
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are the so-called irreducible mean values (cumulants), δ is the
Kronecker delta, and M

0
k(q,ν) ≡ 0, because q �= 0.

In general terms, the calculation of integral (28) is a
complicated problem due to the exponential index having
terms with n � 3. Their neglect results in the Gaussian
approximation (or the so-called random phase approximation).
As a rule, the calculation of this integral is done by means of
a series expansion of the non-Gaussian part of integral (29)
with subsequent averaging with a Gaussian distribution and
partial summing up of the terms that give the most important
contribution. In contrast, in Ref. [52], it was shown that the
integrand J (ω) can be approximated by a Gaussian form
JG(ω), introducing the unknown function Dk1,k2 (q,ν):

JG(ω) = exp

[
−1

2

∑
q �=0

∑
k1,k2

∑
ν

(
β

S
gk1,k2 (q,ν)

)−1

×ωk1 (q,ν)ωk2 (−q,−ν)

]
, (30)

where gk1,k2 (q,ν) is the Fourier transform of effective inter-
electron interaction,(

β

S
gk1,k2 (q,ν)

)−1

=
(

β

SL
νk1 (q)

)−1

δk1+k2,0 − Dk1,k2 (q,ν).

(31)

We will seek the unknown function Dk1,k2 (q,ν) from
the condition that the mean value of ωk1 (q,ν)ωk2 (−q,−ν),
calculated with the distribution J (ω), is equal to the mean
value, obtained with the Gaussian distribution JG(ω), namely,
from the condition

ωk1 (q,ν)ωk2 (−q,−ν) = 〈ωk1 (q,ν)ωk2 (−q,−ν)〉G, (32)

where we have introduced the following notation:

. . . =
∫

(dω)J (ω) . . .∫
(dω)J (ω)

,

〈. . .〉G =
∫

(dω)JG(ω) . . .∫
(dω)JG(ω)

. (33)

In Ref. [52], it is shown that the solution of Eq. (32) in the
matrix form is

D = M(I + VM)−1, (34)

where I is the identity matrix,

V =
∥∥∥∥ β

SL
νk1 (q)δk1+k2,0

∥∥∥∥,
M = ‖Mk1,k2 (q,ν,−q,−ν)‖,

Mk1,k2 (q,ν,−q,−ν) = i2〈Tρk1 (q,ν)ρk2 (−q,−ν)〉
is the two-particle correlator, where the averaging is performed
with the Hamiltonian of the system:

〈. . .〉 = 1

�
Sp(e−β(H−μN) . . .). (35)

With this approximation, the functional representation for
�int is

�int = − 1

β
ln �int

= − 1

β
ln
∏
q �=0

∏
ν

∏
k

(
β

SL
νk(q)

)−1/2 ∫
(dω)JG(ω). (36)

This Gaussian functional integral can be easily calculated. The
result is

�int = − 1

2β

∑
q �=0

∑
ν

ln
det g(q,ν)∏

k
1
L
νk(q)

. (37)

Consequently, the following expression for the thermodynamic
potential � (18) can be obtained:

� = �0 − 1

2S
〈N〉0

∑
q �=0

ν(q,0) + �int, (38)

where

�0 = − 1

β
ln �0 = − 1

β

∑
k||,α

ln[1 + eβ(μ−Eα (k||))] (39)

is the thermodynamical potential of the noninteracting system1

(the calculation of �0 is done in Appendix B).
Therefore the calculation of the thermodynamic potential in

this approach requires knowledge of the effective interelectron
interaction by taking into account the presence of the dividing
plane. Its Fourier transform satisfies the matrix equation (31).
This equation can be written as

gk1,k2 (q,ν) = 1

L
νk1 (q)δk1+k2,0

+ β

SL

∑
k

νk1 (q)D−k1,k(q,ν)gk,k2 (q,ν). (40)

Because

gk1,k2 (q,ν) = 1

L2

∫ + L
2

− L
2

dz1

∫ + L
2

− L
2

dz2

× eik1z1+ik2z2g(q,ν,z1,z2),

g(q,ν,z1,z2) =
∑
k1,k2

e−ik1z1−ik2z2gk1,k2 (q,ν) (41)

and

Dk1,k2 (q,ν) = 1

L2

∫ + L
2

− L
2

dz1

∫ + L
2

− L
2

dz2

× e−ik1z1−ik2z2D(q,ν,z1,z2),

D(q,ν,z1,z2) =
∑
k1,k2

eik1z1+ik2z2Dk1,k2 (q,ν), (42)

1Because the form of the thermodynamic potential �0 as a
function of μ coincides with the thermodynamic potential of an
ideal electron gas, the thermodynamic potential �0 (39) is called
by us thermodynamic potential of the noninteracting system though
it indirectly takes into account the Coulomb interaction between
electrons via the chemical potential μ of interacting electrons.
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Eq. (40) in (q,z) representation has the form

g(q,ν,z1,z2) = ν(q,z1 − z2) + β

SL2

∫ + L
2

− L
2

dz

∫ + L
2

− L
2

dz′

× ν(q,z1 − z′)D(q,ν,z′,z)g(q,ν,z,z2). (43)

This integral equation was solved with different approxima-
tions in Refs. [52–56].

B. The calculation of �int

As shown in Eq. (37), the calculation of the thermodynamic
potential requires the evaluation of the determinant of the
matrix effective interelectron interaction. This is challenging,
since the order of the matrix is infinite. We can use the
well-known identity (see, for example, Ref. [61])

ln detA = Sp lnA,

with further expansions in series lnA, then we calculate the
trace of each matrix term in the series and sum up the series.

To avoid this, we propose a different procedure (it is
equivalent to the approach outlined above). The essence is
to build a differential equation for the unknown quantity �int.
To this end, we introduce the function JG(ω,λ) instead of
JG(ω) (30), which depends on the parameter λ:

JG(ω,λ) = exp

⎡⎣−1

2

∑
q �=0

∑
k1,k2

∑
ν

(
β

S
gk1,k2 (q,ν,λ)

)−1

× ωk1 (q,ν)ωk2 (−q,−ν)

⎤⎦, (44)

where gk1,k2 (q,ν,λ) is the Fourier transform of the effective
interelectron interaction, which depends on the parameter λ,(

β

S
gk1,k2 (q,ν,λ)

)−1

=
(

β

SL
νk1 (q)

)−1

δk1+k2,0 − λ Dk1,k2 (q,ν), (45)

moreover, gk1,k2 (q,ν) ≡ gk1,k2 (q,ν,1), JG(ω) ≡ JG(ω,1).
Then, �int and �int will depend on this parameter as well:

�int(λ) = − 1

β
ln �int(λ)

= − 1

β
ln
∏
q �=0

∏
ν

∏
k

(
β

SL
νk(q)

)−1/2 ∫
(dω)JG(ω,λ),

(46)

moreover, �int = �int(1).
We need to perform differentiation of �int(λ) with respect

to the parameter λ, and arrive at the result

d�int(λ)

dλ

= − 1

2β

∑
q �= 0,ν

k1,k2

Dk1,k2 (q,ν)〈ωk1 (q,ν)ωk2 (−q,−ν)〉G(λ),

(47)

where we have introduced the average

〈. . .〉G(λ) =
∫

(dω)JG(ω,λ) . . .∫
(dω)JG(ω,λ)

. (48)

Averaging (33) is equivalent to averaging (48) when in the
latter the parameter λ is 1, 〈. . .〉G = 〈. . .〉G(1).

Therefore �int(λ) satisfies a differential equation of the
first order [see Eq. (47)]. In order to obtain an unambiguous
solution of the first-order differential equation, it must be
supplemented by a single additional condition. It is worth
noting that

�int(0) = 1

β
ln 1 = 0. (49)

We easily find the solution of the Cauchy problem (47)
and (49):

�int ≡ �int(1) = − 1

2β

∑
q �= 0,ν

k1,k2

Dk1,k2 (q,ν)

×
∫ 1

0
〈ωk1 (q,ν)ωk2 (−q,−ν)〉G(λ)dλ. (50)

Averaging ωk1 (q,ν)ωk2 (−q,−ν) with the Gaussian distribution
JG(ω,λ) yields

〈ωk1 (q,ν)ωk2 (−q,−ν)〉G(λ) = β

S
gk1,k2 (q,ν,λ). (51)

Thus we have obtained a convenient expression for the
calculation of �int:

�int = − 1

2S

∑
q �= 0,ν

k1,k2

Dk1,k2 (q,ν)
∫ 1

0
gk1,k2 (q,ν,λ)dλ. (52)

Using the relations (41) (which holds for the effective
interelectron interaction dependent on λ) and (42), we get

�int = − 1

2SL2

∑
q �=0,ν

∫ + L
2

− L
2

dz1

∫ + L
2

− L
2

dz2 D(q,ν,z1,z2)

×
∫ 1

0
g(q,ν,z1,z2,λ)dλ. (53)

Further evaluation of �int using this formula should be
carried out numerically. In order to obtain the analytical
results, we make the following approximation: (1) D ≈ M

0,
namely, we apply the random phase approximation; and (2)
g(q,ν,z1,z2,λ) ≈ g(q,0,z1,z2,λ) ≡ g(q,z1,z2,λ), i.e., we ne-
glect the dependence of the effective interelectron interaction
on Bose frequency ν.

Then, the expression for �int is simplified:

�int ≈ − 1

2SL2

∑
q �=0

∫ + L
2

− L
2

dz1

∫ + L
2

− L
2

dz2

∑
ν

M
0(q,ν,z1,z2)

×
∫ 1

0
g(q,z1,z2,λ)dλ. (54)
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In this expression, the summation by the frequency ν only
applies to the function

M
0(q,ν,z1,z2) = L2

β

∑
k||,α1,α2

nα1 (k||) − nα2 (k|| − q)

−iν + Eα1 (k||) − Eα2 (k|| − q)

×ϕ∗
α1

(z1)ϕα2
(z1)ϕ∗

α2
(z2)ϕα1

(z2)

and can be performed analytically∑
ν

M
0(q,ν,z1,z2) = −L2

∑
k||,α1

nα1 (k||)|ϕα1 (z1)|2δ(z1 − z2)

+L2
∑

k||,α1,α2

nα1 (k||)nα2 (k|| − q)ϕ∗
α1

(z1)

×ϕα2
(z1)ϕ∗

α2
(z2)ϕα1

(z2), (55)

where δ(z1 − z2) is the Dirac delta function.
The effective interelectron interaction g(q,z1,z2,λ) is the

solution of the integral equation

g(q,z1,z2,λ) = ν(q,z1 − z2) + β

SL2
λ

×
∫ +L/2

−L/2
dz

∫ +L/2

−L/2
dz′ ν(q|z1 − z′)

×M
0(q,0,z′,z)g(q,z,z2,λ). (56)

Substituting Eq. (55) into Eq. (54) and Eq. (54) in Eq. (38),
we find the thermodynamic potential

� = �0 − 1

2S
〈N〉0

∑
q �=0

ν(q,0) + 1

2S

∑
q �=0

∑
k||,α

nα(k||)

×
∫ + L

2

− L
2

dz |ϕα(z)|2
∫ 1

0
g(q,z,z,λ)dλ

− 1

2S

∑
q �=0

∑
k||,α1,α2

nα1 (k||)nα2 (k|| − q)

×
∫ + L

2

− L
2

dz1

∫ + L
2

− L
2

dz2 ϕ∗
α1

(z1)ϕα2
(z1)ϕ∗

α2
(z2)ϕα1

(z2)

×
∫ 1

0
g(q,z1,z2,λ)dλ. (57)

Taking into account the expressions for the one- and two-
particle distribution functions of electrons in the semi-infinite
jellium [50],

F 0
1 (z) = V

S〈N〉0

∑
k||,α

|ϕα(z)|2nα(k||), (58)

F 0
2 (r||,z1,z2) = F 0

1 (z1)F 0
1 (z2) − V 2

S2〈N〉2
0

×
∑
k||,α1
k′

||,α2

eik||r||nα1 (k′
||)nα2 (k′

|| − k||)

×ϕ∗
α1

(z1)ϕα2
(z1)ϕ∗

α2
(z2)ϕα1

(z2), (59)

the thermodynamic potential can be represented as

� = �0 − 1

2S
〈N〉0

∑
q �=0

ν(q,0) + 1

2

〈N〉0S

V

×
∫ + L

2

− L
2

dz F 0
1 (z)

∫ 1

0
dλ g(r||,z,z,λ)

∣∣
r||=0

+ 1

2

〈N〉2
0S

V 2

∫
S

dr||
∫ + L

2

− L
2

dz1

∫ + L
2

− L
2

dz2
(
F 0

2 (r||,z1,z2)

−F 0
1 (z1)F 0

1 (z2)
) ∫ 1

0
dλ g(r||,z1,z2,λ), (60)

where

g(r||,z1,z2,λ) = 1

S

∑
q

eiqr||g(q,z1,z2,λ) (61)

is the effective interelectron interaction in the coordinate
representation, which depends on the parameter λ.

It should be noted that the expressions (58) and (59)
coincide by form with the expressions for the distribution
functions of electrons without the Coulomb interaction, but
these distribution functions depend on the chemical potential
μ of interacting electrons.

C. Thermodynamic potential in the case
of the infinite barrier model

The form of the surface potential Vsurf(z) must be specified
to perform further calculation of the thermodynamic potential
according to the expressions (57) or (60). We use the infinite
barrier model for the surface potential, namely,

Vsurf(z) =
{∞, z > d,

0, z < d.
(62)

The wave functions and the corresponding energy levels for
the model are

ϕα(z) = 2√
L + 2d

{
sin(α(d − z)), z � d,

0, z > d,

εα = �
2α2

2m
, (63)

where

α = πn(
L
2 + d

) , n = 1,2,3, . . . . (64)

The one-particle distribution function of the model is

F 0
1 (z) =

[
1 + 3 cos(2KF(d − z))

(2KF(d − z))2
− 3 sin(2KF(d − z))

(2KF(d − z))3

]
× θ(d − z). (65)

This expression for d = 0 coincides by form with the one-
particle distribution function without the Coulomb interac-
tion [62–65], but the expression (65) takes into account the
Coulomb interaction through the magnitude of the Fermi wave
vector KF of interacting electrons.

The parameter d, which determines the position of the
infinite potential barrier, is determined by the condition of
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electroneutrality:

lim
L→∞

∫ L/2

−L/2
dz

(
F 0

1 (z) − 1

�0
�jell(z)

)
= lim

L→∞

∫ L/2

−L/2
dz
(
F 0

1 (z) − θ(−z)
) = 0.

From this condition it follows that

d = 3π

8KF
, (66)

i.e., this parameter is inversely proportional to the magnitude
of the Fermi wave vector.

Using the technique to solve the integral equation (56)
(see Refs. [53,54]), we obtain the following expression for
the effective interelectron interaction g(q,z1,z2,λ),

g(q,z1 � d,z2 � d,λ)

= 2πe2

Q(λ)

[
e−Q(λ)|z1−z2| + Q(λ) − q

Q(λ) + q
eQ(λ)(z1+z2−2d)

]
,

g(q,z1 � d,z2 � d,λ)

= 2πe2

q

[
e−q|z1−z2| − Q(λ) − q

Q(λ) + q
e−q(z1+z2−2d)

]
,

g(q,z1 � d,z2 � d,λ) = 4πe2

Q(λ) + q
eQ(λ)(z2−d)−q(z1−d),

g(q,z1 � d,z2 � d,λ) = 4πe2

Q(λ) + q
eQ(λ)(z1−d)−q(z2−d),

where Q(λ) =
√

q2 + λ �2
TFL( q

2KF
),L(x) = 1

2 + 1−x2

4x
ln | 1+x

1−x
|,

�TF =
√

4
π

KF
aB

is the inverse Thomas-Fermi radius of screening,

and aB is the Bohr radius.
After the summation by the wave vector k|| in (57), we get

� = �bulk + �surf, (67)

where the first term is the extensive contribution to the
thermodynamic potential (it is proportional to the volume of
the system SL), the second term is the surface contribution
(it is proportional to the area of the dividing plane S). The
extensive contribution to the thermodynamic potential is

�bulk = �0,bulk + ��bulk, (68)

where

�0,bulk

SL/2
= − �

2

15mπ2
K5

F = − 2

15π2
(KFaB)5 Ry

a3
B

(69)

is the extensive contribution to the thermodynamic potential
of the noninteracting system per unit volume [see Eq. (B3)].
This contribution depends on the magnitude of the Fermi wave
vector KF of interacting electrons. ��bulk has the form

��bulk

SL/2
= e2K3

F

6π2

∫ ∞

0
dq

[ ∫ 1

0
dλ

q

Q(λ)
− 1

]
− e2

2π4

∫ ∞

0
dq q

∫ KF

0
dα1

∫ KF

0
dα2J̃ (q,α1,α2)

×
∫ 1

0
dλ g1(q,α1,α2,λ), (70)

where

J̃ (q,α1,α2)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{
πc2

1, c2 > c1,

πc2
2, c1 > c2,

0 � q < |c1 − c2|,

f (c1,c2,q) + f (c2,c1,q), |c1 − c2| � q < c1 + c2,

0, q � c1 + c2,

c1 =
√
K2

F − α2
1, c2 =

√
K2

F − α2
2,

f (c1,c2,q) = c2
1

(
π

2
− arcsin

c2
1 − c2

2 + q2

2qc1

)

− c2
1 − c2

2 + q2

2q

√
c2

1 −
(
c2

1 − c2
2 + q2

)2
4q2

,

g1(q,α1,α2,λ) = Q2(λ) + α2
1 + α2

2(
Q2(λ) + α2

1 + α2
2

)2 − 4α2
1α

2
2

.

It should be noted that the dividing plane has no effect on
the expression given by Eq. (68) and actually this expression
is the thermodynamic potential of the homogeneous system
per unit volume. However, the thermodynamic potential of the
homogeneous system can be calculated in a similar manner,
based on the Hamiltonian of the infinite jellium (5). These
calculations are much simpler, and at the similar level of
approximations, we obtain

�unif

V
= − �

2

15mπ2
K5

F + K3
F

12π4

∫ ∞

0
dq q2

×
[∫ 1

0
dλ gunif(q,λ) − ν(q)

]
− K3

F

12π4

∫ ∞

0
dq q2J̃unif(q)

∫ 1

0
dλ gunif(q,λ), (71)

where

J̃unif(q) =
⎧⎨⎩1 − 3

4

q

KF
+ 1

16

q3

K3
F

, q < 2KF,

0, q � 2KF,

ν(q) = 4πe2

q2 is the three-dimensional Fourier transform of the
Coulomb interaction,

gunif(q,λ) = 4πe2

q2 + λ �2
TFL
(

q

2KF

)
is the three-dimensional Fourier transform of the effective
interelectron interaction of the homogeneous system that
depends on the parameter λ.

Integration by the parameter λ in the expression given by
Eq. (71) can be easily performed and as a result we obtain

�unif

V
= − �

2

15mπ2
K5

F − e2K3
F

3π3

∫ ∞

0
dq

×
[

1 − q2(1 − J̃unif(q))

�2
TFL
(

q

2KF

) ln

(
1 + �2

TF

q2
L

(
q

2KF

))]
.

(72)
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Although Eqs. (68)–(70) and (72) are different by form, they
both lead to the same result, namely to the thermodynamic
potential of the homogeneous system in the random phase
approximation.

The surface contribution to the thermodynamic potential
has the form

�surf = �0,surf + ��surf, (73)

where

�0,surf

S
= �

2K4
F

mπ2

(
π

32
− d KF

15

)
= 2

π2

(
π

32
− d KF

15

)
(KFaB)4 Ry

a2
B

(74)

is the surface contribution to the thermodynamic potential of the noninteracting system per unit area [see Eq. (B4)], which
depends on the magnitude of the Fermi wave vector KF of interacting electrons,

��surf

S
= e2d K3

F

6π2

∫ ∞

0
dq

[ ∫ 1

0
dλ

q

Q(λ)
− 1

]
+ e2K2

F

16π

∫ ∞

0
dq

+ e2K3
F

12π2

∫ ∞

0
dq

∫ 1

0
dλ

q

Q2(λ)

Q(λ) − q

Q(λ) + q

[
1 + 3Q2(λ)

2K2
F

− 3Q(λ)
(
K2

F + Q2(λ)
)

2K2
F

arctan
KF

Q(λ)

]

− e2

4π4

∫ ∞

0
dq q

∫ KF

0
dα1

∫ KF

0
dα2J̃ (q,α1,α2)

∫ 1

0
dλ g2(q,α1,α2,λ), (75)

g2(q,α1,α2,λ) =
{

2g1(q,α1,α2,λ) d +
(

Q(λ) − q

Q(λ) + q
− 2

)
16Q(λ)α2

1α
2
2[(

Q2(λ) + α2
1 + α2

2

)2 − 4α2
1α

2
2

]2
}

.

It is worth mentioning that the second term in the expression
given by Eq. (75) (it is linear on the chemical potential and
is quadratic on the magnitude of the Fermi wave vector KF)
contains the divergent integral. However, as we will see below,
this divergent integral disappears in the calculation of the
internal energy.

V. INTERNAL ENERGY

A. General expressions

By using the thermodynamic potential � and the Gibbs-
Helmholtz equation generalized for the case of variable num-
ber of particles, we obtain the internal energy of the system U ,

U = � − θ
∂�

∂θ
− μ

∂�

∂μ
. (76)

At low temperatures θ → 0, the second term of the right-hand
side (r.h.s.) of this equation vanishes and we get

U = � + μ〈N〉, (77)

where we have used the relation

〈N〉 = 1

�
Sp(eβ(H−μN)N ) = −∂�

∂μ
. (78)

According to Eq. (67), the thermodynamic potential can be
divided into the extensive and surface contributions. Then we
get

〈N〉 = −∂(�bulk + �surf)

∂μ
= Nbulk + Nsurf, (79)

where

Nbulk = −∂�bulk

∂μ
, (80)

Nsurf = −∂�surf

∂μ
, (81)

and

U = Ubulk + Usurf,

Ubulk = �bulk − μ
∂�bulk

∂μ
= �bulk + μNbulk, (82)

Usurf = �surf − μ
∂�surf

∂μ
= �surf + μNsurf (83)

are the extensive and surface contributions to the internal
energy, respectively.

The chemical potential μ is the solution of Eq. (78). By
using (79) in the thermodynamic limit, we get

lim
N,S,L→∞

〈N〉
SL/2

= lim
N,S,L→∞

Nbulk

SL/2
= 3

4π

1

r3
s

,

where rs is the Wigner-Seitz radius in units of the Bohr radius
aB. Moreover, in the thermodynamic limit, the summand Nsurf

does not affect the chemical potential μ (but affects the surface
contribution to the internal energy Usurf) and the equation for
μ can be presented as

〈N〉 = −∂�bulk

∂μ
. (84)

According to Eqs. (82) and (83), in order to calculate
the extensive Ubulk and the surface Usurf contributions to
the internal energy, we need to evaluate the extensive Nbulk

and surface Nsurf contributions to the average of the number
operator of electrons 〈N〉.

B. Average of the number operator of electrons
and the chemical potential

According to Eqs. (80) and (81), Nbulk and Nsurf can be
calculated by taking the derivatives of �bulk and �surf with
respect to the chemical potential μ, respectively. However, it
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is easier to use the functional representation of the thermody-
namic potential � [see Eq. (36)] and compute the derivative
of this expression (38) with respect to the chemical potential
μ. As a result, we find that

〈N〉 = 〈N〉0 + 1

2S

∑
q �=0

ν(q,0)
∂〈N〉0

∂μ

+ 1

2β

∑
q �= 0,ν

k1,k2

∂Dk1,k2 (q,ν)

∂μ

〈
ωk1 (q,ν)ωk2 (−q,−ν)

〉
G,

(85)

where averaging 〈. . .〉G is performed according to Eq. (33).
Considering that〈

ωk1 (q,ν)ωk2 (−q,−ν)
〉
G = β

S
gk1,k2 (q,ν), (86)

Eq. (85) can be rewritten as

〈N〉 = 〈N〉0 + 1

2S

∑
q �=0

ν(q,0)
∂〈N〉0

∂μ

+ 1

2S

∑
q �= 0,ν

k1,k2

∂Dk1,k2 (q,ν)

∂μ
gk1,k2 (q,ν). (87)

Taking into account Eqs. (41) and (42), we obtain

〈N〉 = 〈N〉0 + 1

2S

∑
q �=0

ν(q,0)
∂〈N〉0

∂μ

+ 1

2SL2

∑
q �=0,ν

∫ + L
2

− L
2

dz1

∫ + L
2

− L
2

dz2
∂D(q,ν,z1,z2)

∂μ

× g(q,ν,z1,z2). (88)

In order to simplify this expression, we make similar approx-
imations as in the calculation of the thermodynamic potential
(see page 15). Then the expression given by Eq. (88) is greatly
simplified and

〈N〉 = 〈N〉0 + 1

2S

∑
q �=0

ν(q,0)
∂〈N〉0

∂μ

+ 1

2SL2

∑
q �=0

∫ + L
2

− L
2

dz1

∫ + L
2

− L
2

dz2

×
∑

ν

∂M
0(q,ν,z1,z2)

∂μ
g(q,z1,z2), (89)

where the summation by the frequency ν applies only to the
derivative of the two-particle correlator with respect to the
chemical potential μ and can be performed analytically,∑

ν

∂M
0(q,ν,z1,z2)

∂μ

= −L2
∑
k||,α1

∂nα1 (k||)
∂μ

|ϕα1 (z1)|2δ(z1 − z2)

+L2
∑

k||,α1,α2

∂nα1 (k||)
∂μ

(nα2 (k|| − q) + nα2 (k|| + q))

×ϕ∗
α1

(z1)ϕα2
(z1)ϕ∗

α2
(z2)ϕα1

(z2). (90)

Substituting Eq. (90) into Eq. (89), we find

〈N〉 = 〈N〉0 + 1

2S

∑
q �=0

ν(q,0)
∂〈N〉0

∂μ

− 1

2S

∑
q �=0

∑
k||,α

∂nα(k||)
∂μ

∫ + L
2

− L
2

dz |ϕα(z)|2g(q,z,z)

+ 1

2S

∑
q �=0

∑
k||,α1,α2

∂
(
nα1 (k||)nα2 (k|| − q)

)
∂μ

×
∫ + L

2

− L
2

dz1

∫ + L
2

− L
2

dz2 ϕ∗
α1

(z1)ϕα2
(z1)ϕ∗

α2
(z2)

×ϕα1
(z2)g(q,z1,z2). (91)

Taking into account the expressions for the one- (58) and
two-particle (59) distribution functions of electrons in the
semi-infinite jellium [50], we get

〈N〉 = 〈N〉0 + 1

2S

∑
q �=0

ν(q,0)
∂〈N〉0

∂μ
− 1

2

S

V

×
∫ + L

2

− L
2

dz
∂
(〈N〉0F

0
1 (z)

)
∂μ

g(r||,z,z)
∣∣
r||=0

− 1

2

S

V 2

∫
S

dr||
∫ + L

2

− L
2

dz1

∫ + L
2

− L
2

dz2

× ∂
(〈N〉2

0

(
F 0

2 (r||,z1,z2) − F 0
1 (z1)F 0

1 (z2)
))

∂μ

× g(r||,z1,z2), (92)

where g(r||,z1,z2) is the effective interelectron interaction
in the coordinate representation [note that the transition to
the coordinate representation is similar to Eq. (61)]. The
calculations of 〈N〉0 and ∂〈N〉0/∂μ are done in Appendix C.

C. Average of the number operator of electrons
for the infinite barrier model

For further calculation of (91) or (92), as in above, we
consider the infinite barrier model (62) of the surface potential
Vsurf(z). After the summation over the wave vector k|| in
Eq. (91), we get

Nbulk = N0,bulk + �Nbulk, (93)

where

N0,bulk

SL/2
= K3

F

3π2
(94)

is the extensive contribution to the average of the number
operator 〈N〉 of the noninteracting system per unit volume
[see Eq. (C1)]. This contribution depends on the magnitude of
the Fermi wave vector KF of the interacting electrons. �Nbulk
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has the form

�Nbulk

SL/2
= KF

2π2aB

∫ ∞

0
dq

(
1 − q

Q

)
+ 2

π4aB

∫ ∞

0
dq q

∫ KF

0
dα1

∫ KF

0
dα2 I (q,α1,α2) g1(q,α1,α2,1), (95)

Q ≡ Q(1),

I (q,α1,α2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨⎩
0, 0 � q � c1 − c2,

arccos q2+c2
1−c2

2
2c1q

, c1 − c2 < q � c1 + c2,

0, c1 + c2 < q < ∞,

⎫⎬⎭, c1 > c2,

⎧⎨⎩
π, 0 � q � c2 − c1,

arccos q2+c2
1−c2

2
2c1q

, c2 − c1 < q � c1 + c2,

0, c1 + c2 < q < ∞,

⎫⎬⎭, c2 � c1,

(96)

where

c1 =
√
K2

F − α2
1, c2 =

√
K2

F − α2
2 .

It should be noted that the dividing plane has no effect on
the expressions (93)–(95) and therefore Eq. (93) is the number
of electrons of the homogeneous system per unit volume.
However, the number of electrons of the homogeneous system
can similarly be calculated from the Hamiltonian of the infinite
jellium (5). These calculations are much simpler and with
similar approximations we obtain

Nunif

V
= K3

F

3π2
+ KF

4π4

m

�2

∫ ∞

0
dq q2 (ν(q) − gunif(q))

+ KF

4π4

m

�2

∫ ∞

0
dq q2 Ĩunif(q) gunif(q), (97)

where

Ĩunif(q) =

⎧⎪⎨⎪⎩
2,

q

2KF
� −1,

1 − q

2KF
, −1 <

q

2KF
� 1,

0,
q

2KF
> 1,

gunif(q) = 4πe2

q2 + �2
TFL
(

q

2KF

)
is the three-dimensional Fourier transform of the effective
interelectron interaction of the homogeneous system.

Substituting the expressions for the three-dimensional
Fourier transforms of the Coulomb interaction ν(q) and the
effective interelectron interaction gunif(q) into Eq. (97), we get

Nunif

V
= K3

F

3π2
+ KF

π3aB

∫ ∞

0
dq

(
�2

TFL
(

q

2KF

)+ q2Ĩunif(q)
)

q2 + �2
TFL
(

q

2KF

) .

(98)

The expressions (93)–(95) and (98) are nonlinear algebraic

equations for the chemical potential μ (μ = �
2K2

F
2m

). Although
their form is different but they yield the same result, because
the dividing plane does not affect the chemical potential.

In Fig. 1, the chemical potential as a function of the
Wigner-Seitz radius rs is presented. The nomenclature of
lines is given in the figure caption. It is worth noting that
the chemical potential is the solution of nonlinear algebraic
equations (98), and the chemical potential of noninteracting

electrons is

μ0 =
(

9π

4

)2/3 1

(rs/aB)2
Ry. (99)

It can be seen that taking into account the Coulomb interaction
leads to a decrease of the chemical potential of electrons.

In Fig. 2, the parameter d, d = 3π/(8KF), as a function
of the Wigner-Seitz radius rs is given. The parameter d is
the distance from the infinite potential barrier to the dividing
plane (z = 0). The conclusion from the curves is that taking
into account the Coulomb interaction between electrons leads
to an increase of this distance and its nonlinear dependence on
rs, whereas the parameter d for the noninteracting system is a
linear function of rs.

In the case of noninteracting electrons, the distance d

increases linearly with increasing Wigner-Seitz radius (d ∼
1/

√
μ0 ∼ rs) because the average distance between the elec-

trons increases, and electrons can travel farther into the region
z � 0. The Coulomb repulsion between the electrons leads
to an additional increase of the average distance between the
electrons. Therefore electrons can travel even farther into the

FIG. 1. (Color online) The chemical potential of the interacting
electrons μ (solid line) and the chemical potential of the noninter-
acting electrons μ0 (dashed line) as a function of the Wigner-Seitz
radius.
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FIG. 2. (Color online) The parameter d as a function of the
Wigner-Seitz radius (solid line is for interacting electrons whereas
the dashed line is for noninteracting electrons).

region z � 0, the distance d as a function of Wigner-Seitz
radius increases faster than linearly.

In Fig. 3, the one-particle distribution function of elec-
trons (65) is presented for the following values of Wigner-Seitz
radius: rs = 2 aB and rs = 6 aB. The one-particle function
of electrons (solid lines) depends on the chemical potential,
which is the solution of the nonlinear algebraic equations (98)
(here the Coulomb interaction is taken into account). The
positive charge is located at z � 0. It can be concluded
that taking into account the Coulomb interaction leads to
an increase of the period of damped oscillations of the
one-particle distribution function around its value in the body
of the metal, which equals to unity.

The surface contribution to the average number of electrons
〈N〉 has the form

Nsurf = N0,surf + �Nsurf, (100)

where
N0,surf

S
= K2

F

π2

(
d KF

3
− π

8

)
(101)

is the surface contribution to the average number of the
noninteracting electron system per unit area [see Eq. (C2)],
which depends on the magnitude of the Fermi wave vector KF

of the interacting electrons, and

�Nsurf

S
= d KF

2π2aB

∫ ∞

0
dq

(
1 − q

Q

)
− 1

8πaB

∫ ∞

0
dq

− KF

4π2aB

∫ ∞

0
dq

q

Q2

Q − q

Q + q

(
1− Q

KF
arctan

KF

Q

)
+ 1

π4aB

∫ ∞

0
dq q

∫ KF

0
dα1

∫ KF

0
dα2 I (q,α1,α2)

× g1(q,α1,α2,1). (102)

By placing the parameter d (66) in Eq. (101), we obtain

N0,surf = 0

and

Nsurf = �Nsurf .

Namely, if we take into account the Coulomb interaction
between electrons, then the surface contribution to the average
number of electrons 〈N〉 is not zero.

It should be noted that the second term in Eq. (102), (which
is linear on the chemical potential and is quadratic on the
magnitude of the Fermi wave vectorKF) contains the divergent
integral. However, as we will see below, this divergent integral
disappears in the calculation of the internal energy.

D. Surface energy

Substituting Eqs. (60) and (92) into Eq. (77), we obtain
the internal energy. This expression can be considered as one
possible energy functional that, in contrast to the functionals
used in the density functional theory, depends not only on
the one-particle distribution function of the electrons, but
also on the two-particle distribution function and the effective
interelectron interaction.

The extensive contribution to the internal energy per unit
volume follows from the substitution of �bulk and Nbulk (or

FIG. 3. (Color online) The one-particle distribution function of electrons as a function of the electron coordinate normal to the dividing
plane at rs = 2 aB (left) and rs = 6 aB (right) (the solid line is for interacting electrons whereas the dashed line is for noninteracting electrons).
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�unif and Nunif) into Eq. (82). Then we get

Ubulk

SL/2
= �

2

10mπ2
K5

F − e2K3
F

6π2

∫ ∞

0
dq

[
1 −

∫ 1

0
dλ

q

Q(λ)

]
+ e2K3

F

4π2

∫ ∞

0
dq

(
1 − q

Q

)
+ e2K2

F

π4

∫ ∞

0
dq q

×
∫ KF

0
dα1

∫ KF

0
dα2 I (q,α1,α2) g1(q,α1,α2,1) − e2

2π4

∫ ∞

0
dq q

∫ KF

0
dα1

∫ KF

0
dα2J̃ (q,α1,α2)

∫ 1

0
dλ g1(q,α1,α2,λ)

(103)

or

Uunif

V
= �

2

10mπ2
K5

F + e2K3
F

π3

∫ ∞

0
dq

[
1

2

(
�2

TFL
(

q

2KF

)+ q2Ĩunif(q)
)

q2 + �2
TFL
(

q

2KF

) − 1

3
+ q2(1 − J̃unif(q))

3�2
TFL
(

q

2KF

) ln

(
1 + �2

TF

q2
L

(
q

2KF

))]
, (104)

where the first term of the expression (103), or (104), is the internal energy of the noninteracting system.
By using the expressions for �surf and Nsurf in Eq. (83), we obtain the surface contribution to the internal energy per unit area.

We are interested in the case of low temperatures (θ → 0). Then according to Refs. [67,68], the ratio Usurf/S is the free surface
energy σ , and the magnitude of Usurf = σS is the work that is necessary for the irreversible process of creating a new free surface
S. The quantity σ describes the excess energy of the surface area compared with the energy inside the body of the metal. Then,
the surface energy σ can be presented as

σ = σ0 + �σ, (105)

where

σ0 = �
2K4

F

2mπ2

(
d KF

5
− π

16

)
, (106)

�σ = e2d K3
F

4π2

∫ ∞

0
dq

(
1 − q

Q

)
− e2d K3

F

6π2

∫ ∞

0
dq

[
1 −

∫ 1

0
dλ

q

Q(λ)

]
− e2K3

F

8π2

∫ ∞

0
dq

q

Q2

Q − q

Q + q

(
1 − Q

KF
arctan

KF

Q

)

+ e2K3
F

12π2

∫ ∞

0
dq

∫ 1

0
dλ

q

Q2(λ)

Q(λ) − q

Q(λ) + q

[
1 + 3Q2(λ)

2K2
F

− 3Q(λ)
(
K2

F + Q2(λ)
)

2K2
F

arctan
KF

Q(λ)

]

+ e2K2
F

2π4

∫ ∞

0
dq q

∫ KF

0
dα1

∫ KF

0
dα2 I (q,α1,α2) g1(q,α1,α2,1)

− e2

4π4

∫ ∞

0
dq q

∫ KF

0
dα1

∫ KF

0
dα2J̃ (q,α1,α2)

∫ 1

0
dλ g2(q,α1,α2,λ). (107)

By placing the parameter d (66) in Eq. (106), we obtain

σ0 = �
2K4

F

160mπ
= (KFaB)4

80π

Ry

a2
B

. (108)

It coincides by form with the surface energy of the nonin-
teracting system [63,64,69–71], but in Eq. (108), KF is the
magnitude of the Fermi wave vector that takes into account
the Coulomb interaction between electrons.

In Fig. 4, the dependence of the surface energy on the
Wigner-Seitz radius rs is presented. The solid line is the surface
energy calculated using the formulas (105), (107), and (108);
the solution of the nonlinear algebraic equation (98) yields the
chemical potential. The dashed line is the surface energy of the
noninteracting system (108), the dash-dotted line is the result
of Lang and Kohn [5].

The result given in this figure shows that taking into account
the Coulomb interaction leads to an increase of the surface
energy compared to the surface energy of the noninteracting
system. In addition, the surface energy calculated by us
is positive in the entire region of rs and in the interval

rs = 5.5 − 6 aB it coincides with the surface energy calculated
by Lang and Kohn.

VI. CONCLUSIONS

The general expression for the thermodynamic potential of
the semi-infinite jellium model is obtained by using the method
of functional integration. The knowledge of the two-particle
correlation function of electrons and the effective interelectron
is required for the practical application of this expression.

It is shown that taking into account the Coulomb interaction
between electrons leads to a decrease of the chemical potential.
It is also shown that the surface contribution to the thermody-
namic potential does not affect the chemical potential.

By using the infinite barrier model, the extensive and
surface contributions to the thermodynamic potential, the
average of the number operator of electrons and the internal
energy are obtained and studied at low temperatures.

The influence of the Coulomb interactions between elec-
trons on the behavior of the one-particle distribution function
is studied as well. We obtained that taking into account the
Coulomb interaction between electrons leads to an increase of
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FIG. 4. (Color online) The surface energy as a function of the
Wigner-Seitz radius (the solid line is for the interacting system, the
dashed line is for the noninteracting system, whereas the dash-dotted
line is the result of Lang and Kohn [5]).

the period of damped oscillations around its average value in
the body of the metal.

It is found that taking into account the Coulomb interaction
between electrons, the distance between the dividing plane and
the surface potential as a function of the Wigner-Seitz radius
looses its linear behavior. Namely, it grows faster.

Based on the expression for the surface contribution to
the internal energy and modeling the surface potential by
the infinite barrier, the surface energy is calculated at low
temperatures. It is shown that taking into account the Coulomb
interaction between electrons leads approximately to a double
increase in the surface energy. The surface energy is positive
in the entire range of Wigner-Seitz radius. In the interval
rs > 5 aB, the surface energy calculated by us is in good
agreement with the calculations of Lang and Kohn [5].
Thus the consideration of a discrete ionic lattice is not a
necessary condition for solving the problem of the surface
energy negative values, instead the proper treatment of the
Coulomb interaction between electrons in the framework of the
semi-infinite jellium model is the key to solving this problem.

APPENDIX A: DENSITY OF STATES

Let us calculate the density of states of electrons without
Coulomb interaction,

ρ(E) =
∑
k||,α

δ(E − Eα(k||)), (A1)

where according to (9)

Eα(k||) = �
2(k2

|| + α2)

2m
.

In the thermodynamic limit (S → ∞ and L → ∞), the
sum can be replaced by the integral, according to the Euler-
Maclaurin formula [28,66],

∞∑
n=0

f (n) =
∫ ∞

0
f (x) dx − 1

2
[f (∞) − f (0)]

+ B1

2!
[f ′(∞) − f ′(0)] − B2

4!
[f ′′′(∞) − f ′′′(0)]

+ . . . ,

where Bk are the Bernoulli numbers.
We perform a summation over the two-dimensional vector

according to Eq. (11) and obtain∑
k||

f (k||) = 2
∫ +∞

−∞
dnx

∫ +∞

−∞
dnyf (k||)

= 2S

(2π )2

∫ +∞

−∞
dk||x

∫ +∞

−∞
dk||y f (k||)

= 2S

(2π )2

∫ +∞

−∞
dk|| f (k||), (A2)

where two possible orientations of the electron spin are taken
into account.

The summation over the three-dimensional vector k|| yields∑
k||

f (k||) = 2V

(2π )3

∫ +∞

−∞
dk|| f (k||). (A3)

Now we consider the summation over α. Equation (64)
implies that

dn

dα
= L

2π

(
1 + 2d

L

)
,

then∑
α

f (α) =
∫ +∞

0
dn f (α) − 1

2
f (0)

=
∫ +∞

0
dα

[
L

2π

(
1 + 2d

L

)
− 1

2
δ(α)

]
f (α). (A4)

The transition from the sum over k|| to the integral
is performed according to Eq. (A2). Then the density of
states (A1) is

ρ(E) = 2S

(2π )2

∑
α

∫
dk|| δ

(
E − �

2(k2
|| + α2)

2m

)

= S

π

∑
α

∫ ∞

0
dk|| k|| δ

(
E − �

2(k2
|| + α2)

2m

)

= S

2π

2m

�2

∑
α

θ
(

2mE

�2
− α2

)
.

Transformation from the sum over α to the integral according
to Eq. (A4) leads to

ρ(E) = S

2π

2m

�2

∫ +∞

0
dα

[
L

2π

(
1 + 2d

L

)
− 1

2
δ(α)

]
× θ
(

2mE

�2
− α2

)

= SL

2

√
2m3/2

π2�3

√
E + S

(√
2m3/2d

π2�3

√
E − m

4π�2

)
,

(A5)
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where the first term (which is proportional to the volume
SL) is the extensive contribution, and the second term is the
surface contribution to the density of states. This expression
coincides with the expression for the density of states, obtained
in Ref. [28], if we put d = 0 in Eq. (A5).

It should be noted that the density of states of the
noninteracting homogeneous system is

ρunif(E) = V

√
2m3/2

π2�3

√
E,

which coincides with the first term of Eq. (A5).

APPENDIX B: THE CALCULATION OF �0

Let us now calculate the thermodynamic potential of the
noninteracting system

�0 = − 1

β

∑
k||,α

ln[1 + eβ(μ−Eα (k||))]. (B1)

Because here μ is the chemical potential of interacting
electrons, this expression takes into account the Coulomb
interaction indirectly.

In order to perform the summation by k|| and α, we use
the density of states calculated in Appendix A. Then, the
thermodynamic potential is

�0 = − 1

β

∫ ∞

0
dE ρ(E) ln[1 + eβ(μ−E)]

= − 1

β

SL

2

√
2m3/2

π2�3

∫ ∞

0
dE

√
E ln[1 + eβ(μ−E)]

− 1

β
S

√
2m3/2d

π2�3

∫ ∞

0
dE

√
E ln[1 + eβ(μ−E)]

+ 1

β
S

m

4π�2

∫ ∞

0
dE ln[1 + eβ(μ−E)].

Integrating by parts each of the terms, we get

�0 = −SL

2

2
√

2m3/2

3π2�3

∫ ∞

0
dE E3/2 1

eβ(E−μ) + 1

− S
2
√

2m3/2d

3π2�3

∫ ∞

0
dE E3/2 1

eβ(E−μ) + 1

+ S
m

4π�2

∫ ∞

0
dE E

1

eβ(E−μ) + 1
.

In the limit of low temperatures (β → ∞), we get the
following expression:

�0 = �0,bulk + �0,surf, (B2)

where

�0,bulk = −SL

2

4
√

2m3/2

15π2�3
μ5/2 = −SL

2

�
2

15mπ2
K5

F (B3)

is the extensive contribution to the thermodynamic potential of
the noninteracting system (it is proportional to the volume SL),
which depends on the magnitude of the Fermi wave vector KF

of interacting electrons and

�0,surf = −S

(
4
√

2m3/2d

15π2�3
μ5/2 − m

8π�2
μ2

)

= S
�

2K4
F

mπ2

(
π

32
− d KF

15

)
(B4)

is the surface contribution (it is proportional to the area of the
dividing plane S).

It should be noted that the thermodynamic potential of the
noninteracting homogeneous system is

�0,unif = −V
4
√

2m3/2

15π2�3
μ5/2 = −V

�
2

15mπ2
K5

F, (B5)

which coincides with (B3).

APPENDIX C: THE CALCULATION
OF 〈N〉0 AND ∂〈N〉0/∂μ

By using the thermodynamic potential of the noninteracting
system �0 [see Eq. (B2)], we calculate 〈N〉0 at low tempera-
tures:

〈N〉0 = −∂�0

∂μ
= −∂(�0,bulk + �0,surf)

∂μ
= N0,bulk + N0,surf,

where

N0,bulk = −∂�0,bulk

∂μ
= SL

2

2
√

2m3/2

3π2�3
μ3/2 = SL

2

K3
F

3π2
(C1)

is the extensive contribution 〈N〉0, and

N0,surf = −∂�0,surf

∂μ
= S

(
2
√

2m3/2d

3π2�3
μ3/2 − m

4π�2
μ

)

= S
K2

F

π2

(
d KF

3
− π

8

)
(C2)

is the surface contribution 〈N〉0. The latter result reduces to
the one obtained previously in Refs. [64,71], if we put d = 0
in Eq. (C2).

By using 〈N〉0, we calculate ∂〈N〉0/∂μ:

∂〈N〉0

∂μ
= ∂N0,bulk

∂μ
+ ∂N0,surf

∂μ
,

where the extensive contribution is

∂N0,bulk

∂μ
= SL

2

√
2m3/2

π2�3
μ1/2 = SL

2

m

�2

KF

π2
(C3)

and the surface contribution is

∂N0,surf

∂μ
= S

(√
2m3/2d

π2�3
μ1/2 − m

4π�2

)

= S
m

�2π2

(
d KF − π

4

)
. (C4)
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It should be noted that the following relations are valid for
the noninteracting homogeneous system:

N0,unif = V
K3

F

3π2
, (C5)

∂N0,unif

∂μ
= V

m

�2

KF

π2
. (C6)

They coincide with the extensive contributions given by
Eqs. (C1) and (C3), respectively.
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