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In this work we introduce a low-energy Hamiltonian for single-layer and bilayer black phosphorus that describes
the electronic states at the vicinity of the � point. The model is based on a recently proposed tight-binding
description for electron and hole bands close to the Fermi level. We calculate expressions for the Landau-level
spectrum as function of magnetic field, and in the case of bilayer black phosphorus we investigate the effect
of an external bias on the electronic band gap. The results showcase the highly anisotropic character of black
phosphorus, and in particular for bilayer BP, the presence of bias allows for a field-induced semiconductor-metal
transition.
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I. INTRODUCTION

In the last ten years the properties of crystals consisting
of one or a few atomic layers has been the focus of intense
research. Such interest arose mainly due to the production of
graphene in 2004, which has been shown to display remarkable
electronic, optical, and mechanical properties [1]. Since then,
there has been a growing interest in the production of other
low-dimensional crystals. The investigation of analogs of
graphene has resulted in the discovery of several single-layer
crystals of different elements, such as silicon (silicene) [2] and
germanium (germanene) [3], as well as a class of materials
known as transition-metal dichalcogenides [4]. Some of these
materials may soon find use in electronic devices, mainly due
to the fact that in contrast to graphene, they present a band
gap in their electronic spectrum, albeit with a lower carrier
mobility. Among the most promising of these 2D materials
is an allotrope of phosphorus, known as black phosphorus
(BP) [5–11], which is that element’s most stable crystal at
room temperature and pressure. In bulk, BP is a narrow-gap
semiconductor with a orthorhombic structure that consists
of atoms covalently bound into layers coupled by van der
Waals interactions [12–15]. Similar to graphene, BP can be
mechanically exfoliated to obtain samples with a few or
single layers, with the latter being known as phosphorene.
The resulting material has a band gap that depends on the
number of layers, varying from 0.6 eV for five layers to 1.5 eV
for a single layer, with carrier mobility in the range of ≈1000
cm2V−1s−1.

The importance of a thorough understanding of the band
structure and charge carrier dynamics in BP has led to a series
of recent studies that obtained the electronic dispersion using
approaches such as first-principles calculations, k · p methods,
and tight-binding models [16]. These calculations have shown
evidence of a large anisotropy on the effective mass, as well
as given estimates of the energy gap for single-layer and
multilayer BP. Calculations have shown the possibility of an
electronic topological (Lifshitz) transition in few-layer BP,
in which an external bias induces a band inversion [17,18].
This would allow the development of devices in which
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the topological character of the material can be externally
controlled.

In this work, we consider the charge carrier dynamics
in single-layer and bilayer phosphorene by means of a
continuum model obtained as the long-wavelength limit of a
recently proposed tight-binding model [16]. Recently, group-
theoretical calculations have indicated that the electronic band
gap in BP should in fact be slightly indirect [19]. Nevertheless,
given the fact the predicted deviation from the direct gap
is small compared to the band gap, the assumption of a
direct gap used in the present model can still be expected
to yield a good approximation of the real band structure
of BP. Such continuum models can be particularly useful
for the study of nanodevices, inasmuch as they allow for a
straightforward calculation of the transport coefficients. In
addition to the anisotropy of the spectrum, another striking
feature of the electronic bands obtained from this model is the
hybrid nature of the electron and hole states close to the band
edge in phosphorene, which display both a Schrödinger-like
and Dirac-like character, which in turn is dependent on the
direction of propagation. For the case of bilayer BP, we also
consider the effect of an external bias on the spectrum. We
obtain results that show a bias-induced gap closure, which
leads to the presence of zero-energy Landau levels. This
behavior may be of use in the design of BP-based devices
in which, in analogy with the case of bilayer graphene, the
band structure can be tuned by means of external gates.

This paper is organized as follows: in Sec. II we present
the model Hamiltonian for single BP layers and analytical
expressions for its Landau-level spectrum. Section III extends
that model for the case of the bilayer. Finally, in Sec. IV we
present a discussion of the results and conclusions.

II. SINGLE-LAYER PHOSPHORENE

The structure of each layer of BP has phosphorus atoms
covalently coupled to three nearest neighbors. The result-
ing lattice resembles the honeycomb structure of graphene;
however, in phosphorene the sp3 hybridization of the 3s and
3p atomic orbitals creates ridges that result in a puckered
surface (Fig. 1). Using the tight-binding model proposed in
Ref. [16], we can write the Hamiltonian for single-layer black
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FIG. 1. (Color online) Nearest neighbors in the phosphorene
lattice.

phosphorus as

Hk =

⎛
⎜⎜⎜⎝

uA tAB(k) tAD(k) tAC(k)

tAB(k)∗ uB tAC(k)∗ tAD(k)

tAD(k)∗ tAC(k) uD tAB(k)

tAC(k)∗ tAD(k)∗ tAB(k)∗ uC

⎞
⎟⎟⎟⎠ , (1)

with eigenvectors given by [φAφBφDφC]T and where uA,B,C,D

represent the on-site energies, which we henceforth assume to
be equal to U , with the A–D subscripts denoting the four
sublattice labels shown in Fig. 1. The expressions for the
interaction terms are given in the Appendix. By taking into
account the C2h group invariance of the BP lattice (see, e.g.,
[20]) and using the fact that tAD(k)∗ =AD (k), one can obtain
a reduced two-band Hamiltonian for single-layer BP at the
vicinity of the Fermi level as

Hk =
(

U + tAD(k) tAB(k) + tAC(k)

[tAB(k) + tAC(k)]∗ U + tAD(k)

)
, (2)

which acts on the spinors

� =
(

φ1

φ2

)
, (3)

with φ1 = (φA + φD)/2 and φ1 = (φB + φC)/2. From the
Hamiltonian (2) one can obtain the energies for the bottom

-1 -0.5 0 0.5
kx Γ                            ky

-2

0

2

E 
(e

V
)

FIG. 2. (Color online) Low-energy dispersion of phosphorene
from the tight-binding model (solid black lines) and continuum
approximation (dashed red lines).

of the conduction band and the top of the valence band as
Ec = 2t1 + t2 + 2t3 + t5 + 4t4 and Ev = −(2t1 + t2 + 2t3 +
t5) + 4t4. Using the values of the t parameters presented in
Ref. [16], the above expressions lead to a gap of � ≈ 1.52 eV.

By diagonalizing the Hamiltonian (2) one can obtain the
following dispersions:

E(kx,ky) = U + 4t4 cos (kxd1) cos (kyd2)

±{
4
[
t2
1 + t2

3 + 2t1t3 cos (2kyd2)
]

cos2 (kxd1)

+[
t2
2 + t2

5 + 2t2t5 cos (2kyd2)
]

+4t3[t2 cos (kyd2) + t5 cos (3kyd2)] cos (kxd1)

+4t1[t2 + t5] cos (kxd1) cos (kyd2)
}1/2

, (4)

where d1 = a1 sin α1/2 and d2 = a1 cos α1/2 + a2 cos β, with
the positive (negative) sign corresponding to the conductance
(valence) band. Figure 2 shows a plot of Eq. (4) centered at
the � point (black lines), where the strong anisotropy of the
spectrum is evident.

A simple calculation shows that the eigenstates of the
Hamiltonian Eq.(1) can be found as

�1 = 1√
2

⎛
⎝ 1

λeiθk

⎞
⎠ , (5)

where λ = ±1, with the same sign convention as Eq. (4), and

θk = tan−1(C/D), (6)

where

C = −2t1 cos (kxd1) sin (kya1 cos α1/2) + t2 sin (kya2 cos β)
+2t3 cos (kxd1) sin {ky[a1 cos(α1/2) + 2a2 cos β]}
−t5 sin {ky[2a1 cos(α1/2) + a2 cos β]} (7)

075437-2



LANDAU LEVELS OF SINGLE-LAYER AND BILAYER . . . PHYSICAL REVIEW B 92, 075437 (2015)

and

D = 2t1 cos (kxd1) cos (kya1 cos α1/2) + t2 cos (kya2 cos β)
+2t3 cos (kxd1) cos [ky(a1 cos(α1/2) + 2a2 cos β)]
+t5 cos [ky(2a1 cos(α1/2) + a2 cos β)]. (8)

Although these results show some similarity to the results
for graphene, it can be seen that for phosphorene the phase
angle does not correspond to the polar angle of the momentum
vector.

A. Continuum approximation

By expanding the structure factors around k = 0 (� point)
and retaining the terms up to second order in k, one can write
a long-wavelength approximation for the Hamiltonian Eq. (2)
as

Hk =
(

u0 + ηxk
2
x + ηyk

2
y δ + γxk

2
x + γyk

2
y + iχky

δ + γxk
2
x + γyk

2
y − iχky u0 + ηxk

2
x + ηyk

2
y

)
,

(9)

where

ηx = −2t4[a1 sin(α1/2)]2,

ηy = −2t4[a1 cos(α1/2) + a2 cos β]2,

γx = −(t1 + t3)[a1 sin(α1/2)]2,

γy = −t1[a1 cos(α1/2)]2 − t3[a1 cos(α1/2) + 2a2 cos β]2

−t2(a2 cos β)2/2 − t5[2a1 cos(α1/2) + a2 cos β]2/2,

δ = t2 + t5 + 2(t1 + t3),
u0 = 4t4,

χ = t2a2 cos β + 2t3[a1 cos(α1/2) + 2a2 cos β]
−t5[2a1 cos(α1/2) + a2 cos β] − 2t1a1 cos(α1/2).

(10)

By substituting the hopping parameters in the above expres-
sions we obtain the following values: u0 = −0.42 eV, ηx =
0.58 eV Å2, ηy = 1.01 eV Å2, δ = 0.76 eV, χ = 5.25 eV Å,
γx = 3.93 eV Å2, and γy = 3.83 eV Å2.

The form of Hamiltonian (9) is similar to the one presented
in Ref. [7], which was obtained within the k · p approximation
with parameters chosen in order to fit the band structure
obtained from first-principles calculations. In the present
case, however, the parameters include the contribution from
different hopping terms between neighboring lattice sites, as
well as the lattice geometry, and thus can be understood as
presenting a direct link between the microscopic tight-binding
description and the continuum approximation. Moreover,
within this model additional momentum-dependent terms can
be added to better approximate the spectrum at higher energies
by including higher-order k terms in the structure factor
expansion. Dispersion relations for electrons and holes are
then given by

E = u0 + ηxk
2
x + ηyk

2
y ±

√(
δ + γxk2

x + γyk2
y

)2 + χ2k2
y,

(11)

where the plus (minus) sign yields the conduction (valence)
band. As shown in Fig. 2, there is good agreement between
the continuum and the tight-binding results for energies in
the range −2.0 to 1.5 eV. It can be seen from the spectrum of
Eq. (11) that, although BP has an anisotropic dispersion, it does

not correspond exactly to the spectrum of a simple anisotropic
system with an elliptical dispersion due to the additional term
proportional to χ2 in the radical. However, as shown below,
for low energies a simple anisotropy on the effective mass can
be recovered as an approximation.

B. Effective masses

From the spectrum Eq. (11) one can estimate the effective
masses of electrons and holes in BP. Taking into account
the anisotropy of the system, one can readily find, for the
x direction,

me
x = �

2

2(ηx + γx)
, mh

x = �
2

2(ηx − γx)
. (12)

For my one finds, for small values of ky ,

me,h
y = �

2

2(ηy ± γy ± χ2/2δ)
, (13)

where the plus (minus) sign corresponds to electrons (holes).
The resulting effective masses are me

x = 0.846m0 and mh
x =

1.14m0, me
y = 0.166m0 and mh

y = 0.182m0, with m0 being the
mass of a free electron. In comparison, the values of effective
masses quoted in Ref. [8] are me

x = 0.7m0 and mh
x = 1.0m0,

and me
y = mh

y = 0.15m0 (in that case, the choices of x and
y labels were the opposite of ours). One then can use these
masses to obtain an approximation for the spectrum Eq. (11)
as (for electrons)

E = (u0 + δ) + �
2

2me
x

k2
x + �

2

2me
y

k2
y, (14)

along with a corresponding expression for holes.

C. Eigenstates

The continuum approximation Hamiltonian (9) can be
rewritten in a more compact form as

H =
(

ε1 ε2e
iθk

ε2e
−iθk ε1

)
, (15)

where

ε1 = f+ + f−
2

, ε2 =
√(f+ − f−

2

)2
+ (χky)2, (16)

and

θk = tan−1[2χky/(f+ − f−)], (17)

where we defined

f± = (u0 ± δ) + (ηx ± γx)k2
x + (ηy ± γy)k2

y, (18)

where, for ky = 0, the f+ and f− expressions yield the
dispersions for the conduction and valence bands, respectively.
Thus, using this polar notation, one can readily obtain the
eigenstates as

�λ = 1√
2

(
1

λeiθk

)
, (19)

where λ = ±1, with the positive (negative) signs correspond-
ing to electrons (holes). These expressions are formally similar
to the states of Eq. (5), which are valid for the whole
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Brillouin zone, and as before, the angle θk does not correspond
necessarily to the polar angle associated with the momentum
vector. In fact, since the denominator in Eq. (18) depends
only on even powers of the momentum components, the polar
angle will assume values in the range −θc < θk < θc, where
θc < π/2 is an energy-dependent critical value corresponding
to kx = 0. From the form of Eq. (18) it is seen that, as the
energy increases, θc approaches a maximum value and then
decays to zero. One consequence of that behavior is the fact
that, although a pseudospin may be defined for charge carriers
in phosphorene for a certain energy range, the Berry phase is
nevertheless zero due to the vanishing of the winding number
around the � point.

D. Landau levels

In order to calculate the Landau levels for phosphorene,
let us consider the Hamiltonian (9) with a magnetic field
perpendicular to the plane of the layer and use the gauge
A = (−By,0,0) and the substitution k → −i∇. Since the
Hamiltonian does not depend on x, we can assume φ1,2(x,y) =
φ1,2(y)eikxx . Thus, we obtain the following pair of coupled
differential equations:[

u0 + ηx(kx + βy)2 − ηy

d2

dy2

]
φ1

+
[
δ + γx(kx + βy)2 − γy

d2

dy2
+ χ

d

dy

]
φ2 = Eφ1,[

u0 + ηx(kx + βy)2 − ηy

d2

dy2

]
φ2

+
[
δ + γx(kx + βy)2 − γy

d2

dy2
− χ

d

dy

]
φ1 = Eφ2, (20)

where β = eB/� = �−2
B , with �B being the magnetic length.

Let us now set kx = 0 without loss of generality and rewrite
the Hamiltonian in terms of ladder operators, acting on the
spinor components φ± = (φ1 ± φ2)/

√
2,

α =
√

β

2

(
y + 1

β

d

dy

)
, α† =

√
β

2

(
y − 1

β

d

dy

)
. (21)

Thus, we can readily obtain a Hamiltonian in terms of the α

operators as

H =
(E+ + E−

2

)
1 +

(E+ − E−
2

)
σz − iχ

√
β/2(α − α†)σy,

(22)

where 1 is the unit matrix, σx and σz are Pauli matrices, and

E+ = u0 + δ + 2η+β(α†α + 1/2) + �+β(α†α† + αα) (23)

and

E− = u0 − δ + 2η−β(α†α + 1/2) + �−β(α†α† + αα),

(24)

where we defined η± = η ± γ and �± = �η ± �γ , with
η = (ηx + ηy)/2, γ = (γx + γy)/2, �η = (ηx − ηy)/2, and
�γ = (γx − γy)/2. A plot of the Landau levels as function
of magnetic field is shown (black dots) in Fig. 3 for electrons.

FIG. 3. (Color online) Landau levels as a function of magnetic
field. The linear approximation is shown as the red dashed curves.

Although the actual spectrum deviates from the linear
dependence on magnetic field for large fields, due to the
spin-orbit-like terms depending on χ in Eq. (22), for B < 30 T
the spectrum still shows an approximately linear dependence.
In this regime, one can obtain an expression for the Landau
levels by means of the following ansatz:

φ− = χ

2δ

√
β

2
(α − α†)φ+. (25)

This ansatz can be justified by the fact that its introduction
leads to an approximate Hamiltonian in which an additional
term proportional to χ is added to the y-mass term [see, e.g.,
Eq. (13)]. Thus, using the above ansatz allows us to obtain a
block diagonal Hamiltonian where the block corresponding to
the electron branches is

He = u0 + δ + 2η+β(α†α + 1/2) + �+β(α†α† + αα)

−χ2

4δ
β(α†α† + αα − αα† − α†α). (26)

We now define

μ1 = η+ + χ2

4δ
, μ2 = �+ − χ2

4δ
, (27)

which allows us to rewrite the Hamiltonian Eq. (26) as

He = u0 + δ + 2μ1β(α†α + 1/2) + μ2β(α†α† + αα). (28)

Next, one can perform a Bogoliubov transformation

c = wα + vα†, c† = wα† + vα, (29)

with w2 − v2 = 1, for which w = cosh ν, v = sinh ν,
tanh 2ν = μ2/μ1. That gives us

w = 1√
2

⎡
⎣ μ1√

μ2
1 − μ2

2

+ 1

⎤
⎦

1/2

,

(30)

v = 1√
2

⎡
⎣ μ1√

μ2
1 − μ2

2

− 1

⎤
⎦

1/2

.
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Finally, one can readily obtain the transformed Hamiltonian
for the electronic branches as

He = δ + u0 + �ωe(c†c + 1/2), (31)

where

ωe = eB√
me

xm
e
y

. (32)

A similar approach yields, for the hole block,

Hh = −δ + u0 − �ωh(d†d + 1/2), (33)

where the d operators are obtained from the α ladder operators
via another Bogoliubov transformation and where

ωh = eB/

√
mh

xm
h
y, (34)

with the corresponding masses given by Eqs. (12) and (13).
The spectra obtained from Eq. (31) are shown as dashed
red lines in Fig. 3 for Landau indices n = 0 to 6. Similar
expressions for the Landau levels in single-layer phosphorene
where obtained recently by means of a perturbative calculation
[see, e.g., Eq. (13) in Ref. [21]] based on the same tight-binding
model employed here. However, in contrast to those results
the present approach can be readily generalized for the bilayer
case, as we show below.

III. BILAYER PHOSPHORENE

For the case of two coupled phosphorene layers, one now
has to consider eight sublattices, which we label A,B,C,D for
the lower layer and A′,B ′,C ′, and D′ for the upper one. Using
the tight-binding model of Ref. [16], one obtains the following
Hamiltonian:

Hk =
(

Hu Hc

Hc Hd

)
, (35)

acting on the spinors � = [φA φB φD φC φ′
A

φ′
B φ′

D φ′
C]T , where the H1,2 blocks contain the interaction

terms connecting sublattice sites within the same layer,

Hu,d =

⎛
⎜⎜⎜⎝

uu,d tAB(k) tAD(k) tAC(k)

tAB(k)∗ uu,d tAC(k)∗ tAD(k)

tAD(k) tAC(k) uu,d tAB(k)

tAC(k)∗ tAD(k) tAB(k)∗ uu,d

⎞
⎟⎟⎟⎠, (36)

where uA = uB = uC = uD = uu and u′
A = u′

B = u′
C =

u′
D = ud , with uu,d being the on-site energies for upper (u)

and lower (d) layers, respectively. The Hc blocks contain
the couplings between sites located in adjacent layers; here,
these correspond to the sublattice sites A, B, C ′, and D′
with [Hc]13 = tAD′(k), [Hc]14 = tAC ′(k), [Hc]23 = tBD′(k) =
tAC ′(k)∗, and [Hc]24 = tBC ′(k) = tAD′(k), with the remaining
elements being zero. The expressions for the coupling terms
are given in the Appendix. In the continuum approximation,

the coupling terms become

tAB(k) = δ1 + γ1k
2
x + γ2k

2
y + iχ1ky,

tAC(k) = δ2 + γ3k
2
y + iχ2ky,

tAD(k) = δ3 + η1k
2
x + η2k

2
y, (37)

tAD′(k) = δ4 + η3k
2
x + η4k

2
y,

tAC ′(k) = δ5 + γ4k
2
x + γ5k

2
y + iχ3ky,

where δ1 = −2.85 eV, δ2 = 3.61 eV, δ3 = −0.42 eV, δ4 =
−0.06 eV, δ5 = 0.41 eV, η1 = 0.58 eV Å2, η2 = 1.01 eV Å2,
γ1 = 3.91 eV Å2, γ2 = 4.41 eV Å2, γ3 = −0.58 eV Å2, χ1 =
2.41 eV Å, χ2 = 2.84 eV Å, η3 = 3.31 eV Å2, η4 = 0.14 eV
Å2, γ4 = −0.56 eV Å2, γ5 = 1.08 eV Å2, and χ3 = 1.09 eV Å.

The above Hamiltonian leads to a system of eight coupled
equations. However, as we show below, one can still obtain
approximate analytical solutions. By applying a suitable
unitary transformation (see the Appendix), for the case ud =
−uu, an eigenvalue equation can be rewritten as(

Hp H ′
c

H
′†
c Hm

)
= E� ′, (38)

where

Hp =
(

H0 + H2 − 1
2H3 i �

2 1

−i �
2 1 H0 + H2 + 1

2H3

)
, (39)

Hm =
(

H0 − H2 − 1
2H3 −i �

2 1

i �
2 1 H0 − H2 + 1

2H3

)
, (40)

and

H ′
c =

(
0 − i

2H3

− i
2H3 0

)
, (41)

where 1 is the 2 × 2 unit matrix, � denotes u1 − u2, we assume
u2 = −u1,

H0 =
(

0 tAB(k)

tAB(k)∗ 0

)
, (42)

H2 =
(

tAD(k) tAC(k)

tAC(k)∗ tAD(k)

)
, (43)

H3 =
(

tAD′(k) tAC ′(k)

tAC ′(k)∗ tAD′(k)

)
, (44)

and the eigenvectors are the eight-component spinor � ′ =
[ψpp ψmp ψpm ψmm]T in which the four sets of two-
component spinors are

ψα = 1

2

(
φA + φD + iφA′ + iφD′

φB + φC + iφB ′ + iφC ′

)
,

ψγ = 1

2

(
φA + φD − iφA′ − iφD′

φB + φC − iφB ′ − iφC ′

)
,

(45)

ψδ = 1

2

(−φA + φD + iφA′ − iφD′

−φB + φC + iφB ′ − iφC ′

)
,

ψβ = 1

2

(
φA − φD + iφA′ − iφD′

φB − φC + iφB ′ − iφC ′

)
.
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TABLE I. The values of δ� and the magnitude of the effective
masses, in units of the electron mass.

�

iii iv v vi

δ� (eV) 0.515 0.165 −0.947 −1.413

m�
x 0.65 1.23 0.72 2.74

m�
y 0.17 0.16 0.17 0.18

A further approximation can be made by taking into account
the fact that the off-diagonal blocks H ′

c give rise to a small
perturbation to the spectrum and can thus be neglected in a
first approximation, leading to the following pair of eigenvalue
equations:(

H0 + H2 + 1
2H3 − E −i �

2 1

i �
2 1 H0 + H2 − 1

2H3 − E

)(
ψα

ψγ

)
= 0,

(46)
and(

H0 − H2 + 1
2H3 − E −i �

2 1

i �
2 1 H0 − H2 − 1

2H3 − E

)(
ψδ

ψβ

)
= 0.

(47)
In this case, by solving Eq. (48) one obtains the four inner
families of branches (i.e., closer to the Fermi energy), whereas
Eq. (49) leads to the outer families of levels. In the absence of
bias, these systems of equations are reduced to four copies of
Eq. (9), although with different parameters. The resulting eight
bands are labeled i, . . . ,viii, and the parameters corresponding
to the four low-energy branches are shown in Table I, with the
effective masses given as multiples of the electron mass m0,
with indices in decreasing order of energy.

For finite bias, the Hamiltonians Eq. (47) and (48) can be
diagonalized. In order to show that, let us first recall Eq. (16);
after performing an expansion of the structure factors around
the � point in momentum space, the 2 × 2 diagonal blocks in
Eq. (47) become formally identical to Eq. (9), although with
different values for the parameters due to the presence of the
interlayer coupling terms. Thus, one can then rewrite the 2 × 2
diagonal blocks in Eq. (47) as

H0 + H2 + 1

2
H3 =

(
ε′

1 ε′
2e

iθ ′
k

ε′
2e

−iθ ′
k ε′

1

)
(48)

and

H0 + H2 − 1

2
H3 =

(
ε′′

1 ε′′
2 eiθ ′′

k

ε′′
2 e−iθ ′′

k ε′′
1

)
, (49)

with ε′
1,2, ε′′

1,2, and the polar angles defined as in Eqs. (17)–(19).
Thus, after some straightforward algebra, we can obtain the
four energy bands associated with Eq. (47) as the solutions of
the equation

[(E − ε′
1)2 − (ε′

2)2][(E − ε′′
1 )2 − (ε′′

2 )2] = −
(

�

2

)4

+�2

2
[ε′

2ε
′′
2 cos (θ ′

k − θ ′′
k ) + (E − ε′

1)(E − ε′′
1 )]. (50)

For the range of energy and momenta of interest, one can safely
assume cos (θ ′

k − θ ′′
k ) ≈ 1. In that case, Eq. (51) becomes

[
(E − ε′

1 − ε′
2)(E − ε′′

1 − ε′′
2 ) −

(
�

2

)2]

×
[

(E − ε′
1 + ε′

2)(E − ε′′
1 + ε′′

2 ) −
(

�

2

)2]
= 0. (51)

One can then obtain expressions for the energies of the low-
energy bands at the � point as a function of � as

Ec = δ1 + δ2 + δ3 −
√(

δ4 + δ5

2

)2

+
(

�

2

)2

(52)

Ev = −δ1 − δ2 + δ3 +
√(

δ4 − δ5

2

)2

+
(

�

2

)2

.

A. Eigenstates

Plane-wave eigenstates for the inner bands can be obtained
from the Hamiltonian (47) as, for the conduction band,

�c(k) = Ac

⎛
⎜⎜⎝

1
ace

−iθ ′
k

bc

cce
−iθ ′′

k

⎞
⎟⎟⎠eik·r, (53)

with

ac = (E − ε′
1)

ε′
2

+ i
�

2ε′
2

bc, (54)

cc = (E − ε′′
1 )

ε′′
2

bc − �

2ε′
2

, (55)

and

bc = 2

�

[(E − ε′
1)2 − ε′2

2 + �2h/4]

[E − ε′
1 + h(E − ε′′

1 )]
, (56)

with

h = ε′
2

ε′′
2

ei(θ ′
k−θ ′′

k ) (57)

and the other terms defined as before. It can be easily seen that,
as � → 0, we obtain a → ±1, b,c → 0, as expected. For the
valence band, the result is similar, with

�v(k) = Av

⎛
⎜⎜⎝

bv

cve
−iθ ′

k

1
ave

−iθ ′′
k

⎞
⎟⎟⎠eik·r, (58)

where

av = − (E − ε′′
1 )

ε′′
2

+ i
�

2ε′′
2

bv, (59)

cv = (E − ε′′
1 )

ε′′
2

bv − �

2ε′
2

, (60)
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FIG. 4. (Color online) Band structure of bilayer black phospho-
rus around the � point from the tight-binding model (black solid
lines) and the continuum approach (blue circles).

and

bv = 2

�

[(E − ε′′
1 )2 − ε′′2

2 + �2h′/4]

[E − ε′′
1 + h′(E − ε′

1)]
, (61)

where h′ = 1/h. The normalizing constants are given by
Ac,v = [1 + |ac,v|2 + |bc,v|2 + |cc,v|2]−1/2.

Figure 4 shows the spectrum of bilayer BP obtained from
the tight-binding model (black solid lines) and continuum
approaches (blue circles). As in the case of the single layer, the
continuum results show good agreement with the tight-binding
data for the range −1.5 to 1.5 eV. The effect of biasing on
the gap is shown in Fig. 5 with data obtained from both the
original 8 × 8 tight-binding Hamiltonian (black solid lines)
and the analytical expression (53) (blue circles). The results
show good agreement, with a discrepancy of ≈4 meV. For

0 0.25 0.5 0.75 1 1.25 1.5 1.75
Δ (eV)

-1
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-0.6

-0.4

-0.2
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0.2
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(e

V
)

FIG. 5. (Color online) Low-energy spectrum of bilayer phospho-
rene as a function of the energy difference between layers obtained
from Eq. (35) (black solid lines) and the reduced Hamiltonian Eq. (47)
(blue circles).
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FIG. 6. Landau levels as a function of magnetic field for U1 =
0.74 eV and U2 = −U1.

values of � above ≈1.5 eV, the conduction and valence bands
overlap, and the system becomes metallic.

B. Landau levels

The equations above lead to a set of four electron and
four hole families of Landau-level branches. In the absence
of biasing (i.e., � = 0), Eqs. (48) and (49) can be solved
analytically in a fashion similar to that in the case of a
single layer, with the parameters modified by the presence
of interlayer coupling. Thus, the expressions for the different
families of Landau-level branches have the form

E = δ� ± �ω�(n + 1/2), (62)

where ω� = eB/
√

m�
xm

�
y and the � indices denote different

combinations of the coupling terms, with the positive sign cor-
responding to frequencies of electron branches (� = i, . . . ,iv)
and the negative sign being assigned to the hole branches (� =
v, . . . ,viii). The values of δ� and the magnitude of the effective
masses are displayed in Table I, in units of the electron mass.

In the presence of an external bias, a numerical approach
becomes necessary. Figure 6 shows the dependence of the
energy levels on the magnetic field for a finite bias (� =
1.48 eV). As the value of � increases, the sets of electron
and hole Landau levels tend to shift towards each other, with
the closing of the gap taking place at U1 ≈ 0.73 eV. For
larger values of �, one sees the formation of a Dirac-like
dispersionless Landau level. In order to emphasize that unusual
behavior, we chose � = 1.48 eV for the bias in Fig. 6. In this
case, for the range 2 T � B � 12 T the n = 0 Landau level
becomes doubly degenerate and weakly dependent on B, a
situation that is analogous to the case of single-layer graphene.
This analogy is reinforced by the fact that the remaining levels
become unevenly spaced.

The dependence of the Landau levels on the bias for a fixed
magnetic field is shown in Fig. 7. It is seen that the presence of
the external electric field tends to close the gap for a certain crit-
ical value of the bias. Moreover, the branches tend to become
degenerate. This behavior agrees with recent numerical calcu-
lations [18] that show a bias-induced closure of the band gap,
along with the formation of Dirac cones in few-layer BP. These
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FIG. 7. Landau levels as a function of on-site energy for B = 10
T and U2 = −U1.

effects were attributed to the localization of the valence-band
maximum and conduction-band minimum at different layers
which, in the present model, are represented by the different
values of on-site energies on the top and bottom layers.

IV. CONCLUSIONS

We have presented a continuum description of single-
layer and bilayer black phosphorus, starting from a tight-
binding model that reproduces the results of first-principles
calculations. Using this model, we obtained the spectra of
electrons and holes in the vicinity of the Fermi level at the
� point and calculated the Landau-level spectrum for both
systems. For the case of bilayer BP we considered the effect of
interlayer bias by introducing a layer-dependent on-site energy
in the model. This showed that the presence of bias can close
the electronic band gap, converting the material into a metal for
a critical value of on-site energy difference. Correspondingly,
the Landau-level spectrum shows the appearance of doubly
degenerate branches with a zero-energy level weakly depen-
dent on magnetic field for on-site energies above the critical
value. This result agrees with recent ab initio calculations for
few-layer black phosphorus [18] and can be exploited as the
basis for future gate-tunable electronic devices. Furthermore,
by taking into account additional interlayer hopping terms in
a tight-binding description, the present model can be readily
extended to deal with multilayer black phosphorus.
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APPENDIX

1. Structure factors

From the tight-binding model of Ref. [16], the structure
factors are given by the expressions

tAB(k) = 2t1 cos [kxa1 sin(α1/2)]
× exp[−ikya1 cos (α1/2)]

TABLE II. Hopping parameters from Ref. [16].

Parameter Value (eV) Parameter Value (eV)

t1 −1.220 t⊥
1 0.295

t2 3.665 t⊥
2 0.273

t3 −0.205 t⊥
3 −0.151

t4 −0.105 t⊥
4 −0.091

t5 −0.055

+2t3 cos [kxa1 sin(α1/2)]
× exp{iky[a1 cos (α1/2) + 2a2 cos β]}, (A1)

tAC(k) = t2 exp[ikya2 cos β] + t5 exp{−iky[2a1 cos(α1/2)
+a2 cos β]}, (A2)

tAD(k) = 4t4 cos [kxa1 sin(α1/2)] cos{ky[a1 cos(α1/2)
+a2 cos(β)]}, (A3)

where a1 is the distance between nearest-neighbor sites in
sublattices A and B or C and D and a2 is the distance for
nearest-neighbor sites of A and C or B and D; t1 and t2 are
the corresponding hopping parameters for nearest-neighbor
couplings. Due to the symmetry of the lattice, we have
t ′CD(k) = [t ′AB(k)]∗, t ′CB(k) = tAD(k), t ′BD(k) = [t ′AC(k)]∗, and
tBC(k) = tAD(k). The bond angles are shown in Fig. 1,
and the parameters are α1 = 96◦,5◦, α2 = 101◦,9◦, cos β =
− cos α2/ cos α1, a1 = 2.22 Å, a2 = 2.24 Å.

For the case of bilayer BP, the additional coupling terms
are

tAD′(k) = 4t⊥3 cos [kx2a1 sin(α1/2)]
× cos {ky[a1 sin(α1/2) + a2 cos β]}
+2t⊥2 cos {ky[a1 sin(α1/2) + a2 cos β]} (A4)

and

tAC ′(k) = 2t⊥1 cos [kxa1 sin(α1/2)] exp[ikya2 cos β]
+2t⊥4 cos [kxa1 sin(α1/2)]
× exp{−iky[2a1 sin(α1/2) + a2 cos β]}, (A5)

where, following Ref. [16], we use the values for the hopping
terms shown in Table II.

2. Unitary transformation

In order to obtain the Hamiltonian (39), one can, e.g.,
perform the following unitary transformation to the expression
of Eq. (35):

U = 1

2

⎛
⎜⎝

1 1 i1 i1
1 −1 i1 −i1
1 1 −i1 −i1

−1 1 i1 −i1

⎞
⎟⎠, (A6)
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where 1 are 2 × 2 unit matrices. Thus, one obtains

U †HU =

⎛
⎜⎜⎜⎝

H0 + H2 − 1
2H3 0 i �

2 1 −i 1
2H3

0 H0 − H2 + 1
2H3 i 1

2H3 i �
2 1

−i �
2 1 −i 1

2H3 H0 + H2 + 1
2H3 0

i 1
2H3 −i �

2 1 0 H0 − H2 − 1
2H3

⎞
⎟⎟⎟⎠, (A7)

acting on the spinor

� =

⎛
⎜⎜⎜⎝

ψα

ψβ

ψγ

ψδ

⎞
⎟⎟⎟⎠, (A8)

with the corresponding spinor components being given in Eq. (45). Then, by a simple permutation of the spinor components,
Eq. (38) results.
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