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MXenes are a set of two-dimensional transition metal carbides and nitrides that offer many potential
applications in energy storage and electronic devices. As an important parameter to design new electronic
devices, we investigate the work functions of bare MXenes and their functionalized ones with F, OH, and O
chemical groups using first-principles calculations. From our calculations, it turns out that the OH-terminated
MXenes attain ultralow work functions between 1.6 and 2.8 eV. Moreover, depending on the type of the transition
metal, the F or O functionalization affects increasing or decreasing the work functions. We show that the changes
in the work functions upon functionalizations are linearly correlated with the changes in the surface dipole
moments. It is shown that the work functions of the F- or O-terminated MXenes are controlled by two factors:
the induced dipole moments by the charge transfers between F/O and the substrate, and the changes in the
total surface dipole moments caused by surface relaxation upon the functionalization. However, in the cases of
the OH-terminated MXenes, in addition to these two factors, the intrinsic dipole moments of the OH groups
play an important role in determining the total dipole moments and consequently justify their ultralow work
functions.
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I. INTRODUCTION

The work function is one of the basic physical charac-
teristics of a material that is related to the bulk properties
(through the Fermi energy) and is influenced by the surface
properties such as the surface index, the surface relaxation, and
the surface adsorbates [1–11]. Moreover, the work function
is one of the most important technological parameters in
developing new field emitter cathodes or new Schottky barrier
junctions for the applications in the light emitting diodes and
the field effect transistors [12,13]. Materials with low work
functions are demanded for many electronic applications so
as to enhance the power efficiency. A typical example of such
materials is cesium, for which the work function is 2.1 eV [1]. It
is also known that the cesium plays a crucial role in lowering
the work function when it is deposited on various surfaces
[14–16]. This is along the general idea that the deposition of
the alkali metals or other elements is capable of tuning the
surface dipole moments, which in turn directly affect the work
functions [17–22]. However, the usage of the cesium is always
accompanied with some major concerns because of its toxicity.
Recently, new techniques have been developed successfully to
grow self-assembled monolayers of organic molecules with
low work functions, which are eco-friendly [23] although they
might be unstable thermally.

Various metallic substrates of transition metal carbides
and nitrides provide the high stabilities, the high melting
points [24], and the relatively low work functions [25,26] that
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have increasingly attracted attention as suitable field emitters
[27,28]. Their thin films also have already been synthesized
experimentally [28]. Remarkably, experimentalists succeeded
recently to synthesize the two-dimensional monolayers and
multilayers of a particular family of transition metal carbides
and nitrides with a chemical composition of Mn+1Cn and
Mn+1Nn (M is an early transition metal), which were named
MXenes [29,30]. The MXenes are derived from exfoliation of
the MAX phases [31–35]—Mn+1AXn, where A is an element
from groups 13–16 in the periodic table and X is carbon or
nitrogen—using the hydrofluoric acid. During the acid treat-
ment, the A element is removed from the MAX phase and the
surfaces of the obtained two-dimensional Mn+1Xn are instan-
taneously terminated by F, OH, and/or O groups. The MXenes
have already found applications as energy storage materials
in Li-ion batteries and high volumetric capacitors [36–44],
as transparent conductive electrodes [45], filler in polymeric
composites [46], purifier [47], dual-responsive surfaces [48],
and a suitable substrate for dyes [49]. Theoretically, there are
many proposed applications for the monolayers, multilayers,
and heterostructures of the MXenes in the electronic [50–62],
magnetic [63,64], optoelectronic [65], thermoelectrics [50,66],
sensors [67], and Schottky barrier junction devices [68–70].

Considering the properties of the MXenes, it is noticed that
the members of this family can be good candidates as materials
with low work functions for the following reasons: first, the
MXenes offer the tunability of the work function by choosing
the proper transition metal as well as the X element, usually
carbon or nitrogen. In addition, such compositional tunability
provides a possibility to adjust other properties such as thermal,
mechanical, chemical stabilities, and toxicity. Second, during

1098-0121/2015/92(7)/075411(10) 075411-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.075411


KHAZAEI, ARAI, SASAKI, RANJBAR, LIANG, AND YUNOKI PHYSICAL REVIEW B 92, 075411 (2015)

FIG. 1. (Color online) The side views of 3 × 3 models of (a) the
thinnest (M2C) and (b) the thickest (M10C9) MXenes functionalized
with OH chemical groups, which were considered in this study.
(c) The top views of (a) and (b).

the synthesis of the MXenes, their surfaces are functionalized
naturally, affecting the electronic structure, especially, giving
the Fermi level shift and the electrostatic potential change near
the surfaces. They are caused by the electron redistribution
in energy and in real space, respectively. Both changes have
significant effects on the work function. Currently, the MXenes
are functionalized by a mixture of O, F, and/or OH. From a
viewpoint of the development of low work function materials,
the OH termination is interesting because the OH group has
an intrinsic dipole moment.

In this paper, using first-principles calculations based
on the density functional theory (DFT), we propose the
functionalized MXenes as materials with the tunable low work
functions. Here, we have studied the work functions of a
large number of the two-dimensional MXenes with various
thicknesses and transition metals such as M2C and M10C9

(M = Sc, Ti, Zr, Hf, V, Nb, and Ta) as well as M ′
2N and

M ′
10N9 (M ′ = Ti, Zr, and Hf) functionalized with F, OH, and

O. As examples of structures of the functionalized MXenes,
the model structures of M2C(OH)2 and M10C9(OH )2 are
shown in Fig. 1. It is predicted from the calculations that the
OH-terminated carbide or nitride MXenes attain the ultralow
work functions between 1.6 and 2.8 eV comparable with the
cesium-deposited surfaces. In addition, depending on the M

element, the F or O termination affects the work function to
increase or decrease as compared with their corresponding
bare structures without functionalization.

II. CALCULATION AND ANALYSIS METHOD

We used DFT with the Perdew-Burke-Ernzerhof (PBE)
version of the generalized gradient approximation (GGA) for
the exchange-correlation functional [71] to optimize atomic
structures and calculate electronic structures. The basis sets
were generated using the projector augmented wave (PAW)
method with a cutoff energy of 520 eV. The Methfessel-Paxton
smearing scheme was applied with a smearing width of 0.1 eV
[72]. The two-dimensional system was modeled by using
the supercell approximation with a vacuum space along the
direction perpendicular to the surface, which is taken to be
the z axis. The atomic positions and the two-dimensional cell

parameters were fully optimized using the conjugate gradient
method so that the magnitude of the force acting on each atom
became less than 0.001 eV Å−1 in the optimized structures and
the total energies were converged within 10−7 eV/cell. For
the structural optimization, the Brillouin zone was sampled
using a set of 12 × 12 × 1 k points [73]. All calculations were
performed using the VASP code [74].

As described above, the exposed surfaces of the MXenes
are functionalized with F, OH, and/or O during the exfoliation
process. We have previously shown that the MXenes with the
full surface functionalizations are thermodynamically more
favorable than the partial functionalizations [50], where the
full surface functionalization requires two chemical groups per
cell. The surfaces of the MXenes have two types of the hollow
sites: hollows with and without a carbon/nitrogen site beneath
them [50]. Thereby, we tested three initial configurations to
find the optimum positions for the attached chemical groups:
structure 1—both chemical groups are attached to hollows
without carbon/nitrogen; structure 2—both chemical groups
are attached to hollows with a carbon/nitrogen atom; structure
3—two chemical groups are attached to two different types
of hollows. The optimization results of the above three initial
configurations are listed in the Supplemental Material [75]. We
used the lowest energy configurations for the work function
analyses. Moreover, for the cases of the OH-terminated sys-
tems, we performed additional test calculations by tilting the H
atoms toward the nearest transition metals and carbon/nitrogen
atoms. It was found in the considered MXenes the OH groups
locate always perpendicular to the surfaces. We also calculated
the phonon dispersions of some of the OH-terminated MXenes
by using the PHONOPY package [76]. As shown below, the
phonon modes are all positive, indicating the stability of such
systems.

The work function was derived from the energy difference
between the Fermi energy and the vacuum level (electrostatic
potential away from the surface). We used an extremely large
vacuum space of 80 Å to prevent the interactions between
monolayers and their images along the z axis. The convergence
error of the calculated work function is smaller than 1.0 meV
(see the Supplemental Material [75]). The structures are placed
in the center of the cell. We validate our computational
approach by performing sets of work function calculations
on pure transition metals as well as binary transition metal
carbides and nitrides [75]. The results were compared with the
available theoretical and experimental data [77–89].

By using the Poisson equation, the electrostatic potential
away from the surface can be related to the surface dipole
moment, and thus, the work function [90]. Leung et al.
derived an expression relating the change in the work func-
tion (��) and the change in the surface dipole moment
(�P ): �� = −e/ε0�P = −180.95�P , where �� = � −
�0, �P = p − p0, and e (C) and ε0 (CV−1 Å−1) are the
charge of electron and vacuum permittivity, respectively [90].
The �0(�) and p0(p) are the work function and the surface
dipole moment before (after) functionalization, respectively.
In order to obtain the surface dipole moments, we used the
average charge density [ρ(z)] along the z axis, which was
obtained from the total charge density ρ(x,y,z) by ρ(z) =
(1/A)

∫∫
dxdyρ(x,y,z) where A is the cell surface area. It is

noted that the total charge density includes the contributions of
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both electrons and ions. The ion charge densities are defined as
point charges using the δ function distributions at the positions
of the ions. The surface dipole moment can be determined by
p(z) = ∫ z

z0 z′ρ(z′)dz′, where z0 (0.0 Å) is the center of the
MXene.

Upon deposition of any element, three main factors control
the surface dipole moment: (i) the redistribution of electron
charge between the surface and the adsorbates, (ii) the
surface relaxation caused by the adsorbates, and (iii) the
polarity of the adsorbates. Following the theoretical method
developed by Leung et al. [90], the electron charge transfer
[�ρ(z)] between the adsorbates and the substrate is defined as
�ρ(z) = ρ(z) − [ρs(z) + ρa(z)], where ρ(z), ρs(z), and ρa(z)
are the total charge densities of the functionalized system, the
substrate, and the adsorbate, respectively. Computationally,
ρs(z) is generated from a total energy calculation of the
substrate by removing the overlayer of adsorbates from the
functionalized system without the structural optimization.
Similarly, ρa(z) is obtained from a total energy calculation
of the adsorbate layer by removing the substrate from the
functionalized system. Thereby, the change in the total dipole
moment (�P ) by functionalization can be expressed as �P =
�p + pa + ps − p0, where �p, ps , and pa are the induced
dipole moments of the �ρ(z), ρs(z), and ρa(z), respectively.
As a consequence, the change in the work function becomes
�� = −(e/ε0)(�p + pa + ps − p0). Therefore, �� is af-
fected by the dipole moment of the transferred charges (�p)
between the substrate and the adsorbates, the dipole moment
of the adsorbates (pa), and the change in the dipole moments
due to substrate relaxation (ps − p0).

The work function of a functionalized two-dimensional
system can be affected by another factor, the shift of the Fermi
level. In contrast to the three-dimensional systems, the Fermi
energy can shift by the electron transfer caused by the surface
functionalization. Therefore, the surface functionalization of
thin materials can change both the Fermi energy and the
surface dipole moments, but in the bulk three-dimensional
materials, the surface functionalization modifies mainly the
surface dipole moments.

III. RESULTS AND DISCUSSIONS

We have systematically studied the work functions
of the MXenes with different M elements: M2C and
M10C9 (M = Sc, Ti, Zr, Hf, V, Nb, and Ta) as well as M ′

2N
and M ′

10N9 (M ′ = Ti, Zr, and Hf) functionalized with F, OH,
and O. The results of the calculated work functions are shown
in Fig. 2. Figure 2 does not include the results for Sc2CO2,
Ti2NF2, and Ti10N9F2, in which the functional groups are
adsorbed on different types of the hollow sites. These MXenes
obtain intrinsic dipole moments due to the asymmetric attach-
ments of the functional groups. Here, we focus only on the
MXenes without the intrinsic dipole moments to understand
the systematical change of the work functions.

Figure 2 clearly shows that in each MXene family, their
thin and thick monolayers manifest similar behaviors upon
the same functionalization. The work functions of the bare
MXenes and the functionalized ones by F, OH, and O are
found to be distributed in the range of 3.3–4.8, 3.1–5.8,
1.6–2.8, and 3.3–6.7 eV, respectively. Specifically, we found

FIG. 2. (Color online) The work functions of (a) M2C and M ′
2N,

and (b) M10C9 and M ′
10N9 (M = Sc, Ti, Zr, Hf, V, Nb, Ta; M ′ =

Ti, Zr, Hf) functionalized with F, OH, and O.

that M2C(OH)2, M10C9(OH )2, M ′
2N(OH)2, and M ′

10N9(OH)2

exhibit ultralow work functions as compared with their corre-
sponding bare and the functionalized ones with F or O. Among
these systems, Sc2C(OH)2 and Sc10C9(OH)2 exhibit the lowest
work functions of ∼1.6 eV. However, depending on the M

element, the work function of the functionalized MXenes with
F or O can be higher or lower than that of their corresponding
bare structures. For instance, the F functionalization on Sc10C9

increases the work function up to 4.99 eV from the bare value
3.35 eV, but on Hf10C9 decreases the work function down to
3.19 eV from the bare value 4.76 eV. The O functionalization
increases the work functions for most of the considered
MXenes, except for Hf10N9 and Sc10C9. Among the considered
MXenes, V2CO2 and V10C9O2 possess the highest work
functions of ∼6.7 eV. The work function reduction upon the F
or O functionalization is apparently in contradiction with the
common accepted rule that high electronegative elements such
as F or O increases the work functions. It is worth mentioning
that such unexpected behavior has also been reported in other
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FIG. 3. (Color online) Work functions of bare and functionalized
Tin+1Cn with F, OH, and O chemical groups.

materials. For example, oxygen adsorption on the tungsten
(100) shows the work function reduction [90].

It is noteworthy that MAX phases with n � 3 exist: Ti4SiC3

[91], Ti4AlN3 [92], Ti4GeC3 [93], V4AlC3 [94], Nb4AlC3 [95],
Ta4AlC3 [96], Ta4GaC3 [97], Ti5SiC4 [91], (Ti0.5Nb0.5)5AlC4

[98], Ta6AlC5 [99], and Ti7SnC6 [100]. These experimen-
tal observations indicate that formations of MAX phases
(Mn+1AXn) with n � 3 are possible though the production
of their single phases may need further optimization of
the experimental conditions. Thereby, it is fundamentally
interesting to study the thickness dependence of the work
functions of the derived Mn+1Xn MXenes in detail. Hence,
next we investigated the thickness dependence of the work
function functionalized by F, OH, and O. As typical examples,
we calculated the work functions of Tin+1Cn, Tin+1CnF2,
Tin+1Cn(OH)2, and Tin+1CnO2 (n = 1–9) and the results are
shown in Fig. 3. In these Ti-based MXenes, the thicknesses of
the bare ones extend from 2.31 (Ti2C) to 22.15 Å (Ti10C9). As
seen in Fig. 3, the thin and thick MXenes act similarly upon the
same functionalization: the F or O functionalization increases
the work functions, while the OH functionalization decreases
it significantly. In general, the dependency of work functions
of the MXenes on their thicknesses is weak.

The calculations also indicate that the thickness affects
the work functions of the thin MXenes. This is due to the
quantum size effects [7–9,101], which result in the shift
of the Fermi energy, and consequently the change of the
work function. In very thin MXenes, few energy bands cross
the Fermi energy. Therefore, any elemental deposition may
have significant effects on the electronic structure, i.e., the
number of bands and band shapes, and thus the position of
the Fermi energy varies (see the Supplemental Material [75]).
The largest change in the work functions of the functionalized
Tin+1Cn occurs between Ti2CO2 and Ti3C2O2. This change
is induced because of the specific properties of these systems:
Ti2CO2 is a semiconductor [50], while Ti3C2O2 is metallic (see
the Supplemental Material [75]). From thickness dependence
analyses of the work functions of functionalized Tin+1Cn, it
is recognized that the change of the Fermi energy, which in
principle affects the value of the work functions, cannot explain

FIG. 4. (Color online) The changes in the work functions
(�Φ) of functionalized M10C9 and M ′

10N9 (M = Sc, Ti, Zr, Hf,
V, Nb, Ta; M ′ = Ti, Zr, Hf) with F, OH, and O as a function of the
changes in the surface dipole moments (�P ). The solid line (�� =
−170.01�P ) indicates the linear fit to the results. The dashed line
(�� = −180.95�P ) indicates the linear relation reported previously
for bulk three-dimensional systems [90].

the ultralow work functions found in the OH-terminated
Tin+1Cn.

Since the modifications of the work function of the
MXenes upon different functionalizations cannot be justified
by the change of the Fermi energy alone, it is necessary to
examine the other contributions to the work function, i.e., the
electrostatic potential. As described above the electrostatic
potential away from the surface can be estimated from the
surface dipole moment [90]. In the thick MXenes (M10C9

and M ′
10N9), the functionalization does not change the Fermi

energy significantly. Hence, this allows us to focus on the
electrostatic term only (surface dipole moments) to explain the
changes in the work functions after functionalization. Figure 4
summarizes the results for the changes in the work functions
(��) of M10C9 and M ′

10N9 and their corresponding surface
dipole moments (�P ) upon different functionalization relative
to their bare systems. In Fig. 4, the positive (negative) values
of �� correspond to the increase (decrease) of the work
function. It is found that �� correlates with −�P almost
linearly with the slope value of 170.012 V Å. The analysis by
Leung et al. [90] has shown that −��/�P = 180.95 V Å for
the bulk surfaces, and no deviations were observed. In contrast,
our results apparently deviate from this relationship. In their
analysis, the shift of the Fermi level upon the functionalization
was not taken into account because such shift does not
occur in the bulk. On the other hand, the functionalization
of monolayers can have a non-negligible effect on the Fermi
level. Thus, the deviation is due to the finite shift of the Fermi
level.

In order to understand how the chemical groups affect the
surface dipole moments, we considered in detail all terms of
�p, pa , ps , and p0 contributing to the surface dipole moments
(�P = �p + pa + ps − p0) in detail. As typical examples,
we dissolve the total dipole moments into contributions of
�p, pa , ps , and p0 for systems Hf10C9F2, Sc10C9F2, and
Sc10C9(OH)2. Note that the F functionalization decreases
(increases) the work function of Hf10C9 (Sc10C9), while the
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FIG. 5. (Color online) (a) The transferred electron charge density
(�ρ) between adsorbate (F) and substrate (Hf10C9). The vertical
dashed lines indicate the encompassing regions of positive ( 1©
and 3©) and negative charges ( 2©) nearby the surfaces. (b)–(d) the
contributions to the total surface dipole moments (�P ): (b) the dipole
moment due to the transferred electron charges between surface and
the adsorbate (�p), (c) the dipole moment of the optimized bare
surface (p0) and the dipole moment of the bare surface without
optimization (ps) (see the text), and (d) the dipole moment of
adsorbate (pa). �ρ, �p, p0, ps , and pa have been calculated as a
function of z (along the normal surface) from the center of MXenes
to the end of the cell (40 Å), but the results are shown for distances
between 0 and 20 Å only. The respective quantities at 40 Å are also
indicated in (b)–(d). The circles indicate the positions of the layers
and their composed elements.

OH functionalization decreases the work function of Sc10C9.
The results of �p, pa , ps , and p0 for these systems are shown
in Figs. 5–7.

Figures 5–7 also include the redistributions of the trans-
ferred electron charges between the substrate and the func-
tional groups (�ρ). A common feature is that the charge
redistributions are mainly localized in the regions nearby the
surfaces and the adsorbates. It is also observed that in all
MXenes studied here, the natures of F and O elements are
the same: due to their higher electronegativity than transition
metals and/or hydrogen atoms of OH, these elements always
receive electrons from the nearby elements. Thereby, as
shown in Figs. 5–7(a), several regions with positive (nearby
transition metals and/or hydrogen indicated by 1© and 3©)
or negative charges (nearby the F and O indicated by 2©)
are formed. The positive or negative charges in regions 1©,
2©, and 3© contribute largely to the �p [90]. As shown in

Figs. 5(b) and 6(b), the induced dipole moments �p of the
redistributed charges �ρ for Hf10C9F2 and Sc10C9F2 become
positive for Hf10C9F2 at the distance of 40 Å from the surface
while it is negative for Sc10C9F2 at the same position. This
clarifies why the F deposition causes the decrease of the work
function in Hf10C9F2, but the increase in Sc10C9F2. In fact,
the charge transfer has already been attributed to the increase
or decrease of the work functions in many materials. For

FIG. 6. (Color online) The same as Fig. 5 but for Sc10C9F2.

example, the charge transfer explains the effects of different
adsorbates on the work functions of graphene or boron-nitride
sheets [102–104], and the reduction of the work function
for the tungsten (100) surface upon the oxygen deposition
[90]. However, the low work function behaviors of the OH-
terminated MXenes cannot be explained by the effect of �p

only. In addition to �p, it is necessary to take into account
the contributions of the induced dipole moments from surface
relaxations (ps − p0) and the adsorbates (pa) in the total dipole
moments (�P ).

The term ps − p0 indicates the modifications in the surface
dipole moments due to the changes in the atomic layer dis-
tances upon the chemical functionalization, i.e., the structural
relaxation effect. In Figs. 5–7(c), the sharp changes in the ps

or p0 occur at the position of the atomic layers. It is noted in
Figs. 5–7 that in order to avoid the complications of the figures,

FIG. 7. (Color online) The same as Fig. 5 but for Sc10C9(OH)2.
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we have shown only the position of the atomic layers in the
functionalized MXenes but not in the bare MXenes. As seen in
Fig. 5(c) the F functionalization on Hf10C9 does not change the
atomic layer distances, and consequently ps − p0 is zero at the
distance of 40 Å far away from the surface. However, as seen
from Figs. 6(c) and 7(c), upon the F or OH functionalization on
Sc10C9, the layer distances near the surfaces change outwardly
as compared with the bare surface. Hence, the term ps − p0

contributes to the total dipole moments. The reason why the F
or OH adsorbates affect the layer distances of Sc10C9, but not
in Hf10C9, might be explained by the layer elastic constants
(C33) as our C33 calculations indicate that Sc10C9 (219.9 GPa)
is softer than the Hf10C9 (457.7 GPa) [75].

Figures 5–7(d) show the dipole moment contributions of
the adsorbate layers (pa). As expected and also shown in
Figs. 5(d) and 6(d), the layers of F or O groups do not
have any net dipole moment away from the surface. However,
OH is a polar chemical group. Hence, the OH layer has an
intrinsic dipole moment as shown in Fig. 7(d). We found that
the contribution of the OH dipole moment to the total dipole
moments is large and its sign is opposite to the contributions
of the other terms (�p and ps − p0). This explains why the
OH-terminated MXenes exhibit the exceptionally low work
functions, in spite of the fact that OH has an electronegative
nature similar to F and O groups. It should be noted that
the importance of the effect of the intrinsic dipole moments
of chemical groups has been pointed out on the increase or
decrease of the work functions of the Au (111) surfaces as
well. For example, it has been shown that the deposition
of alkylthiolates (−SCH3) increases the work function of
Au (111), whereas deposition of fluorinated alkylthiolates
(−SCF3) decreases it [105].

In order to show the OH-terminated MXenes are locally
stable structures, we have performed a set of phonon calcu-
lations on Sc2C(OH)2, Ti2C(OH)2, Zr2C(OH)2, Zr2N(OH)2,
Hf2C(OH)2, Hf2N(OH)2, and Ta2C(OH)2. The phonon modes
of these systems are found to be all real and positive. The
phonon dispersions of Sc2C(OH)2 (the MXene with lowest
work function) and Ti2C(OH)2 (one of the well-studied
MXenes experimentally [29,30,36,45,106,107]) are shown in
Fig. 8. The others are summarized in the Supplemental Mate-
rial [75]. Interestingly, in Fig. 8 the phonon branches above 100
THz correspond to the starching modes of OH bonds [107].
The weak dispersion indicates that the interaction between the
adjacent OH groups is small. The OH frequencies of MXenes
(see the Supplemental Material data [75]) are comparable to
the OH stretching modes of H2O (3585.5 cm−1) or alcohol
(3500–3700 cm−1). This means that the OH bonds are fairly
strong. This evidence implies that the hydrogen atoms may
not be easily detached from the OH-terminated MXenes.
Moreover, recently experimentalists have successfully studied
the OH stretching frequency modes (∼ 3746 cm−1) on silica at
different temperatures up to 500 K [108]. The OH vibrational
modes of MXenes are in the same range as that of silica [75].
Since the thermal stabilities of ceramics are typically higher
than silica, it is expected that the OH-terminated MXenes
will be also thermally stable at high temperatures around
500 K.

In order to compare the work function properties of the
MXenes with other related materials, we have performed

FIG. 8. Phonon dispersions of Sc2C(OH)2 and Ti2C(OH)2.

sets of calculations on the binary carbides (MC,M =
Sc, Ti, Zr, Hf, V, Nb, and Ta) and nitrides (M ′N,M ′ =
Ti, Zr, and Hf) as well as pure transition metals (Sc, Ti, Zr, Hf,
V, Nb, and Ta) functionalized with F, O, and OH. The results
are summarized in the Supplemental Material data [75]. We
found only one experimental result on TiC that after oxygen
exposure, its work function increases [88]. Such increase in
the work function is also seen from our results. From our
calculations, it is observed that in most of the MC and M ′N
systems, the F, O, or OH functionalization causes an increase
in the work functions. Interestingly, the OH terminations
on MC and M ′N do not help to lower the work functions
significantly. This is because the OH groups on MC and M ′N
are tilted. Hence, the polarity of the OH groups does not affect
to lower the effective potentials and consequently the work
functions of the MC and M ′N systems. The work function
properties of the functionalized transition metal surfaces are
very similar to those for the functionalized MXenes [75]. In
these systems, the OH groups stay perpendicular to the surface
similar to the OH groups on MXene structures. Hence, the
OH-terminated transition metal surfaces obtain ultralow work
functions similar to the OH-terminated MXenes. However,
owing to the ceramic nature of the MXenes, MXenes possess
higher thermal stabilities than the pure transition metals and
are superior for work function applications.

IV. SUMMARY

By using a set of first-principles calculations, we studied
large numbers of thin and thick MXenes: M2C and M10C9

(M = Sc, Ti, Zr, Hf, V, Nb, and Ta), as well as M ′
2N and

M ′
10N9 (M ′ = Ti, Zr, and Hf) functionalized with F, OH, and

O. Our calculations revealed that independently of the type of
M elements, the OH-terminated MXenes attain ultralow work
functions. In addition, it was observed that the increase or de-
crease in the work functions of the MXenes upon F or O func-
tionalization depends on the type of the M elements. Moreover,
we systematically studied the thickness dependences of the
work functions of the functionalized Tin+1Cn (n = 1–9) with
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F, OH, and O, and found that regardless of the thickness,
a family of Tin+1Cn(OH)2 exhibits ultralow work function.
We also found that the changes in the work functions of
the functionalized MXenes are linearly correlated with the
changes in the surface dipole moments. By considering the
three important factors in tuning the surface dipole moments
induced by (i) the electron charge redistribution at the surface,
(ii) the surface structure relaxation, and (iii) the polarity of
attached chemical groups, we have successfully explained the

different behavior of the work functions for the F-, OH-, and
O-terminated MXenes.
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