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Topological symmetry breaking: Domain walls and partial instability of chiral edges
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In two-dimensional topological systems chiral edges may exhibit a spectral change due to the formation of
a Bose condensate and partial confinement in the bulk according to the topological symmetry breaking (TSB)
mechanism. We analyze in detail what happens in the bulk as well as on the edge for a set of simple c = 1
chiral fractional quantum Hall systems. What this paper achieves is an explicit matching of the detailed field
theoretic treatments of the bulk and boundary chiral boson and Chern-Simons theories, which allows for a
precise interpretation of the TSB mechanism. TSB corresponds to the spontaneous breaking of a global discrete
symmetry both in the bulk and on the edge and therefore to the appearance of domain walls in the bulk that may
terminate in kinks on the edge. The walls, however, are locally metastable and break if a confined particle-hole
pair is created. We list the c = 1 chiral models for which this type of instability may occur.
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I. INTRODUCTION

Topologically ordered phases of matter exhibit many fasci-
nating properties, such as fractionalization of spin and charge
and the possibility of non-Abelian braiding statistics [1]. One
phenomenon that plays a pivotal role in almost all topological
phases—be they topological insulators, topological supercon-
ductors, fractional quantum Hall (FQH) states et cetera—is
the appearance of protected edge modes. In fact, for phases
of which the bulk can be described by a Chern-Simons (CS)
theory there is a bulk-boundary correspondence stating that
the (1+1)-dimensional gapless edge can be described by a
conformal field theory (CFT) and the bulk wave functions by
the conformal blocks of the same CFT [2,3]. This strongly
suggests that as long as the bulk is topologically ordered, no
perturbations can destroy the chiral gapless edge theory. For
nonchiral edges there is the possibility of counter-propagating
edge modes gapping out and a criterium for stable edges is
given in terms of the Lagrange subgroup [4,5], which has also
been formulated for so-called symmetry-enriched phases [6–9]
and classifications of gapped boundaries and domain walls
for Abelian as well as non-Abelian models are given in
Ref. [10–12].

In this paper, we point out a particular incompleteness
of this picture. We show that a careful treatment of the
problem necessarily has to take into account the possibility
of Bose condensation in the bulk, corresponding to TSB. This
formalism describes phase transitions between different topo-
logically ordered phases due to the condensation of bosonic
quasiparticles breaking the quantum group symmetry [13–
15]. It has been successfully applied to many transitions
between topological phases [16–19] and a more mathematical
treatment has been formulated since [20–22]. Here we will
show how simple chiral models corresponding to specific
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Laughlin states may be unstable due to TSB and decay into
a different topological phase. The simplest of these are states
describing quantum Hall fluids at filling fractions ν = 1/8 and
ν = 1/9.

The second part of this paper will be devoted to showing
how a careful treatment of TSB gives rise to a degeneracy
in vacuum states in the broken phase. This eventually results
in a spontaneous breaking of the symmetry when the system
chooses one of these vacua as its ground state. This picture
allows for the possibility of different domains within one
broken phase and we give a description of the domain walls
between them. It turns out that such a wall is metastable and can
break through the creation of a confined particle-antiparticle
pair. This pair may either annihilate in the bulk, or both particle
and antiparticle will be expelled to the boundary of the sample.
Furthermore, we find that the particles that are confined in the
bulk are not confined at the boundary, but as they correspond to
solitons in the edge theory they are gapped. This mechanism
is interesting because it shows that gapping out by creating
a conventional mass term and therefore breaking the chiral
symmetry, is not the only way to create massive excitations.

The structure of this paper is as follows. In Sec. II we
present all the ingredients of TSB that we use in the rest of this
paper. The reader who is familiar with this formalism may skip
this section. In Sec. III we apply TSB to chiral U (1) states.
First we show how the bosonic and fermionic Laughlin states
can be expressed in terms of the U (1) CFT and which of these
states have a bosonic sector in their spectrum. Then we give
the resulting phase structure after the condensation of such a
boson. Section IV is devoted to domain walls and confinement.
We show that a ground-state degeneracy is present and how
it results in the formation of different domains. The confined
particles in the bulk are associated to these walls and we find
that they are no longer confined on the edge of our system.
We end the paper in Sec. V by showing how to generalize
the discussion to all unstable Laughlin states and we list the
conclusions of the present paper.

1098-0121/2015/92(7)/075427(7) 075427-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.075427


F. A. BAIS AND S. M. HAAKER PHYSICAL REVIEW B 92, 075427 (2015)

II. TOPOLOGICAL SYMMETRY BREAKING

We will recall the main ingredients of TSB here. The
formalism involves three steps.

(i) We start from a (2+1)-dimensional topologically or-
dered phase with topological excitations that fall into irreps
of some quantum group A. The different sectors are labeled
by their topological charge a,b, . . . ∈ A and carry quantum
numbers which are associated with their interaction under
fusion and braiding.

The fusion of two particle types labeled by a and b is
denoted by

a × b =
∑

c

Nc
ab c, (1)

where Nc
ab ∈ Z�0 gives the number of independent ways that

a and b can fuse to c. These fusion rules are symmetric under
interchange of a and b, i.e., Nc

ab = Nc
ba . Any physical system

must have a unique sector representing the vacuum, I, which
means no particle at all. Also, we need to demand that for every
particle a there is an antiparticle ā, in the sense that when these
sectors fuse, they must have the vacuum sector in one of their
fusion channels, i.e., NI

aā = 1 for all sectors in the theory.
Quite naturally, when there is fusion the reverse can also

be defined, which is called splitting. The fusion of two or
more particles {a1, . . . ,an} to a sector b, spans a Hilbert space
with dimension equal to the number of ways they can fuse to
b. When a sector labeled by a is fused N times with itself
the asymptotic growth of available fusion channels is given
by (da)N , where the positive real number da is called the
quantum dimension of a. This quantum number is preserved
under fusion, which means that for sectors that have fusion
rules Eq. (1), their quantum dimensions obey

dadb =
∑

c

Nc
abdc. (2)

Another way the topological excitation may interact is
through braiding. When we have only two spatial dimensions
at our disposal, the world lines of particles cannot cross and
they form braids that encode the precise phase evolution
of a multiparticle state. This is the origin of the existence
of so-called anyons exhibiting fractional spin and statistics
properties.

An important quantum number that we will use extensively
is associated to a rotation of a particle of type a over a 2π

angle, which we call the topological spin ha . Under such a
rotation, the wave function picks up a phase θa = e2πiha .

Interchanging two particles twice is equivalent to moving
one particle around the other. Such an operation is called a
monodromy and it may introduce a nontrivial phase factor in
the two-particle wave function. The monodromy of anyons
can also be expressed in terms of the spin. Assume that
two particles a and b fuse to a specific channel c, then the
monodromy is given by

Mc
ab = hc − ha − hb. (3)

(ii) A transition to a new phase can be driven whenever there
is a bosonic sector present in the initial phase A. A bosonic
sector must have trivial spin, hb ∈ Z. A second condition is
partial trivial self-monodromy, which means that upon fusion

with itself it must have the trivial sector as one of it fusion
channels, so NI

bb = 1. If such a sector is present, it may
condense and form a new ground state, which breaks the initial
symmetryA down to a residual one denoted by T . Topological
charge is now defined up to the charge of the condensate, which
means that sectors ofAmay become identified with each other
in the new phase T . When there are non-Abelian excitations in
the spectrum, certain sectors need to split up in order to obtain
consistent fusion rules, but we will not encounter this situation
in the present paper.

The splitting and identification of sectors can be summa-
rized in the branching rules

a →
∑

t

nt
at, (4)

where a ∈ A, t ∈ T , and nt
a is a positive integer. For future

reference, we call the sectors a ∈ A that branch to the same
sector t ∈ T the lifts of t . Branching and fusion should com-
mute, which severely restricts the branching rules and implies
that quantum dimensions are preserved under branching, i.e.,
da = ∑

t n
t
adt .

(iii) Once the sectors of T and their fusion rules have been
determined, there remains one last step in the process. When
different sectors of the initial phase A become identified with
each other in the intermediate phase, it does not imply that
they have well-defined braiding interactions in T . To illustrate
this, consider two sectors a1, a2 ∈ A, which become identified
with each other, i.e., a1 × b = a2, where b is a bosonic sector
that condenses and drives the transition to T . Now imagine
we bring a1 around b in the condensed phase T . Since b

represents the vacuum in T there should not be any nontrivial
interaction between a1 and b, and to ensure this we have to
demand that the monodromy of any sector in the new phase
with the condensate is trivial, i.e., θa2θ

−1
a1

θ−1
b = 1. As b is a

bosonic sector this boils down to ha2 − ha1 ∈ Z. The sectors
of T that do not have trivial braiding with the new vacuum are
expelled from the bulk, because they cause a domain wall of
finite energy in the condensate. In Sec. IV we will go into more
detail regarding the interpretation of these confined particles.

After following all the steps presented above, we are left
with a broken unconfined phase U , which carries topological
excitations with well-defined fusion and braiding relations.
The boundary of U with a trivial phase, for instance the
vacuum, is not simply described by U , as would have been
the case had we started from a phase U without applying
TSB to an initial phase A. The boundary must also contain
the confined sectors that were expelled from the bulk. The
correct description of the boundary is therefore given by the
intermediate phase T .

In the next section we recall the operator content of the
compactified chiral boson theory and how it is related to the
Laughlin states. We then proceed by showing how some of
these states have a nontrivial boson in their particle spectrum
that may drive a transition to a different Laughlin state.

III. CHIRAL U(1) STATES AND TSB

We will derive for which Laughlin states at filling fraction
ν = 1/M the particle spectrum contains a nontrivial boson,
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which could drive a phase transition to a state at different
filling fractions.

The edge as well as the bulk can be described by a chiral
boson with compactification radius R = √

M . It is well known

that for rational radius R =
√

2p′
p

, with p,p′ coprime there

are only a finite number of sectors [23]. The primary fields of
the extended theory are of the form

Vn = einφ/
√

2pp′
, (5)

and their weights are

hn = n2

4pp′ , n = 0, . . . ,2pp′ − 1. (6)

The Hilbert space falls into irreps of the extended algebra,
which will be denoted by U (1)pp′ . Note that all of the above
is invariant under the interchange p ↔ p′, which corresponds
to the invariance under modular transformations.

A. Laughlin states

We first turn to the bosonic Laughlin states at filling fraction
ν = 1/M , with M even. The theory can be described by a
compactified chiral boson at radius R = √

M where we add the
bosonic operator VM = ei

√
Mφ to the chiral algebra, resulting

in a finite number of sectors that form an algebra denoted
by U (1)M/2. The theory we start from has M sectors Vn =
einφ/

√
M , with conformal weights (spins)

hn = n2

2M
, n = 0, . . . ,M − 1. (7)

The vertex operator that describes the physical boson of charge
e is precisely the operator that is added to the chiral algebra
Ve = VM , with weight he = M/2, which is an integer for
even M .

Moore and Read treated the fermionic case [2]. They choose
the electron operator Ve = ei

√
Mφ as extended generator even

though it has half-integer spin. The other operators are chosen
such that they are mutually local with the electron operator. The
weights of these operators are hn = n2

2M
, with n = 0, . . . ,M −

1, and they indeed carry the right quantum numbers associated
with the quasiholes of the FQH state. The reason why we do not
adopt their formulation is that they do not distinguish between
the electron operator and the trivial operator; therefore, we
would never be able to distinguish between a fully gapped
(edge) system and a ν = 1 state.

We will follow a different strategy. For ν = 1/M , with M

odd, we start from a compactified boson at R = √
M . Since M

is odd we can choose p′ = M and p = 2 as coprime integers,
resulting in a U (1)2M theory. The weights are

hn = n2

8M
, n = 0,...,4M − 1. (8)

The sector with n = 2M corresponds to the electron and it
has spin h2M = M/2. We want all the sectors to be local with
respect to the electron operator. The monodromy is given by

Mn,e = 4Mn

8M
= −n

2
, (9)

which means that only the even sectors are local and are good
operators in this theory. Rewriting 2m = n, we are left with
2M sectors Vm = eimφ/

√
M , labeled by m = 0,...,2M − 1, with

weights hm = m2

2M
. Let us call this theory U+(1)2M , where the

+ denotes the even sectors. Effectively, the only difference
with the literature is that we count up until twice the electron.

B. Unstable Laughlin states

We now turn to investigating which states have a nontrivial
boson in their spectrum. Starting from a phase A = U (1)M/2,
which has M sectors with spins given in Eq. (7), we will show
that phases with filling fraction

ν = 1

M
= 1

2l2k
, l = 2,3, . . . , k = 1,2, . . . , (10)

have at least one nontrivial boson that can drive a transition to
a broken phase carrying less sectors.

The initial phase is A = U (1)l2k , corresponding to a chiral
boson compactified at R = l

√
2k, which has 2l2k sectors with

spins

hn = n2

4l2k
, n = 0,1, . . . ,2l2k − 1. (11)

The smallest nontrivial bosonic sector is b = 2lk, which has
spin hb = k. When this boson forms a condensate, the other
sectors arrange in orbits of length l under fusion with the boson

n ∼ n + 2lk ∼ · · · ∼ n + 2lk(l − 1), (12)

which means that the sectors belonging to the same orbit get
identified with each other, resulting in an intermediate phase
T , which has fusion rules Z2lk .

To check which sectors become confined we consider the
monodromy of a sector n with the boson

Mn,b = hn+b − hn − hb = n

l
. (13)

The unconfined sectors can be expressed as n = ml, where
m = 0,1, . . . ,2k − 1 and we see that they have spin hm = m2

4k
,

which we recognize as a U = U (1)k theory. Of course, if this
k is again of the form k = l2k′ there will be other bosons left
in the theory, which can also condense. The highest filling
fractions that are not stable are ν = 1/8,1/16,1/18, . . ..

The same analysis can be performed for the fermionic
Laughlin states and we will show that for filling fraction

ν = 1

M
= 1

l2k
, l = 3,5, . . . , k = 1,3, . . . , (14)

a phase transition can occur.
Starting from A = U+(1)2l2k corresponding to a chiral

boson compactified at radius R = l
√

k, there are 2l2k sectors
with spins

hn = n2

2l2k
, n = 0,1, . . . ,2l2k − 1. (15)

The charge e fermion is given by ne = l2k and has spin he =
l2k/2. There is a nontrivial boson in this theory b = 2lk, which
has spin hb = 2k. When these particles condense, the original
A sectors rearrange into orbits of length l, similar to Eq. (12).
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The broken intermediate phase T has fusion rules Z2lk and the
monodromy of these sectors with the bosonic particle is

Mn,b = 2n

l
. (16)

This demonstrates that the unconfined particles are those for
which n = lm with m = 0,1, . . . ,2k − 1 and their spins are
given by hm = m2

2k
.

They form a broken unconfined phase U = U+(1)2k at
R = √

k, corresponding to a fermionic Laughlin state at
filling fraction ν = 1/k. The highest fractions are ν =
1/9,1/25,1/27, . . .. For instance, the ν = 1/9 breaks to a
Laughlin state at ν = 1, which is an IQH phase.

In this section we showed that simple chiral models are not
completely stable. For those models that have a nontrivial
bosonic sector in their spectrum a condensate may form.
Topological charge is no longer conserved and certain sectors
may disappear into the new vacuum or become confined. We
would like to stress that we are dealing with chiral theories
in this paper and we indeed find that the edge to the vacuum
cannot be fully gapped even after TSB took place.

IV. DOMAIN WALL AND CONFINEMENT

In the previous section we applied TSB to drive a phase
transition from a Laughlin state, which describes an Abelian
FQH liquid at filling fraction ν = 1/M , to another Laughlin
state at larger filling fraction. In this section we take a closer
look at the nature of the confined particles. We know that they
must be expelled from the bulk of a broken phase, but what
happens at the boundary? Moreover, we will demonstrate that
different domains can appear in the broken U phase and show
how the confined particles play a prominent role in the stability
of the domain walls separating different domains.

A. Vertex operators and Wilson loops

To be definite and explicit we will consider the specific
example of a bosonic Laughlin state at ν = 1/8. At the end
of this paper we will comment on how to generalize this to
the other unstable Laughlin states discussed in the previous
section.

Instead of simply considering the distinct topological
sectors and their quantum numbers, we will cast them in a
more familiar CFT form. The bulk is described by a U (1)
CS field at level k = 8 and the edge has gapless edge modes
corresponding to a chiral boson theory compactified at radius
R = √

8. In the bulk the CS field can be written as a pure gauge
ai(z) = ∂iφ(z), but on the edge there are dynamical degrees of
freedom corresponding to U (1)4. The Lagrangian describing
the edge is given by

L = 1

4π

∫
dx(∂xφ∂tφ − ∂xφ∂xφ), (17)

where x is the coordinate along the edge [3]. It is a chiral
boson with a global U (1) invariance corresponding to the
transformation φ(x) → φ(x) + f .

The mode expansion of φ(x) compactified on a radius R =√
8 on a cylinder of circumference L is

φ(x) = 2πN̂√
8L

x +
√

8 χ̂ + oscillator modes, (18)

where we will discard the oscillator modes as we are only
interested in the distinct topological sectors. The charge
operator N̂ and the zero mode χ̂ have commutation relations
[χ̂ ,N̂ ] = i.

Let us define several operators that play a crucial role in
our subsequent analysis. The operators that create a localized
topological charge are the normal ordered vertex operators,

Vn(x) =: e
i n√

8
φ(x) : , (19)

where we will omit writing the normal ordering symbol
from now on. The vertex operators are invariant under
φ(x) → φ(x) + 2πR and have conformal weights hn = n2

16 .
They transform as irreps under the global symmetry φ(x) →
φ(x) + f : Vn → einf/RVn. The operators that measure charge
correspond to nonlocal Wilson loops, defined as

Wq = exp

[
iq√

8

∫ L/2

−L/2
axdx

]
= e2πiqN̂/8. (20)

It is the exponentiated conserved global charge operator that
is invariant under the global U (1) symmetry. Note that this
operator can be extended to the bulk where it becomes locally
gauge invariant under the transformation φ(z) → φ(z) + f (z)
for any value of q and we will use it at various values of q to
probe the phase structure of the theory later on.

We will also employ open Wilson line operators,

Wq(x1,x2) = exp

[
iq√

8

∫ x2

x1

∂xφ(x)dx

]
, (21)

which are still invariant under the global U (1) symmetry,
but if extended to the bulk are not invariant under the
local U (1), which takes φ(z) → φ(z) + f (z). An interesting
gauge invariant operator is obtained by attaching charged
quasiparticles represented by vertex operators to the integer
charged Wilson lines,

Vn(z1)Wn(z1,z2)V †
n (z2). (22)

This operator is well defined in the bulk as well as on the
boundary. From this expression it follows naturally that a
quasiparticle of charge n cannot exist alone. There is always
an antiparticle present and they are connected by a Wilson line
that in the present case is just a Dirac string, a gauge artifact
that can be moved around without changing the physics. This
reflects the bulk-boundary correspondence: if we want to insert
a single quasiparticle in the bulk there has to be an antiparticle
somewhere on the boundary too.

Let us return to the edge theory. We label the distinct
topological charge sectors by n = 0, . . . ,7, which are the
eigenvalue of N̂ , and they can be created by acting with the
nonlocal operator

V̄n = exp

[
i

n√
8L

∫ L/2

−L/2
φ(x)dx

]
. (23)

These are nonlocal operators that act on the vacuum state
as V̄n|0〉 = |n〉 and commute with the charge operator as
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[N̂,V̄n] = nV̄n, so they act as ladder operators on the charge
eigenstates:

V̄n|n′〉 = |n + n′〉, mod 8. (24)

The eight topological sectors form irreps of a global Z8 group
generated by W1 = e

2πi
8 N̂ (W 8

1 = 1) and the ground state |0〉
is unique. The algebra of the operators that create a unit of
charge and measure charge is

WmVn = VnWme2πnmi/8, (25)

which holds for both V̄n and Vn(x).
Now that we have presented the relevant operator content of

the chiral compactified boson of the A theory, we will move to
a description of the formation of a condensate in this context.

B. Ground state degeneracy and vacuum expectation value

We are interested in which part of the topological structure
of the bulk and boundary theory is preserved and what novel
structures we may encounter if we assume that some nontrivial
operator condenses. Phase transitions are usually accompanied
by some order parameter obtaining a finite expectation value
in the new phase, and the operators we have at our disposal are
the vertex operators. Clearly, in the unbroken phase A, they all
have vanishing vacuum expectation value, but in the broken
phase we will assume that for some Vb we have

|〈Vb〉|2 
= 0. (26)

This means that the ground state should be of the form

|n〉b =
∑

t

ct |n + tb〉, (27)

where t is an integer and ct some coefficient, which should be
chosen such that the states form an orthonormal set. In addition
we require this new ground state to be invariant under rotations
of 2π generated by R̂ = ei2πN̂2/16, which acts on the states as

R̂ |n〉b =
∑

t

ct e
i2π(n+tb)2/16|n + tb〉. (28)

This will further restrict the state to n = 0 or n = 4, and for
both of these values of the charge we need to set b = 4. So in
this new phase the two possible ground states are

|0〉± = 1√
2

(|0〉 ± |4〉). (29)

The condition that the ground state is invariant under R̂ is
equivalent to demanding integer spin, which is a property a
condensable sector should have. The difference with older
work on TSB is that we recognize two different ground states
instead of only |0〉+, which may result in different domains
due to spontaneous symmetry breaking as we will see below.

The operator V4 has nonzero expectation value, which is
very similar to creating Cooper pairs in a superconductor.
In our case, we can freely create and annihilate particles of
topological charge n = 4. The states rearrange themselves as
eigenstates of V4,

|n〉± = 1√
2

(|n〉 ± |n + 4〉), n = 0, . . . ,3. (30)

They form an orthonormal and complete set of representations
of the group G = Z4 ⊗ Z2, generated by W2 and V4. These
two operators commute, [W2,V4] = 0, and the action on the
states is W2|n〉± = e2πin/4|n〉± and V4|n〉± = ±|n〉±. In the
broken phase the ground state is twofold degenerate and W1

maps the two states onto each other, W1|0〉± = |0〉∓. These
states carry a Z2 charge generated by V4, and the trivial Z4

charge under W2.

C. Domain walls

Since there is a twofold degenerate ground state in the
broken phase, the system eventually chooses one of these
states resulting in a spontaneous breaking of the Z2 symmetry.
However, it could happen that part of the system is in the +
ground state and the other part in the − state. Intuitively this
would result in different domains separated by domain walls
carrying energy.

Let us first focus on the edge and start from a state where
the entire edge is in the ground state |0〉+. We apply the open
Wilson line operator Eq. (21), which creates a domain in the
|0〉− phase in between the points x1 and x2. At the edge we
only have the global symmetry of shifting φ(x) by a constant.
Clearly the Wilson line on the edge is invariant under this
transformation and creating these different domains does not
require the introduction of the V1 sectors at the endpoints. The
kinks located around x1 and x2, however, have finite energy,
so restricting our consideration to the edge theory, we may
conclude that the kinks are massive solitons, which are not
confined as there is only vacuum in between them.

We may extend the operators Wq(C) and Vn(z) to well-
defined operators referring to closed loops C and points
(punctures) z in the bulk. In discussing the phase structure of
the broken phase U , it is important to make a clear distinction
between whether we permit insertions in the bulk of the
confined sector V1(z) or not. This distinction can be made
because there are two scales in the problem: the gap or mass
of the Vn excitations and the presumably smaller energy scale
associated with the condensate. It is most natural to start with
a situation where we do not include them, but we may still
consider the Wilson loop operators with arbitrary q and in
particular also with q = 1. The interpretation of closed loops
is similar to that on boundary, the Wilson loop operator now
creates a domain of − vacuum in the bulk, and a domain
wall along the contour C. It is interesting to deform this
configuration as indicated in Fig. 1. In the figures on the left
we have sketched the situation just discussed. However, the
loop can be moved around at will, and in particular we may
put it partially along the edge as in the third figure. How
do we interpret this physically? When looked at from the
perspective of the boundary we see that at the points A and B
where the closed loop leaves the boundary, the vacuum on the
boundary flips and therefore there should be a kink in the field
at these points. The other part of the contour, going from B
to A through the bulk, is a massive domain wall ending at the
kink-antikink pair. The situation is comparable to the states
created by Vn(z), which represent massive localized anyons in
the bulk and massless modes on the edge.

When there are different domains in the bulk we have to
probe the system locally to measure which domain we are
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A

B

FIG. 1. (Color online) A disk in the broken phase U with two
possible ± vacua indicated by gray stripes and a red mesh,
respectively. On the left, the disk is entirely in the + vacuum. Next,
a Wilson loop W1 is created, which has a − vacuum inside and a
physical domain wall along the loop. It can be deformed to lie partially
on the boundary as indicated in the third figure. The boundary has
two different domains and the kinks located around point A and B
carry energy. The wall going across the disk through the bulk also
carries energy. In the last figure the entire Wilson loop lies on the
boundary.

in. We cannot simply use V4(z), as it is not gauge invariant.
Instead, we need to use the gauge invariant object in Eq. (22)
with n = 4, which gives +1 if the end points are in the same
vacuum and −1 if they are in different vacua, i.e., crossing the
wall either an even or odd number of times. The coloring of
domains in Fig. 1 is well defined at this stage; therefore, in this
restricted setting without V1 quasiparticles the vacuum states
can be unambiguously carried over to the bulk.

D. Confined particles

So far we have established a detailed, consistent picture of
the physics of TSB except that we have to consider one more
ingredient, and that is the role of the confined vertex operator
V1(z) in the bulk of U . We will see below that it plays a major
role in the stability of domain walls.

We can distinguish two types of instability. One is a global
instability, meaning that a closed loop in the bulk can shrink to
zero. Since the domain wall has a fixed energy per unit length,
shrinking lowers the total energy of the configuration and there
is no topological obstruction to fully contract. More interesting
is a local topological instability of the wall, where it can in
principle break upon the creation of a V1-V †

1 particle-hole pair
attached to the new endpoints of the broken wall. This process
is depicted in Fig. 2. Whereas the V1 quasiparticles were not
confined on the boundary as we argued before, they are linearly
confined in the bulk exactly because they have to be attached
to a domain wall of finite energy. The walls are metastable
because the creation of a massive pair requires an energy of
at least twice the particle gap. Another important consequence
of the metastability of the wall in the bulk is that the domain
structure of the vacuum is no longer protected.

A

B

V1

V †
1

FIG. 2. (Color online) At the left a closed W1 loop is depicted
and on the right the loop is broken through the creation of a V1-V †

1

pair. Probing with a W4 Wilson line from a point in the bulk to the
boundary is still consistently defined.

A topological argument explaining this goes as follows [24].
In the unbroken phase V1 is present and we have a full
U (1)/Z8 gauge group in the bulk with topological flux and
particle sectors π1(U (1)/Z8) = π0(Z8) = Z8, corresponding
to representations of the Z8 group generated by W1. After
breaking, the gauge group is formally changed to U (1)/Z4,
corresponding to the Z4 subgroup of Z8 consisting of the
even elements, and π0(Z4) refers to the even sectors V2n. The
homotopy sequence of interest here is

π0(Z4) → π0(Z8) → π0(Z8/Z4), (31)

implying that the image of the first mapping is the kernel of the
second. In physical terms this means that the even sectors of
π0(Z8) get mapped onto the trivial sector of π0(Z8/Z4) = Z2,
where the latter group labels per definition the new types of
domain wall that arise in the broken phase. In other words,
the odd charges of the π0(Z8) are mapped onto the nontrivial
domain walls and are therefore confined, exactly as advertised.

The overall picture remains completely consistent if one
takes into account that now there are two ways to go from a
+ state created by (Vn(x) + Vn+4(x))|0〉 at a position x on the
edge to the left of point A in Fig. 2, to the corresponding −
state with x to the right. The first option is to “cross” the wall
by transforming a vertex operator with W1 using Eq. (25). The
other is by moving the vertex operators involved through the
bulk and around the endpoint at the opening in the wall, which
in fact means acting with the monodromy operator.

Let us demonstrate this explicitly by considering this
question in the original unbroken A theory, and see what can
be carried over to the broken phase. Given that the monodromy,
i.e., encircling an anyon Vn with Vm (in the original A theory
with n,m = 0, . . . ,7), yields a phase factor

exp[2πi(hm+n − hn − hm)] = e2πinm/8, (32)

we can make some important observations. Since theA sectors
become combined (identified) as in Eq. (30) in the broken
phase, encircling them around another T sector gives different
monodromy phases. For n,m = 0, . . . 3 and k,k′ = 0,1, the
different phases of the monodromy can be expressed as

2π

16
[(n + m + 4k + 4k′)2 − (n + 4k)2 − (m + 4k′)2]

= 2π

8
(nm + 4nk′ + 4mk) mod 2π. (33)

Two T sectors have consistent braiding if their monodromy is
independent of k and k′, which leaves us with only the sectors
n = 0 and n = 2 as expected. One also may verify that only
these sectors are mutually local with respect to the new vacuum
and therefore survive as unconfined particles.

Note that from the monodromy phase we learn that if we
have the fundamental quasiparticle corresponding to V1 in
the bulk and bring the new vacuum V0 ± V4 around it, that
would map the two vacua onto each other; i.e., (V0 ± V4) →
(V0 ∓ V4). This means that the net effect of moving around the
confined particle is the same as crossing the wall as we have
described above, where the ± state transforms under W1 and
gets mapped to the ∓ state at the other side of the wall.

This shows once more that the wall is not locally stable, and
it can break under the creation of a fundamental quasiparticle-
hole pair, each of them remaining attached to the newly created
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end points. Alternatively one may consider starting from a
disk entirely in one of the vacua and creating the V1-V †

1 pair
somewhere in the bulk. When the particles are moved apart
they stay connected by a wall which explicitly follows from
Eq. (22).

So their appearance will be exponentially suppressed not
only because of their mass but also because of their interaction
energy that rises linearly with distance, and they indeed are
confined.

V. GENERALIZATIONS AND CONCLUSIONS

In this paper we mainly focused on the specific Laughlin
state at ν = 1/8 in order to clearly present our results, but
the construction is easily generalized to the other unstable
Laughlin states.

Even though the notation for fermionic and bosonic states
is a bit different,

Bosonic: M = 2l2k A = U (1)l2k l � 2, k � 1, (34)

Fermionic: M = l2k A = U+(1)2l2k l � 3, k � 1, (35)

what they have in common is that V2lk acquires a vacuum
expectation value, resulting in l different vacua. There are
l − 1 different Wilson loops, Eq. (20), that create the different
domains, and there are l − 1 distinct confined particles
corresponding to Vn, with n = 1,2, . . . ,l − 1, that can be
attached at the end of a Wilson line as in Eq. (21).

The generalization to other Laughlin states is straight-
forward, but this work also suggests many other interesting
generalizations, such as analyzing the field theory of TSB in
general non-Abelian theories with a WZW theory on the edge.

Let us end this chapter by summarizing our results. Even
though there can be no backscattering in a chiral system, we
have shown that certain chiral edges labeled by two integers l

and k are not entirely protected because TSB may occur. When
a condensate of bosonic particles forms, certain topological
sectors can disappear in this condensate and others become
confined. After breaking the topological symmetry we are
left with a phase that is still chiral but has less sectors in
its spectrum.

Furthermore, we have extended our understanding of
the original TSB picture proposed in 2002, by finding an
explicit expression of an order parameter that obtains a finite
expectation value in the broken phase. This leads to degenerate
ground states and different domains separated by domain
walls. Moreover this gives us a good understanding of the
confined particles in the bulk, which turn out to be unconfined
on the edge of the sample. We give simple criteria for the
stability of the domain walls. This work also clearly shows the
essential observable differences between an exact U theory
and the U phase obtained after applying TSB to an A theory.

ACKNOWLEDGMENTS

The authors thank Jesper Romers and Sebas Eliëns for
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