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Uniformity of the pseudomagnetic field in strained graphene
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We present a numerical study on the uniformity of the pseudomagnetic field in graphene as a function of
the relative orientation between the graphene lattice and straining directions. We calculated the deformation of
a regular micron-sized graphene hexagon by symmetrically displacing three of its edges. We found that the
pseudomagnetic field is strongest if the strain is applied perpendicular to the armchair direction of graphene. For
a hexagon with a side length of 1 μm, the pseudomagnetic field has a maximum of 1.2 T for an applied strain of
3.5% and it is uniform (variance <1%) within a circle with a diameter of ∼520 nm. This diameter is on the order
of the typical diameter of the laser spot in a state-of-the-art confocal Raman spectroscopy setup, which suggests
that observing the pseudomagnetic field in measurements of shifted magnetophonon resonance is feasible.
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I. INTRODUCTION

Graphene is well known for its outstanding electronic
and mechanical properties as well as their remarkable cou-
pling [1–3]. Electronically, graphene behaves as a high
mobility semimetal [4], and mechanically, it is the strongest
material known to mankind [5]. That graphene is a semimetal
constraints the currently reachable on/off ratios for graphene
transistors [6]. Therefore, much research is focused on this
electromechanical coupling, as it may be utilized to tailor
the electronic properties of graphene. In theory, it is even
possible to get the desired electronic properties completely
via so-called strain engineering [7–9]. In particular, a large
mechanical deformation could induce a band gap [10–15].
However, even small deformations, or equivalently, small
strain fields, already alter the electronic properties. These
small deformations generate an effective potential for the
charge carriers in graphene, which is similar to the vector
potential of a real magnetic field and is therefore called
the pseudovector potential [16–19]. In analogy to a real
static magnetic field, a pseudovector potential can generate
a pseudomagnetic field [20–22], which changes the electronic
properties of graphene [23,24]. This pseudomagnetic field is
always zero, unless the applied strain is not uniform.

A major hurdle in strain engineered graphene is the
(experimental) determination of the pseudomagnetic field
strength and its uniformity. Recently it was shown that the
pseudomagnetic field in graphene nanobubbles can be as
strong as 300 T [25], which is much stronger than one
can achieve with real magnetic fields. Therefore, strained
graphene offers the unique opportunity to study the electronic
properties of graphene at extreme (pseudo)magnetic field
strengths. Alternatively, such systems could allow studies to
the magnetophonon resonance in Raman spectroscopy [26] or
enable so-called valleytronics [27–30], or enable strain tunable
pseudomagnetic quantum dots [31,32]. Numerical work of
strain fields in graphene is therefore of additional value, as it
not only estimates the strength of the pseudomagnetic field,
but also shows the uniformity of the generated pseudomagnetic
field and its dependence on the lattice orientation with respect
to the strain direction.

Very recently, microelectromechanical systems (MEMS)
have been introduced, which could allow for triaxial in-plane
strain fields in suspended graphene [33–35]. This makes it

possible to study the effect of strain on graphene experimen-
tally, without having to deal with the effects of a substrate.
Substrates are known to introduce both out-of-plane, e.g.,
ripples and small bumps, as well as in-plane strain variations
and thereby induce a pseudomagnetic field. It has been shown
that these type of out-of-plane and in-plane distortions are of
extreme importance for the transport properties of high-quality
graphene [36–38]. As these MEMS devices strain suspended
graphene flakes in-plane, we do not consider the complex
interplay between in-plane and out-of-plane strain.

In this paper we show calculations of the pseudomagnetic
field in a regular hexagon of graphene that is strained
simultaneously in three different in-plane directions. As the
uniformity of the pseudomagnetic field determines whether
it is detectable with a local probe, e.g., a scanning tunneling
microscope cantilever [39] or a laser probe, we specifically
study this as a function of the lattice orientation. For this
we consider two hexagonal geometries with side length
L of 100 nm and 1 μm, respectively. We show that the
pseudomagnetic field is constant within a circle of diameter d

that strongly depends on the relative orientation between the
graphene lattice and the strain direction. For the hexagonal
geometry with L = 1 μm, we find a diameter d of around
520 nm. In addition, we show that a special geometry, which
was believed to generate a uniform pseudomagnetic field for
a specific strain field [40], actually does not do so. Finally,
we show that an uniform pseudomagnetic field can indeed be
generated by applying a linearly varying force on two opposing
edges of a rectangle [41].

This paper is organized as follows. First, we describe the
theoretical origin of the pseudomagnetic field. Second, we
discuss the methods that we used to calculate the pseudomag-
netic field. Then we show our results before finishing with the
experimental implications and the conclusion.

II. THE PSEUDOMAGNETIC FIELD

The electronic structure of graphene is described by a tight-
binding Hamiltonian which only takes the interaction of the
π states into account [4]:

H = −
3∑

n=1

tn

(
0 e−ik·dn

eik·dn 0

)
, (1)
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FIG. 1. (Color online) (a) The lattice structure of graphene, in
which θ indicates the rotation angle between the armchair direction
and the x axis. The red and blue atoms indicate the two different
sublattices, and the dn indicates the nearest neighbor vectors. (b) The
geometry used in our calculations is a regular hexagon with side
length L. The force F is applied to the indicated edges.

in which k is the momentum of the electron, {dn} are the
three nearest neighbor vectors [see Fig. 1(a)], and {tn} are
the corresponding nearest neighbor hopping parameters. This
Hamiltonian is a 2 × 2 matrix, as each unit cell of graphene
contains two carbon atoms. As Fig. 1(a) shows, each of these
atoms forms a sublattice. The energy spectrum corresponding
to Eq. (1) contains six specific electron momenta k, for which
the energy is zero. These six points are characterized by only
two momenta: K and K′, which is a consequence of the
underlying sublattice symmetry.

The nearest neighbor hopping parameters {tn} change under
a deformation of the graphene lattice, as such a deformation
changes the nearest neighbor distance. The change in hopping
parameters is described by

tn = t0e
−β(|dn|/a−1), (2)

in which a is the nearest neighbor distance without any
deformation, t0 ≈ 2.8 eV is the hopping parameter without
any deformation, and β ≈ 2–3.37 is the Grüneisen parame-
ter [11,42–44]. The parametrization of the hopping parame-
ter tn in Eq. (2) is in agreement with full DFT calculations
up to strain values of at least 10% [45]. As a consequence,
this also holds for the tight-binding approximation which we
employ. For the calculations below, we follow [11,44] and use
a Grüneisen parameter of β = 3.37.

In case of zero strain (|dn| = a ∀n), one can make the usual
expansion around the K point for low energy electrons (k =
K + κ), to find a Hamiltonian that is linear in κ ,

H = �vFσ · κ, (3)

where vF = 3at0/2� is the Fermi velocity, and σ = (σx,σy)
are the Pauli matrices.

In the case of nonzero strain, one finds a similar expression
for the Hamiltonian by using δtn = tn − t0. In fact, one finds
the same Hamiltonian as in Eq. (3), but with an additional term
that is independent of the momentum κ :

H = �vFσ · (κ − eA), (4)

in which e is the electron charge, and A = (Ax,Ay) is the
so-called pseudovector potential,

Ax + iAy = − 1

evF

3∑
n=1

δtne
−iK·dn . (5)

Equation (4) immediately explains why A is called a
pseudovector potential, as the additional term in H mimics the
vector potential of a real magnetic field. Therefore, we define,
in analogy to a real magnetic field, a pseudomagnetic field:

B = ∂Ay

∂x
− ∂Ax

∂y
. (6)

However, there is one remarkable difference: B changes
sign, if one expands the Hamiltonian around the K′ point
instead of the K point. Consequently, the electrons in the two
valleys feel an opposite magnetic field [22]. This property is
important for valleytronics since it may allow us to make valley
filters [27–30].

III. ROTATION OF THE LATTICE RELATIVE
TO THE STRAIN DIRECTION

It is a convention to define an angle θ as the angle between
the x axis and the so-called armchair direction of graphene
[see Fig. 1(a)]. If θ = 0 and the displacements |u| are much
smaller than a, it is well known that the pseudovector potential
can be written in terms of the deformation tensor uij [i,j =
(x,y)] [16,46],

Ax = �β

2ae
(uxx − uyy), (7)

Ay = �β

2ae
(−2uxy), (8)

in which uij = 1
2 ( ∂ui

∂j
+ ∂uj

∂i
).

We now rotate the lattice with respect to the x axis by an
angle θ [see Fig. 1(a)] using the standard rotation matrix R in
two dimensions:

R =
(

cos θ −sinθ

sin θ cos θ

)
. (9)

We note that K · dn is constant under lattice rotations, which
implies that the usual derivation of Eqs. (7) and (8) still holds.
Therefore, we only need to find the deformation tensor for
the rotated lattice [40], before we rotate the pseudovector
potential A:(

ux ′x ′ ux ′y ′

ux ′y ′ uy ′y ′

)
= R

(
uxx uxy

uxy uyy

)
RT (10)

and (
Ax

Ay

)
=

(
cos θ sin θ

−sinθ cos θ

)(
Ax ′

Ay ′

)
. (11)

Substituting Eqs. (10) and (11) into Eqs. (7) and (8), we find an
expression for the pseudovector potential for arbitrary lattice
rotations [40]:

Ax = �β

2ae
[(uxx − uyy) cos(3θ ) − 2uxy sin(3θ )], (12)

Ay = − �β

2ae
[(uxx − uyy) sin(3θ ) + 2uxy cos(3θ )]. (13)

Considering the pseudomagnetic field, one sees that it has a
rotational symmetry of 120◦. A rotation of the graphene lattice
by an angle of 120◦ gives the same pseudomagnetic field and a
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rotation of 60◦ effectively changes the sign. This implies that
the pseudomagnetic field is zero for an angle of 30◦.

IV. METHODS

We define a hexagonal geometry with side length L, as
shown in Fig. 1(b), of which the orientation is always kept
constant. It is only the lattice orientation of the graphene
that is rotated with respect to the x axis. In order to
calculate the pseudomagnetic field we make use of a two-step
approach.

In the first step we calculate the deformation of the
geometry in COMSOL [47] using a triangular mesh, for
which we consider only in-plane strain as well as only the
linear contributions to elasticity theory. For this calculation
we assumed that graphene has a thickness of 3.35 Å, a
Young’s modulus of 1.02 TPa, and a Poisson’s ration of
0.165 [5,48]. The strain is applied via a fixed displacement
of 10 nm of the three edges that are indicated with arrows
in Fig. 1(b) in all calculations. As a consequence, these three
edges or boundaries have a fixed displacement during the entire
calculation. In contrast, the other three edges are free. This
type of boundary condition is known to break the sublattice
symmetry and thus opens a band gap [49]. From the calculated
deformation field, we export the displacement vectors at the
position of the atoms for the second step, in which we calculate
both the pseudovector potential and the pseudomagnetic field.
Alternatively, one can directly export the deformation matrix
and use Eqs. (12) and (13). We used this to crosscheck our
results obtained via the displacement vectors and we found
that the method using the deformation matrix overestimates
the strength of the pseudomagnetic field. This overestimation
arises from the fact that Eqs. (12) and (13) are obtained by
assuming a linear change in hopping parameters tn with strain.
For the structure discussed in Fig. 2 and a strain of 10%, this
overestimation is even almost 30% and is in agreement with
previously reported work [20].

V. RESULTS

Let us start with a hexagonal geometry of L = 100 nm.
Figure 2(a) shows the strain obtained by applying a fixed
displacement of 10 nm to the three edges for zero rotation
angle (θ = 0). As three sides have a fixed displacement, the
side length L of those particular sides is fixed to that of the
undeformed geometry. In contrast, the side lengths of the other
sides are allowed to change. This exactly leads to the strain
pattern that we observe: zero strain along three edges at which
we apply the fixed displacement and a finite strain (15%) along
the other three edges. For the same reason, the strain is highest
at the six corners of the geometry (up to 50%). Note that
this 50% of strain will not be reached in an experimental
situation, as the corners will not be so sharp and the boundary
condition will not be so rigid. In the center of the geometry,
the strain reduces to 0%. This is due to the symmetry of the
applied fixed displacements, as the (vector) sum of them is
zero.

The panels in Fig. 2(b) show the pseudomagnetic field
for rotation angles θ varying from 0 to 30 deg. A positive
(negative) pseudomagnetic field is indicated in red (blue). We
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FIG. 2. (Color online) (a) The strain in the geometry for zero
rotation angle θ . There are three edges with zero strain and three
with 15% of strain. The corners of the geometry exhibit the largest
amount of strain (up to 50%), whereas the strain reduces to 0% in
the center. (b) The pseudomagnetic field as a function of the rotation
angle θ . At θ = 30◦ the pseudomagnetic field disappears in the center
of the geometry, as the atomic displacement is parallel to the nearest
neighbor vectors. (c) The pseudomagnetic field in the center of the
geometry is in excellent agreement with that from Eqs. (12) and (13).
The pseudomagnetic field is normalized with respect to the field at
θ = 0◦.

observe two contributions to the total pseudomagnetic field:
the one at the six corners of the hexagon and the one from the
center of the geometry. The pseudomagnetic field at the corners
does not change when rotating the graphene lattice. It remains
constant with values around +60 and −60 T. The origin of this
pseudomagnetic field is our boundary condition (see above).
As a consequence, we get a large relative displacement at the
six corners of the geometry, which results in the observed
pseudomagnetic field.

In contrast, the pseudomagnetic field in the center of the
geometry does depend on the rotation angle θ . The maximum
pseudomagnetic field Bmax in the center of the geometry is
around 40 T for θ = 0◦ and decreases rapidly when increasing
the rotation angle θ . At a rotation angle of θ = 30◦, the
pseudomagnetic field in the center of the geometry is even zero,
as the atomic displacement is parallel to the nearest neighbor
vectors. Figure 2(c) shows the pseudomagmetic field in the
center of the geometry normalized by Bmax as a function of
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FIG. 3. (Color online) (a) The average pseudomagnetic field and
its corresponding normalized standard deviation are calculated within
a circle of diameter d that is centered in the geometry. (b) The upper
panel shows the pseudomagnetic field as a function of the diameter d

for different rotation angles. The bottom panel shows that all these
curves fall almost on top of each other if one normalizes each curve
with respect to the value of the pseudomagnetic field in the center.
(c) The standard deviation of the pseudomagnetic field as a function
of the diameter d for the rotation angles shown in (b). The generated
pseudomagnetic field is uniform within d = 34 nm for θ = 0◦. The
inset shows a zoom for small d .

the rotation angle θ as well as the normalized pseudomagnetic
field that one obtains from Eqs. (12) and (13). As Fig. 2(c)
shows, our numerical calculation is in perfect agreement with
the theoretical prediction.

The uniformity of the pseudomagnetic field is of crucial
importance for the possible utilization of it in experiments and
devices. To quantify the uniformity of the pseudomagnetic
field B, we calculate the average value of B in a circle of
diameter d that is centered in the geometry [see Fig. 3(a)]. The
result is shown in the upper panel of Fig. 3(b) for various
rotation angles θ . In order to compare the uniformity of
the pseudomagnetic field at different rotation angles θ , we
normalize each curve with respect to the pseudomagnetic field
B0 at d = 2 nm [see the lower panel of Fig. 3(b)]. It should be
noted that the curves for different θ are very similar and only
deviate for large d. Finally, Fig. 3(c) shows the standard
deviation of the normalized pseudomagnetic field σB/B0 as
a function of d. To characterize the homogeneous area of the
pseudomagnetic field one has to set an upper limit on the
standard deviation. We choose a standard deviation smaller
than 1% of the maximum pseudomagnetic field in the center.
By using this definition, we obtain a diameter of uniformity of
around 34 nm for θ = 0.

Figure 4(a) shows an overview of a feasible MEMS actuator
that allows us to experimentally strain graphene sheets. The
arms of the MEMS actuator are placed under an angle
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FIG. 4. (Color online) (a) The computed strain field in a graphene
sheet that can be reached with a state-of-the-art MEMS device shows
values (∼20%) close to the maximum strain that graphene can
withstand. The force F is applied to the indicated edges. (b) The
corresponding pseudomagnetic field for various rotation angles θ .
(c) The pseudomagnetic field as a function of d and (d) the
corresponding standard deviation. In this case, the pseudomagnetic
field is uniform within d = 520 nm.

of 120 deg and are connected with a rectangular sheet of
graphene, which has a width of 5 μm and a length of 7 μm.
This configuration generates a force field which has the same
threefold symmetry as for the hexagonal structure above [see
Fig. 1(c)]. However, the effective side length is now ∼1 μm.
The strain in the graphene sheet resulting from the same fixed
displacement as before is shown in Fig. 4(a). Although the
strain in the center region of the geometry is on average 3.5%,
the maximum strain value is 8% on the corners of the hexagon
and 5.5% on the sides. The maximum strain in the entire
geometry occurs at the positions where the graphene/MEMS
device boundary has a corner. At these locations, the strain is
even around 20%, which is the amount of strain at which
the graphene sheet is supposed to start to rupture [5,50].
Nevertheless, it is expected that such high strain values will
not be reached in an experiment.

The pseudomagnetic field for different rotation angles of
the lattice with respect to the strain directions is calculated
and depicted in Fig. 4(b). The pseudomagnetic field has the
same characteristics as the pseudomagnetic field of the strained
hexagon in Fig. 2. The strength of the pseudomagnetic field
is highest in each corner of the hexagon and the field in the
center is strongest for θ = 0. Figure 4(c) shows the strength of
the pseudomagnetic field as a function of the diameter d of a
circle that is placed identically to that in Fig. 3(a). For θ = 0
the pseudomagnetic field is approximately 1.2 T in the center.
If we compare this with the maximum pseudomagnetic field
in the hexagon with side length L = 100 nm, we see that it is
approximately 30 times weaker. This is due to the following
two effects. First, by increasing the side length L by a factor
of 10, the gradient in the pseudovector potentials is 10 times
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smaller, which results in a 10 times smaller pseudomagnetic
field. Second, the applied strain is now approximately ∼3.5%,
which is approximately 3 times smaller than the 10% that we
had before. Combining both explains the ∼30 times weaker
pseudomagnetic field.

If we now consider the uniformity of the pseudomagnetic
field in such MEMS devices, as shown in Fig. 4(d), we obtain
a diameter of uniformity of around 520 nm for θ = 0◦. If we
would choose a standard deviation smaller than 5% of the
maximum pseudomagnetic field in the center of the geometry,
the diameter of uniformity increases to ∼1100 nm for θ = 0◦.
As both values are comparable to the typical laser spot size in
state-of-the-art confocal Raman spectroscopy experiments, it
may be possible to quantify the pseudomagnetic field strength
in an experiment as it induces a shift in the MPR [51].
In addition, it may be possible to measure the strength of
the pseudomagnetic field via its effect on the quantum Hall
plateaus [52].

Apart from the experimentally accessible geometries that
we discussed so far, certain geometries with corresponding
force fields have been suggested that should give rise to
a completely uniform pseudomagnetic field. In particular,
Guinea et al. [40] give two of such (analytic) geometries with
corresponding force fields. Using our approach, we confirmed
the uniform pseudomagnetic field in the circular disk for the
displacement field given in Ref. [40]. Let us next focus on the
second geometry given in Ref. [40]. This geometry should give
an uniform pseudomagnetic field when only perpendicular
forces are applied to its boundary. The analytic expression
for this geometry in polar coordinates is derived under the
assumption of pure shear stresses (see the Supplementary
Information of [40]):

r(φ) = c

[(cos φ/2 ∓ sin φ/2)(±1 + 2 sin φ)]2/3 . (14)

In this equation, r is the radius, φ is the polar angle, and c

is a constant. The ± sign indicates two equivalent geometries
that are rotated by 60 deg with respect to each other. It does
not matter which sign we take, the radius always becomes
imaginary for specific angles. For simplicity we choose the
+ sign for our geometry. Figure 5(a) shows both the real
part (black) and imaginary part (red) of the radius r as a
function of the angle φ for c = 1 μm. Please realize that r(φ)
is imaginary and, therefore, physically not allowed. We can
obtain the geometry shown in [40] by taking the absolute
value of r(φ) [see Fig. 5(b)]. However, if we calculate the
pseudomagnetic field for this given geometry and force field
using our numerical approach, we observe that it is not uniform
[see Fig. 5(c)]. However, in the arms of this geometry, the
pseudomagnetic field looks almost uniform. Based on this, it
can be shown that a rectangle with linearly varying forces
perpendicular to two opposing boundaries [see left panel
in Fig. 5(d)] does give rise to an uniform pseudomagnetic
field [41]. The corresponding strain and deformation of a
geometry with a side length of 200 nm is shown in the right
panel of Fig. 5(d). The maximum force per unit length used
in this calculation was 60 N/m, which resulted in an uniform
pseudomagnetic field of 8 T.
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FIG. 5. (Color online) The solution for the radius r for c = 1 μm
as a function of the angle θ (a) and its corresponding geometry for
|r| (b). In contrast to what was thought, the resulting pseudomagnetic
field is not uniform (c). (d) The linearly varying forces (left panel)
on two opposing boundaries of a rectangle that generate a uniform
pseudomagnetic field. The right panel shows the strain in a grayscale
as well as the resulting shape of the geometry.

VI. EXPERIMENTAL IMPLICATIONS

A particular experiment, in which the strength of a tunable
pseudomagnetic field may be directly probed, is the shift
of the magnetophonon resonance (MPR) in Raman spec-
troscopy [51,53–56]. In order to exclude other effects, the
pseudomagnetic field must be uniform within the laser spot
size in the confocal Raman spectroscopy experiment, which
is exactly what we showed and discussed in this paper. By
following the recent experiment of Neumann et al. [26], where
MPRs at low magnetic fields have been observed, we can
estimate the experimental requirements for observing MPR
shifts thanks to a tunable pseudomagnetic field. The most
prominent MPR below 20 T is the so-called T1 transition
at around 3.7 T, which results in a well resolved peak of
the Raman G linewidth as a function of magnetic field.
This resonance peak has an experimentally observed peak
linewidth (FWHM) of around 700 mT. We assume that at
least a peak shift of half the linewidth of this magnetophonon
resonance is needed for unambiguously proving the presence
of a pseudomagnetic field. In addition, we have to take into
account the effect of strain on the Raman G line itself. It is
known that the Raman G line shifts with increasing strain
and, for moderate uniaxial strain, even splits into a so-called
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G+ and G− line [57–59]. The G+ line corresponds to a
phonon parallel to the direction of strain and the G− line
to one perpendicular. Therefore, there is no Raman G-line
splitting for pure biaxial strain [60–63]. In our case, the strain
profile shown in Fig. 4 has approximately radial symmetry.
Therefore, the G− line does not shift and the G+ line shifts
with −10.8 cm−1/%. The average strain in the circular region
seen by the Raman laser is 2/3 of the maximum strain εmax.
As a result, the frequency difference between the G− line and
the G+ line is around 7.2εmax. This means that the Raman
G line is expected to broaden by 3.6εmax, which corresponds
to a broadening of 40% per percent strain. Assuming that
the MPR broadens by the same amount, we need a strain of
1.67% to see a splitting of the MPR due to the pseudomagnetic
field. Note that for this strain value, the G+ line and G− line
still appear as a single peak. These values are by a factor
2 below the values discussed above [see Fig. 4(a)] allowing
for a nonperfect lattice alignment and making this approach
promising for investigating tunable pseudomagnetic fields.

VII. CONCLUSION

We studied the strength and uniformity of the pseudomag-
netic field in a hexagonal sheet of graphene as a function
of the rotation angle θ between the armchair direction of

graphene and the strain direction. We showed that the relative
orientation of the graphene lattice with respect to the strain
direction is extremely important, as the pseudomagnetic field
even disappears for specific angles. The pseudomagnetic
field is strongest when the strain is parallel to the armchair
direction in the graphene. To characterize the homogeneous
area of the pseudomagnetic field, we set an upper limit on the
standard deviation in the pseudomagnetic field of 1%. Using
this definition, the pseudomagnetic field is constant within a
diameter of ∼520 nm for a hexagonal graphene sheet with a
side length of 1 μm. Our results show that the pseudomagnetic
field is detectable with a local probe such as a scanning
tunneling microscope cantilever but even also with a typical
confocal laser probe. One may even think of observing a shift
in the magnetophonon resonance due to the strain-induced
pseudomagnetic field. In addition, tunable pseudomagnetic
fields are important for valleytronics since they may allow
us to make valley filters.
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