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Entanglement of indistinguishable particles as a probe for quantum phase transitions
in the extended Hubbard model
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We investigate the quantum phase transitions of the extended Hubbard model at half-filling with periodic
boundary conditions employing the entanglement of particles, as opposed to the more traditional entanglement
of modes. Our results show that the entanglement has either discontinuities or local minima at the critical points.
We associate the discontinuities to first-order transitions, and the minima to second-order ones. Thus we show
that the entanglement of particles can be used to derive the phase diagram, except for the subtle transitions
between the spin-density wave (SDW) and bond-order wave (BOW) phases and the triplet superconducting (TS)
and singlet superconducting (SS) phases.
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I. INTRODUCTION

The connection between two important disciplines of
physics, namely, quantum information theory and condensed
matter physics, has been the subject of great interest recently,
generating much activity at the border of these fields, with
numerous interesting questions addressed so far [1]. In par-
ticular, the properties of entanglement in many-body systems,
and the analysis of its behavior in critical systems deserve
special attention.

In this work, we deal with the entanglement of indistin-
guishable fermionic particles in the one-dimensional extended
Hubbard model (EHM). We focus on the half-filling case. The
model is a generalization of the Hubbard model [2,3], which
encompasses more general interactions between the fermionic
particles, such as an intersite interaction, thus describing more
general phenomena and a richer phase diagram. Precisely, it is
given by

HEHM = −t

L∑
j=1

∑
σ=↑,↓

(a†
j,σ aj+1,σ + a

†
j+1,σ aj,σ )

+U

L∑
j=1

n̂j↑n̂j↓ + V

L∑
j=1

n̂j n̂j+1, (1)

where L is the lattice size, a
†
j,σ and aj,σ are the creation and

annihilation operators, respectively, of a fermion with spin σ

at site j , n̂j,σ = a
†
j,σ aj,σ , n̂j = n̂j,↑ + n̂j,↓, and we consider

periodic boundary conditions (PBC), L + 1 = 1. The hopping
(tunnelling) between neighbor sites is parametrized by t , while
the on-site and intersite interactions are given by U and V ,
respectively. Despite the apparent simplicity of the model, it
exhibits a very rich phase diagram, which includes several
distinct phases, namely, charge-density wave (CDW), spin-
density wave (SDW), phase separation (PS), singlet (SS) and
triplet (TS) superconductors, and a controversial bond-order
wave (BOW). A more detailed description of the model and
its phases will be given in the next section.

*fernandoiemini@gmail.com

Our numerical analysis is performed employing the en-
tanglement measures for indistinguishable particles intro-
duced recently [4–6], in conjunction with the density-matrix
renormalization group approach (DRMG) [7,8], which has
established itself as a leading method for the simulation of
one-dimensional strongly correlated quantum lattice systems.
DMRG is a numerical algorithm for the efficient truncation of
the Hilbert space of strongly correlated quantum systems based
on a rather general decimation prescription. The algorithm has
achieved unprecedented precision in the description of static,
dynamic, and thermodynamic properties of one-dimensional
quantum systems, quickly becoming the method of choice for
numerical studies.

The paper is organized as follows. In Sec. II, we review the
model and its phase diagram. In Sec. III, we present the distinct
definitions of entanglement in systems of indistinguishable
particles, focusing on the notion of “entanglement of particles.”
In Sec. IV, we present our results. We conclude in Sec. V.

II. EXTENDED HUBBARD MODEL

In this section, we give a detailed description of the
extended Hubbard model [2,3], and its distinct phases in the
half-filling case. The reader familiar with the subject may skip
this section.

Many efforts have been devoted to the investigation of the
EHM’s phase diagram at half-filling, using both analytical and
numerical methods [9–16]. Despite the apparent simplicity
of the model, it exhibits a very rich phase diagram which
includes several distinct phases: charge-density wave (CDW),
spin-density wave (SDW), phase separation (PS), singlet (SS)
and triplet (TS) superconductors, and a controversial bond-
order wave (BOW). (See Fig. 1 for a schematic drawing of the
phase diagram at half-filling.)

In the strong coupling limit (|U |,|V | � t), one can qual-
itatively characterize its phases as given by a charge-density
wave, spin density wave, and a phase separation. For a strong
repulsive on-site interaction (U > 0, U � V ), the ground state
avoids double occupancy and the spin density is periodic along
the lattice, leading to an antiferromagnetic ordering, namely
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FIG. 1. (Color online) Phase diagram of the half-filled extended
Hubbard model in one dimension. The distinct phases correspond
to the charge-density wave (CDW), the spin-density wave (SDW),
phase separation (PS), singlet (SS) and triplet (TS) superconducting
phases, and bond-order wave (BOW). The order of the quantum
phase transitions is identified by the different line shapes. The order
of the two superconducting phases transition (blue dotted line) is
controversial, being identified as a BKT transition [10], or a second-
order transition [9].

spin-density wave. Its order parameter is given by

Osdw(k) = 1

L

∑
m,n

eik(m−n)
[〈
σ z

mσ z
n

〉 − 〈
σ z

m

〉〈
σ z

n

〉]
, (2)

where σ z
j = 1

2 (n̂j↑ − n̂j↓). In the limit U → ∞, the ground
state is dominated by the following configurations:

|ψ〉sdw ≈ 1√
2

( |↑,↓,↑,↓, . . . ,↑L−1,↓L〉

+ |↓,↑,↓,↑, . . . ,↓L−1,↑L〉 ), (3)

where the state is described in the real-space mode repre-
sentation, in which each site can be in the following set
of configurations: {|0〉,|↑〉,|↓〉,|↑↓〉}. Considering a strong
repulsive intersite interaction (V > 0, V � U ), a periodic
fermionic density is generated, leading to a charge-density
wave. Its order parameter is given by

Ocdw(k) = 1

L

∑
m,n

eik(m−n)[〈n̂mn̂n〉 − 〈n̂m〉〈n̂n〉]. (4)

In the limit V → ∞, the ground state is dominated by the
following configurations:

|ψ〉cdw ≈ 1√
2

( |↑↓,0,↑↓,0, . . . ,↑↓L−1,0〉

+ |0,↑↓,0,↑↓, . . . ,0,↑↓L〉). (5)

In the range of strong attractive interactions (U,V < 0 or
U > 0, V < 0 with |V | � |U |), the fermions cluster together,
and the ground state becomes inhomogeneous, with differ-
ent average charge densities in its distinct spatial regions.
Such a phase is called phase separated state. In the limit
V → −∞, the ground state is dominated by the following

configurations:

|ψ〉ps ≈ 1√
L

∑
{�̂}

�̂
∣∣↑↓,↑↓, . . . ,↑↓( L

2 ),0, . . . ,0
〉
, (6)

where {�̂} is the set of translation operators.
In the weak coupling limit, different phases appear. For

small attractive intersite interactions (V < 0), superconduct-
ing phases are raised, characterized by the pairing correlations

�x = 1√
L

∑
j

aj,↑aj+x,↓, (7)

with the respective order parameter Os = ∑
x,x ′ 〈�†

x�x ′ 〉. If
the on-site interactions are lower than the intersite interactions
(U � 2V ), the fermions will pair as a singlet superconductor,
characterized by nearest-neighbor (�ssnn

) or on-site (�sso
)

singlet pairing correlations given by

�ssnn
= �x − �−x

= 1√
L

∑
j

(aj,↑aj+x,↓ − aj,↓aj+x,↑), (8)

�sso
= �0 = 1√

L

∑
j

aj,↑aj,↓, (9)

where x = 1. On the other hand, if the on-site interactions
are higher than the intersite interactions (U � 2V ), we have
a triplet superconductor, characterized by nearest-neighbor
triplet pairing correlations (�tsnn

) given by

�tsnn
= �x + �−x

= 1√
L

∑
j

(aj,↑aj+x,↓ + aj,↓aj+x,↑), (10)

where x = 1.
Note that the difference between the singlet and triplet

pairing correlations is simply a plus or minus sign. It
can be clarified if we consider, for example, the case of
two fermions in a singlet or triplet spin state, given by
(|ij 〉 ± |ji〉) (|↑↓〉 ∓ |↓↑〉). Expanding this state, we have

|ij 〉(|↑↓〉 ∓ |↓↑〉) ± |ji〉(|↑↓〉 ∓ |↓↑〉)
= |i↑,j↓〉 ∓ |i↓,j↑〉 ± |j↑,i↓〉 − |j↓,i↑〉
= (|i↑,j↓〉 − |j↓,i↑〉) ∓ (|i↓,j↑〉 − |j↑,i↓〉)
= (a†

i↑a
†
j↓ ∓ a

†
i↓a

†
j↑)|vac〉, (11)

where the lower/upper sign corresponds to the singlet/triplet
pairing correlation.

The last phase in the diagram is the controversial bond-
order wave (BOW). By studying the EHM ground-state
broken symmetries, using level crossings in excitation spectra,
obtained by exact diagonalization, Nakamura [10] argued for
the existence of a novel bond-order-wave phase for small
to intermediate values of positive U and V , in a narrow
strip between CDW and SDW phases. This phase exhibits
alternating strengths of the expectation value of the kinetic
energy operator on the bonds, and is characterized by the
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following order parameter:

Obow(k) = 1

L

∑
m,n

eik(m−n)[〈Bm,m+1Bn,n+1〉

− 〈Bm,m+1〉〈Bn,n+1〉], (12)

where Bm,m+1 = ∑
σ (a†

m,σ am+1,σ + H.c.) is the kinetic energy
operator associated with the mth bond. Nakamura argued
that the CDW-SDW transition is replaced by two separate
transitions, namely: (i) a continuous CDW-BOW transition
and (ii) a Berezinskii-Kosterlitz-Thouless (BKT) spin-gap
transition from BOW to SDW. Such remarkable proposal
was later confirmed by several works [11–16], employing
different numerical methods, like DMRG, Monte Carlo or
exact diagonalization. Nevertheless, while the BOW-CDW
phase boundary can be well resolved, since it involves a
standard second-order (continuous) phase transition, the SDW-
BOW boundary is more difficult to locate, for it involves a
BKT transition in which the spin gap opens exponentially
slowly as one enters the BOW phase. The precise location of
the BOW phase is then still a subject of debate. To the best
of our knowledge, the best estimates for the transitions, taking
U/t = 4, correspond to a CDW-BOW transition at V/t ≈ 2.16
[11,12,15,16], and to a BOW-SDW transition in the range
V/t ≈ 1.88–2.00 [11,12,15,16], or V/t = 2.08 ± 0.02 [13].

III. ENTANGLEMENT OF INDISTINGUISHABLE
PARTICLES

Despite widely studied in systems of distinguishable
particles, entanglement or more general notions of quantum
correlations have received less attention in the case of
indistinguishable particles. In this case, the space of quantum
states is restricted to symmetric (S) or antisymmetric (A)
subspaces, depending on the bosonic or fermionic nature of the
system, and the particles are no longer accessible individually,
thus eliminating the usual notions of separability and local
measurements, and making the analysis of correlations much
subtler. In fact, there are a multitude of distinct approaches
and an ongoing debate around the entanglement in these
systems [6,17–30]. Nevertheless, despite the variety, the
approaches consist essentially in the analysis of correlations
under two different aspects: the correlations genuinely arising
from the entanglement between the particles (entanglement
of particles) [6,17–24], and the correlations arising from the
entanglement between the modes of the system (entanglement
of modes) [25–28]. These two notions of entanglement are
complementary, and the use of one or the other depends
on the particular situation under scrutiny. For example, the
correlations in eigenstates of a many-body Hamiltonian could
be more naturally described by entanglement of particles,
whereas certain quantum information protocols could prompt
a description in terms of entanglement of modes. Once one has
opted for a certain notion of entanglement, there are interesting
methods to quantify it [4–6,31–34].

Entanglement of modes can be understood by mapping the
quantum state in its number representation, namely,

a
†
j1

. . . a
†
jN

|vac〉 −→ |0 . . . 1j1 . . . 1jN
. . . 0〉,

(13)
Â

(
HM

1 ⊗ · · · ⊗ HM
N

) −→ (
H2

1 ⊗ · · · ⊗ H2
M

)
,

where ji = 1, . . . ,M , and {a†
j }Mj=1 is an arbitrary set of M

fermionic operators describing the single-particle modes of the
system (not necessarily the real-space modes as in the Hamil-
tonian definition). We will denote hereafter as “configuration
representation (number representation)” the left (right) side of
the previous equation. Such equation corresponds to a mapping
to distinguishable qubits, represented by the occupied (|1〉j ) or
unoccupied (|0〉j ) modes, which then allows one to employ all
the tools commonly used in distinguishable quantum systems
in order to analyze their correlations. One could, for example,
use the von Neumann entropy of the reduced state representing
a block with � modes, in order to quantify the entanglement
between this block with the rest of the modes. The reduced state
is obtained by the partial trace in the number representation
(ρ� = Trj /∈�(|ψ〉 〈ψ |)). Notice that, in the mode representation,
local observables may actually involve correlations between
particles. For example, in the Hubbard model, although the
operator “a†

j↑a
†
j↓aj↓aj↑” acts locally at the j th site (real-space

modes), it describes pairing correlations between particles.
The algebra of local observables at the modes, defined in the
number representation, is generated by

�loc = {Ô1 ⊗ I2,M ; I ⊗ Ô2 ⊗ I3,M ; · · · · · · ;

I1,(M−1) ⊗ ÔM || Ô
†
j = Ôj }, (14)

where Ii,j ≡ Ii ⊗ Ii+1 ⊗ · · · ⊗ Ij , with j > i and Ii is the
identity operator acting on mode i. In this way, unentangled
states are those that can be completely described by such
local observables. It is known that such states are simply the
separable states in the usual tensor product form, |ψ〉un =
|φ1〉 ⊗ |φ2〉 · · · ⊗ |φM〉.

Based on the previous reasoning, we now define the notion
of entanglement of particles. Notice first that one cannot
analyze the system under the usual paradigm of separability
and locality, where the reduced states obtained by partial trace
are mixed (ρr = Tr2...N (|ψ〉 〈ψ |)), whenever the global state
is pure and entangled. Therefore, in the case of indistinguish-
able particles in the configuration representation, the use of
partial trace to characterize entanglement should be carefully
reviewed, since it would suggest that all pure fermionic states
are entangled, given that their reduced states are always mixed.
In order to generalize the notion of entanglement for systems of
indistinguishable particles, the approach based on the algebra
of observables sheds light on the problem and allows us to go
beyond the paradigm of separability and locality.

We now define the proper algebra of “local observables”
as the one composed by operators which do not create corre-
lations between the indistinguishable particles. Such algebra,
defined in the configuration representation, is generated by the
following single-particle operators:

�loc = {Ô ⊗ I2,N + I ⊗ Ô ⊗ I3,N + · · · · · ·
+ I1,(N−1) ⊗ Ô || Ô† = Ô}, (15)

where N is the number of particles. Equivalently, using the
second quantization formalism, the above set is given by
the number conserving quadratic operators, �loc = {(a†

i aj +
H.c.) | i,j = 1,. . .,M}. The states that can be completely
described by such algebra form, in this way, the set of un-
entangled states, where any particle is not entangled with any
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other. Intuitively, we would expect that this set corresponded
to single Slater determinants with fixed particle number. More
precisely, for a system with N fermions, it is given by

|ψ〉un = a
†
j1
a
†
j2

. . . a
†
jN

|vac〉, (16)

where {a†
j } is an arbitrary set of fermionic operators. Recall

that these operators cannot be quasiparticles with particle-
hole superpositions, as usual in a Bogoliubov transformation,
since the above states have a fixed number of fermions.
In fact, distinct approaches confirmed that such set does
indeed correspond to the unentangled states [6,17–24]. The
only nonclassical correlation present in such states is the
exchange, due to the antissymetrization, which does not
constitute entanglement. For example, in Ref. [17], the analysis
follows by using a very elegant mathematical formalism, called
GNS (Gelfand-Naimark-Segal) construction, for the case of
two fermions, each one with Hilbert space dimension 3 or
4, and two bosons with dimension 3; in Refs. [23,24] the
authors propose a “generalized entanglement (GE)” measure,
obtaining a simple formula for the “partial trace,” and the
set of fermionic unentangled states for an arbitrary number
of particles; or also in Ref. [6], where a general notion of
quantum correlation beyond entanglement (the quantumness
of correlations) is investigated by means of an “activation
protocol,” which yields the same set of states with no
quantumness as the above unentangled one.

As in the case of distinguishable modes, the von Neumann
entropy also provides a good quantifier for the entanglement
of indistinguishable particles. We can define the shifted von
Neumann entropy of entanglement [4] as follows:

Ep(|ψ〉 〈ψ |) = S(ρr ) − log2 N, (17)

where ρr = Tr1. . .TrN−1(|ψ〉 〈ψ |) is the single-particle re-
duced state, the partial trace is taken in the configuration
space, and S(ρ) = Tr(−ρ log2 ρ) is the von Neumann entropy.
Such a quantifier is obtained simply by noticing that each
extremal state in the one-particle reduced space is respective
to a unique single Slater determinant [35]. More precisely, the
single-particle reduced state of a single Slater determinant [as
Eq. (16)] is given by

ρr = 1

N

N∑
i=1

a
†
ji
|vac〉〈vac|aji

(18)

and its particle entanglement is null, Ep(|ψ〉 〈ψ |) = 0. If the
state cannot be described by a single Slater determinant, its
entanglement is necessarily non null, Ep(|ψ〉 〈ψ |) > 0, and
at least one of its particles is entangled with another one.
Maximally entangled states have their single-particle reduced
states described by the maximally mixed state, as, for example,
the strong coupling limit phases SDW, CDW, and PS, as
described in Eqs. (3), (5), and (6), respectively, whose reduced
state is given by

ρr = 1

2L

L∑
j=1

∑
σ=↑,↓

a
†
j,σ |vac〉〈vac|aj,σ , (19)

which have maximal von Neaumann entropy, S(ρr ) =
log2(2L), and consequently maximal particle entanglement,
Ep(|ψ〉 〈ψ |) = 1.

If the Hamiltonian has certain symmetries, its ground-
state entanglement can be analytically calculated as a simple
function of its quadratures [4]. In our particular case, from
both Ŝz and translational symmetries in the extended Hubbard
model, formally given by

Tr(a†
iσ ajσ̄︸ ︷︷ ︸
σ �=σ̄

ρg) = 0, ∀i,j, (20)

Tr(a†
iσ ajσ ρg) = Tr(a†

(i+δ)σ a(j+δ)σ ρg), (21)

where a
(†)
jσ is the annihilation (creation) fermionic operator of

a particle in the j th site, with spin σ , and ρg = |g〉 〈g| is the
ground state of the Hamiltonian, we have that its single-particle
reduced state (ρr (iσ,j σ̄ ) = 1

N
Tr(a†

j σ̄ aiσ ρg)) is disjoint in the

subspaces with distinct spin, ρr = ρ
σ=↑
r ⊕ ρ

σ=↓
r , and each of

these terms is given by a circulant matrix

ρσ
r = 1

N

⎛
⎜⎜⎜⎜⎜⎜⎝

x0 x1 · · · xL−2 xL−1

xL−1 x0 x1 xL−2
... xL−1 x0

. . .
...

x2
. . .

. . . x1

x1 x2 · · · xL−1 x0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (22)

xδ = 〈a†
(j+δ)σ ajσ 〉, (23)

where L is the lattice size. In this way the matrix is easily
diagonalized, and its eigenvalues {λσ

k } are given by a Fourier
transform of the quadratures:

λσ
k = 1

L

L−1∑
δ=0

eikδxδ, k =
[

0,
2π

L
, . . . ,(L − 1)

2π

L

]
. (24)

The entanglement is then directly obtained from Eq. (17).

IV. ENTANGLEMENT AND QUANTUM PHASE
TRANSITIONS

The computation of the single-particle correlations, and
consequently the entanglement of particles, was numerically
performed using DMRG. Although DMRG is less accurate
for problems with periodic boundary conditions (PBC) than
with open boundary conditions (OBC), from the physical
viewpoint PBC are strongly preferable over OBC, as boundary
effects are eliminated and finite size extrapolations can be
performed for much smaller system sizes. In this work,
we analyze the extended Hubbard model considering PBC.
Our simulations were performed for systems up to L = 352
sites, always keeping a large enough dimension (m) for the
renormalized matrices (ranging from m = 100 to 1000) and
number of sweeps (∼20 sweeps), in order to obtain an accurate
precision. In Fig. 2, we see that m ranging from 200 to
300 is enough for an entanglement accuracy of the order of
O(10−4). The accuracy for the ground-state energy, as well as
the truncation error, using such parameters, are of the order of
O(10−7)

Our results for the entanglement of particles in the extended
Hubbard model at half-filling are shown in Fig. 3, to be
dissected below. It is remarkable that such picture highlights
the known phase diagram of the model. We first note that, as
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FIG. 2. (Color online) Accuracy analysis for the computation of
entanglement of particles using DMRG. It shows the accuracy of the
entanglement, �(Ep) = Ep(m) − Ep(m − 50), as a function of m

(dimension of the renormalized matrices), at the point U = 4, V =
2.11, and using 20 sweeps in the computation, which is enough for
the ground-state convergence.

expected, we have a maximum of entanglement at the strong
coupling limits (Ep → 1), and as we decrease the interactions
between the particles, the entanglement tends also to decrease,
until the unentangled case for the noninteracting Hamiltonian
(U = V = 0). The figure thus presents the shape of a valley
around this point. Following then the discontinuities and the
local minimum points in the entanglement, we can easily
identify the quantum phase transitions, except for both the
subtle SDW-BOW transition, and the transition between the
superconductor phases TS-SS. In the former case, one needs
to recall that the observation of the BOW phase is by itself

FIG. 3. (Color online) Contour map for the entanglement of
particles “Ep” as a function of the interaction terms V/t and U/t ,
in a system with L = 128 sites at half-filling. The entanglement
behavior in the thermodynamic limit, L → ∞, keeping fixed the
filling n = N/L = 1, is qualitatively the same, with slight differences
of the order of O(10−2) in its magnitude; see Appendix for a detailed
discussion. The (green) continuous line denotes the discontinuity
at the entanglement function, while the (red) dashed line denotes
the local minima. The white dots correspond to the points where
we performed a detailed finite-size scaling analysis (see Table I in
Appendix).

a hard task, since its gap opens exponentially slowly, and
also that there are evidences that such transition is of infinite
order [36,37]. Therefore we believe that a possible detection of
such transition by the entanglement of particles would require
higher precision numerical analysis as well as the study of
larger lattice sizes. Concerning the TS-SS transition, on the one
hand the order of the two superconducting phases transition is
controversial, being identified as a BKT transition [10] as well
as a second-order one [9] in the literature. On the one hand,
we would be led to strengthen the result of a BKT transition,
since our entanglement does not detect it. On the other hand,
the apathy of the entanglement of particles on distinguishing
the two phases is reasonable, since the correlations between the
particles in the two superconducting phases have essentially
the same characteristics. Thus it is hard to precisely conclude
the reason for the failure to detect such a transition with our
measure of entanglement.

The discontinuities in the entanglement are directly identi-
fied with the first-order quantum phase transitions, whereas the
minimum points are identified with the second-order quantum
phase transitions. When crossing a first-order transition, the
ground-state energy presents a discontinuity and consequently
also its observables present a discontinuity. In this way, the
eigenvalues “λk” of the single-particle reduced density matrix
[Eq. (24)], and the entanglement obtained from them, should
present a discontinuity. The occurrence of the minimum
points is due to the divergence of the correlation length
when approaching the second-order transitions. As described
in the previous section, the eigenvalues “λk” are given in
momentum space by the Fourier transform of the real-space
quadratures “〈a†

jσ alσ 〉” [Eq. (24)]. In this way, if we are
close to the transitions, such real-space quadratures tend to
become delocalized or spread out along the lattice, thus leading
to more localized eigenvalue distributions in momentum
space, and consequently to smaller von Neumann entropies.
It is worth remarking that such behavior is the opposite of
the entanglement of modes, where the sites are maximally
entangled at the second-order transitions. As an example,
see in Fig. 4 the eigenvalue distribution for a system with
L = 128 sites when crossing the BOW-CDW quantum phase
transition.

We present now the entanglement behavior in some specific
slices of the phase diagram with L = 128, in order to clarify
the above discussion and results. More specifically, we show
the entanglement behavior in the PS-SS-CDW, PS-SS-SDW,
and PS-SDW-CDW transitions. Notice that our finite-size
scaling analysis showed that in the thermodynamic limit the
entanglement behavior is qualitatively similar (see Appendix),
with a scaling inversely proportional to the lattice size, Ep =
aL−1 + b, where a and b are constants.

A. PS-SS-CDW

In Fig. 5, we see the entanglement behavior across the PS-
SS-CDW phases. We clearly see, for any fixed attractive on-
site interaction (U/t < 0), a discontinuity in the entanglement
followed by a local minimum point, as we increase the value
of the intersite interactions V/t . The discontinuity is related
to the first-order transition PS-SS, while the local minimum
is related to the second-order transition SS-CDW. We see,
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FIG. 4. (Color online) (Top) Single-particle quadratures
“〈a†

L/2aj 〉” along the lattice sites, and (bottom) eigenvalue
distribution “λk” for the single-particle reduced state in a fixed
spin sector, as given in Eq. (24). We consider a fixed U/t = 4.
The vertical axis is in logarithmic scale, in order to make clearer
the visualisation. As we approach the BOW-CDW quantum phase
transition point, at V/t ≈ 2.13, we see that the quadratures tend
to delocalise along the lattice, whereas the eigenvalue distribution
becomes more localized.
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FIG. 5. (Color online) Entanglement behavior across the PS-
SS-CDW phases. The entanglement, for any fixed attractive on-
site interaction (U/t), is characterized by a discontinuity (PS-SS
transition), followed by a local minimun (SS-CDW transition).
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FIG. 6. (Color online) Entanglement behavior across the PS-TS-
SDW phases. The entanglement, for any fixed attractive intersite
interaction (V/t), is characterized by a discontinuity (PS-TS transi-
tion), followed by a local minimun (TS-SDW transition). For large
V/t , the two transitions shrink at the same point, and there is no TS
phase anymore.

however, that the SS-CDW transition is not located exactly at
V/t = 0, as expected from the phase diagram described in the
literature, but at a value close to this one. We believe that this
discrepancy is related to finite-size effects.

B. PS-TS-SDW

In Fig. 6, we see the entanglement behavior across the
PS-TS-SDW phases. We see again the two kinds of behavior
for any fixed attractive intersite interaction (V/t < 0): a
first discontinuity, related to the first-order transition PS-TS,
followed by a local minimum point related to the second-
order transition TS-SDW. Note that, for large values of the
attractive intersite interaction, V/t � −1.5, the discontinuity
and minimum converge to the same point, and there is no TS
phase anymore.

C. PS-SDW-(BOW)-CDW

In Fig. 7, we see the entanglement behavior across the
PS-SDW-BOW-CDW phases. We see that, as we increase
the value of the intersite interactions, for any fixed repulsive
on-site interactions (U/t > 0), the entanglement identifies two
transitions. Firstly, we see a discontinuity, related to the first-
order transition PS-SDW, followed then by (i) a discontinuity,
when considering large U/t or (ii) a local minimum point,
when considering small U/t . Such discontinuity is related
to the first-order SDW-CDW transition, while the minimum
points are related to the second-order BOW-CDW transition
(the SDW-BOW transition is not seen, as aforementioned). We
see that the transitions to the CDW phase occur at U ≈ 2V .
Performing a finite-size scaling analysis (see Appendix),
we obtain that, for U/t = 4, the BOW-CDW transition is
located at V/t = 2.11 ± 0.01, which is slightly lower than
the literature results, namely V/t ≈ 2.16 [11,12,15,16].
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FIG. 7. (Color online) Entanglement behavior across the PS-
SDW-BOW-CDW phases. The bottom panel is a magnification of
the top panel in the region 1 � V/t � 4.5. The entanglement, for
any fixed repulsive on-site interaction (U/t), is characterized by a
discontinuity (PS-SDW transition), followed by (i) a discontinuity
for large V/t (SDW-CDW transition) or (ii) local minimun points for
small V/t (BOW-CDW transition).

V. CONCLUSION

We studied the entanglement of indistinguishable particles
in the extended Hubbard model at half-filling, with focus on
its behavior when crossing the quantum phase transitions. Our
results showed that the entanglement either has discontinuities,
or presents local minima, at the critical points. We identified
the discontinuities as first-order transitions, and the minima as
second-order transitions. In this way, we concluded that the
entanglement of particles can “detect” all transitions of the
known diagram, except for the subtle transitions between the
superconductor phases TS-SS, and the transition SDW-BOW.

It is also interesting to compare our results with other
entanglement measures, such as the entanglement of modes,
which was widely studied in several models, as well as in
the extended Hubbard model [37–39]. Gu et al. [38] firstly
showed that the entanglement of modes, i.e., the entanglement
of a single site with the rest of the lattice, could detect
three main symmetry broken phases, more specifically, the
CDW, SDW, and PS. Other phases were not identified due
to the fact that they are associated to off-diagonal long-range
order. Further investigations were performed analyzing the
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FIG. 8. (Color online) Scaling of the entanglement at the SDW-
BOW-CDW phase transitions. For a fixed parameter U/t = 4, we
have (upper left) minimum entanglement critical point (V/t)c =
2.11; (upper right) V/t = (V/t)c + 0.5; (bottom left) V/t =
(V/t)c − 0.5. For a fixed U/t = 8 (bottom right), there is a disconti-
nuity in the entanglement, highlighted by the scaling at V/t = 4.147
(bottom curve), and V/t = 4.153 (upper curve).

block-block entanglement [37,39], i.e., the entanglement of a
block with l sites with the rest of the lattice (L-l sites), showing
that this more general measure could then detect the transition
to the superconducting phase, as well as the bond-order phase.
The measure, however, could not detect the SS-TS transition,
besides presenting some undesirable finite-size effects in the
PS phase. On the other hand, the entanglement of particles

TABLE I. Scaling constants for the entanglement, Ep = aL−1 +
Ep(L → ∞), at different points of the phase diagram, as highlighted
in Fig. 3. The symbol “∗” denotes the critical points, and “−” means
that the entanglement is constant, apart from numerical inaccuracy,
for the analyzed lattices. The estimated error for Ep and a is of the
order of O(10−3).

U/t V/t Ep(L → ∞) a

4 1.61 0.407 1.09
4∗ 2.11∗ 0.332 1.52
4 2.61 0.661 0.826
8 4.147 0.59 0.69
8 4.153 0.702 0.91
5.723∗ 3∗ 0.457 0.911
−1.76 −0.6 0.273 2.41
−1.76∗ −0.233∗ 0.174 3.08
−1.76 0 0.211 2.51
0.4 −1 0.211 2.11
0.67∗ −1∗ 0.204 2.59
2 −1 0.33 2.48
−7.73 −2.55 0.995 −
−7.73 −2.33 0.884 0.69
−2.03 −0.72 0.978 −
−1.875 −0.72 0.403 7.59
3.75 −2.95 0.985 −
4.05 −2.95 0.772 0.439
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studied in this work showed no undesirable finite-size effects
in the PS phase, but could not detect the superconductor SS-TS
transition either. Regarding the BOW phase, from the above
discussion we see that it would be worth to analyze more
general measures for the entanglement of particles, which goes
beyond single-particle information. Some steps in this direc-
tion were made in Ref. [18], where a notion of entanglement
of “subgroups” of indistinguishable particles was defined.
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APPENDIX: FINITE-SIZE SCALING ANALYSIS

In this appendix, we perform a finite-size scaling analysis
in the system entanglement, in order to extract information
about the ground state of the model. We obtained that the
entanglement behavior is qualitatively the same for lattices
larger than L ≈ 100, with just small differences of the order of
O(10−2) in its magnitude. In a general way, the entanglement
scales with the inverse of the lattice size, Ep = aL−1 + b,
where a and b are constants. See in Fig. 8, for example,
the entanglement scaling for the SDW-BOW-CDW phase
transitions. In Table I, we show the computed values for the
scaling constants at different points in the phase diagram, as
highlighted in Fig. 3.
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