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Valley entanglement of excitons in monolayers of transition-metal dichalcogenides
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We show that excitons in K and K ′ valleys of transition metal dichalcogenide monolayers can be entangled
with respect to their valley degree of freedom by absorbing linearly polarized single photons. This effect does
not require any interaction between K and K ′ excitons in contrast to conventional mechanisms of entanglement
that are mediated by coupling between quantum systems (e.g., entanglement of photons in nonlinear optical
interactions). The valley entanglement of excitons and free carriers can be verified by measuring the polarization
of their photoluminescence or fluctuations of the photocurrent under an applied in-plane dc bias.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDCs) of the compo-
sition MX2, where M = Mo or W and X = S, Se, or Te, are
well-known materials that have recently seen the resurgence
of interest. This interest was largely driven by two discoveries.
First, although bulk MoS2 is an indirect-gap material, the
monolayer MoS2 turns out to have the direct band gap located
in energy-degenerate K and K ′ points at the corners of the
hexagonal Brillouin zone. This results in a dramatic increase
of the band-edge photoluminescence (PL) yield by more than a
factor of 104 [1]. Second, the combination of spatial inversion
symmetry breaking with strong spin-orbit coupling leads to
a valley-contrasting spin splitting of the valence-band edge,
which gives rise to valley-dependent optical selection rules for
interband transitions [2]. Namely, free carriers and excitons
in the K and K ′ valleys are coupled to photons of the same
energy but opposite helicity: left-hand circular (L) polarization
for the K point and right-hand circular (R) polarization for
the K ′ point. When excited by a circularly polarized light,
MoS2 monolayer shows PL with the same polarization as
the excitation light, indicating that the valley polarization of
excitons is preserved longer than the recombination time,
at least at low temperatures [3–5]. When excited by a
linearly polarized light, WSe2 shows a high degree of linear
polarization in the PL of neutral excitons, indicating that
the intervalley phase coherence survives in the processes of
exciton formation and recombination [6]. Under an applied
bias, valley-polarized TMDC monolayers exhibit valley and
spin Hall effects [2] which enables optoelectronic devices
based on the valley degree of freedom, e.g., valley Hall effect
transistors [7].

These recent results are very exciting as they suggest that
the valley index degree of freedom in TMDC monolayers can
serve as a robust information carrier. Excitons or free carriers in
different valleys can be selectively manipulated by radiation
in the convenient visible frequency range around 2 eV and
by the in-plane dc electric field. A tantalizing question with
implications for quantum information is whether and how one
can achieve quantum mechanical entanglement of free carriers
or excitons with respect to the valley index.

*belyanin@tamu.edu

The entanglement of two quantum systems is usually
generated as a result of direct coupling between them. This
coupling can be mediated by classical electromagnetic fields,
such as the coupling between two photons in a nonlinear optical
medium [8–10]. However, as shown in Appendix A, a classical
field cannot entangle noninteracting quantum systems. For
example, the experiment in [6] which employed a classical
field cannot lead to entanglement of excitons. Note that the
valley entanglement effect has nothing to do with the optical
alignment of excitons (e.g., [11]) which can be achieved with
a classical electromagnetic field and is not accompanied by
excitonic entanglement.

At the same time, one can entangle noninteracting quantum
systems by coupling them to a quantum field. Here we consider
the optical excitation of electron-hole or neutral exciton states
near the band gap of an MX2 monolayer in two valleys K and
K ′ with opposite valley indices. We will consider entanglement
of excitons for definiteness, although our analysis below works
equally well for free electron-hole pairs. The binding energy
of excitons in MX2 monolayers is as high as several hundred
meV, and the PL signal is dominated by excitons even for
above-band gap excitation. We will label two different valley
states by an up or down pseudospin direction, assuming that
(↑) and (↓) excitons can be excited only by an R- or L-polarized
field, respectively:

ER,L ∝ e± = x ± iy√
2

.

The main result of the paper is that absorption of linearly
polarized single photons by a MX2 monolayer in a cavity
(Sec. II) or from a flux of incident photons (Sec. III) gives
rise to an efficient entanglement of up and down excitons,
i.e., of the valley degree of freedom; see Fig. 1. The intuitive
physical explanation of this effect is that excitons in the K

and K ′ valleys of a MX2 monolayer interact with a linearly
polarized single photon as if it were an entangled R/L photon
state. In fact, one can rigorously prove (see Appendix B) that
a single photon state which is a factorized product state in a
linearly polarized basis is equivalent to an entangled state in
the basis of R and L photon modes. As a result, absorption of
such a photon leads to valley entanglement of excitons or free
carriers.

The second key finding of the paper is the demonstration
that valley entanglement of photoexcited excitons can be
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FIG. 1. (Color online) A sketch of excitons in K and K ′ valleys of
MX2 monolayers interacting with linearly polarized single photons.
To ensure the interaction with one photon at a time, the power of
incident radiation should not exceed �ω�ω, where �ω is the radiation
bandwidth.

verified by measuring the polarization of their emission
(Sec. III) or fluctuations of the photocurrent under an applied
in-plane dc bias (Sec. IV). We show that valley entanglement
leads to linear polarization of the photoluminescence and
squeezing of the photocurrent fluctuations by a factor of

√
2.

II. ENTANGLEMENT OF THE EXCITONIC
ENSEMBLE IN A CAVITY

To visualize the effect of entanglement, here we consider
a toy problem keeping only the light-matter interaction and
neglecting all processes leading to decoherence and losses. In
the next section we will include incoherent processes, finite
bandwidth, fluctuations, and losses.

Consider an MX2 monolayer placed into a cavity which
supports identical R and L modes of the same photon energy
�ω equal to the exciton energy; see Fig. 2. The quantized cavity
field is given by

Ê = ER(r)ĉR + E∗
R(r)ĉ†R + EL(r)ĉL + E∗

L(r)ĉ†L,
(1)

ER,L(r) = e±ER,L(r),|ER(r)| = |EL(r)| = E(r),

where the spatial mode distributions are normalized according
to ∫

V

ε(r)E2(r)d3r = 4π�ω, (2)

E E

FIG. 2. (Color online) Valley entanglement of excitons in K and
K ′ valleys of an MX2 monolayer in a cavity geometry.

where ε(r) is the intracavity distribution of the dielectric
constant, which may include also the monolayer substrate and
is assumed to be frequency independent for simplicity. It can
be easily generalized to dispersive media; see, e.g., [9,10].
Note that the normalization (2) takes care of both the electric
and magnetic field energy, because for stationary fields in
a cavity or for periodic boundary conditions one can prove∫
V

B2(r)d3r = ∫
V

ε(r)E2(r)d3r. The field satisfying Eqs. (1)
and (2) corresponds to the Hamiltonian,

Ĥf = ĤR + ĤL = �ωĉ
†
RĉR + �ωĉ

†
LĉL, (3)

where photon creation and annihilation operators ĉ
†
R,ĉ

†
L and

ĉR,ĉL satisfy standard commutation relations [8]. We will
assume the fields ER,L(r) and ER,L(r) to be uniform on the
monolayer and omit the position argument.

We will treat the radiation as quasimonochromatic and
assume that there are a total of N pairs of up and down exciton
states in a monolayer of area S that can be excited by photons of
a given energy. More precisely, N is a number of electron-hole
or exciton states within the interband transition linewidth. For
a broadband radiation N would be a number of states within
the radiation bandwidth.

To simplify the notations, we will denote (↑) excitons
with Latin indices and (↓) excitons with Greek indices. The
Hamiltonian of an ensemble of excitons is given by

Ĥe = Ĥ↑ + Ĥ↓ = �ω

N∑
j=1

|1j 〉〈1j | + �ω

N∑
ξ=1

|1ξ 〉〈1ξ |, (4)

where the ground state |0j,ξ 〉(no exciton) corresponds to zero
energy, whereas the state |1j,ξ 〉 describes an excited exciton
of energy �ω. The polarization operator of the system can be
written as

P̂e =
N∑

j=1

(
d↑|1j 〉〈0j | + d∗

↑|0j 〉〈1j |
)

+
N∑

ξ=1

(
d↓|1ξ 〉〈0ξ | + d∗

↓|0ξ 〉〈1ξ |
)
, (5)

where the dipole moments,

d↑ ≡ d(10)↑ = e−d,d↓ ≡ d(10)↓ = d(01)↑ ≡ d∗
↑ = e+d∗.

The operator describing interaction between the field and
the particles in the electric dipole approximation is

V̂ = −P̂e(ERĉR + E∗
Rĉ

†
R + ELĉL + E∗

Lĉ
†
L). (6)

Consider Schroedinger’s equation,

i��̇ = (ĤR + ĤL + Ĥ↑ + Ĥ↓ + V̂ )�. (7)

We choose the following initial state as a product of the
excitonic �e(0), and field �f (0) wave functions:

�(0) =
N∏

j=1

|0j 〉
N∏

ξ=1

|0ξ 〉(CR(0)|1R〉|0L〉 + CL(0)|1L〉|0R〉),
(8)|CR(0)|2 + |CL(0)|2 = 1,
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TABLE I. Averages of operator products.

State of incident field Operator tetrads Operator dyads
Operator dyads for finite spectral

bandwidth of radiation

Bell state �±, Eq. (29) 〈ĉ†RĉRĉ
†
LĉL〉 = 0 〈ĉ†RĉR〉 = 〈ĉ†LĉL〉 = ±〈ĉ†RĉL〉

〈ĉ†RĉL〉 = 〈ĉ†LĉR〉
〈ĉ†RωĉRω′ 〉 = 〈ĉ†LωĉLω′ 〉 = ±〈ĉ†RωĉLω′ 〉
〈ĉ†RωĉLω′ 〉 = 〈ĉ†LωĉRω′ 〉

Bell state �±, Eq. (30);
Not entangled state �D ,
Eq. (31)

〈ĉ†RĉRĉ
†
LĉL〉 = 〈ĉ†RĉR〉〈ĉ†LĉL〉 〈ĉ†RĉR〉 = 〈ĉ†LĉL〉

〈ĉ†RĉL〉= 〈ĉ†LĉR〉= 0
〈ĉ†RωĉRω′ 〉 = 〈ĉ†LωĉLω′ 〉
〈ĉ†RωĉLω′ 〉 = 〈ĉ†LωĉRω′ 〉 = 0

in which excitons are not excited and the single-photon field
has an arbitrary elliptical polarization. The particular case
of a linear polarization corresponds to |CR|2 = |CL|2 (see
Appendix B).

Solving Eq. (7) is tedious but straightforward. It is described
in Appendix C. If at t = 0 excitons are in the ground state
and the single-photon field is in the linearly polarized product
state, which is the Bell state in the circularly polarized

basis (see Appendix B),

CR(0) = 1√
2
, CL(0) = ± 1√

2
,

(9)
�f (0) = �± = |1R〉|0L〉 ± |1L〉|0R〉√

2
,

the solution to Eq. (7) is given by

� = e−iωt

N∏
j=1

|0j 〉
N∏

ξ=1

|0ξ 〉cos (
√

N |	|t)√
2

(|1R〉|0L〉 ± |0R〉|1L〉) ± ie−iωt |0R〉|0L〉 sin (
√

N |	|t)√
2N

×
⎛
⎝e−i


N∑
j=1

|1j 〉
N∏

i �=j

|0i〉
N∏

ξ=1

|0ξ 〉 ± ei


N∑
ξ=1

|1ξ 〉
N∏

η �=ξ

|0η〉
N∏

j=1

|0j 〉
⎞
⎠. (10)

For
√

N |	|t = π
2 the state (10) corresponds to the Bell-type entangled state of excitons:

� = |0R〉|0L〉√
2N

⎛
⎝e−i


N∑
j=1

|1j 〉
N∏

i �=j

|0i〉
N∏

ξ=1

|0ξ 〉 ± ei


N∑
ξ=1

|1ξ 〉
N∏

η �=ξ

|0η〉
N∏

j=1

|0j 〉
⎞
⎠. (11)

Here we introduced the complex Rabi frequency d↑E∗
R

�
=

	 = |	|ei
. This result is intuitively expected: The excitons
in each valley couple directly to only the R or L component of
the linearly polarized photon state, but these components were
entangled with each other, so the entanglement passes on to
the excitonic system. Clearly this mechanism of entanglement
exists only for a quantum incident field. Since there is no
decoherence or loss, the energy and entanglement oscillate
back and forth between the excitons and the photon field.
If at time t = 0 the cavity contained exactly one photon of a
linearly polarized field, then after the time t = π

2
√

N |	| it will be
absorbed by an ensemble of excitons. Since the photon energy
is equal to the energy of one exciton, one could (wrongly)
assume that this photon creates one (up or down) exciton which
will eventually recombine, so the reemitted photon will be
in either R or L state with equal probability. However, from
the exact solution (10) we see that the reemitted photon will
be linearly polarized. Interestingly, it was predicted in [12]
that the spatial structure of a single-photon field should be
preserved after its absorption and reemission by an ensemble
of atoms due to the entanglement of their states. Here we obtain
a conceptually similar result for the polarization of the field.

We also note for the subsequent discussion that the state (11)
satisfies the following condition for any pair of (↑) and (↓)
excitons:

〈ρ̂(11)j ρ̂(11)ξ 〉 = 0, (12)

where ρ̂(11),j ,ρ̂(11),ξ are operators of the upper state population:
ρ̂(11)j = |1j 〉〈1j |, ρ̂(11)ξ = |1ξ 〉〈1ξ |.

III. ENTANGLEMENT OF THE EXCITONIC ENSEMBLE
IN A TRANSMISSION GEOMETRY

In this section we consider the response of excitons
in an MX2 monolayer to an illumination by a stationary
flux of photons, including the effects of relaxation, losses,
finite spectral bandwidth, and fluctuations, having in mind
a generic geometry of Fig. 1. We outline the formalism in
Sec. III A, calculate the optical-frequency current induced in
the sample by the incident optical field for three different
kinds of incident photon states (Secs. III B and III C, and
Table I), and finally calculate the resulting polarization of
the photoluminescence (PL) from an ensemble of excitons
excited by these three fields (Sec. III D and Table II). We
show that only the absorption of linearly polarized single
photons results in the linear polarization of the PL, which
is an unambiguous signature of the valley entanglement of
excitons. Absorption of any other single-photon state does not
lead to valley entanglement and results in a circularly polarized
or unpolarized emission. Indeed, uncorrelated single excitons
can only emit circularly polarized photons. We also calculate
the effect of depolarization due to vacuum fluctuations of the
field and spontaneous emission noise (Sec. III D).
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TABLE II. Polarization of the PL for different states of the
incident field

State of incident field Polarization state of PL

Linearly polarized Bell state, Eq. (29) Linearly polarized
Other Bell state, Eq. (30) Unpolarized
Unpolarized, Eq. (31) Unpolarized
Circularly polarized, |1R〉|0L〉 or |0R〉|1L〉 Circularly polarized

A. The Heisenberg-Langevin formalism

We start from solving the Heisenberg-Langevin equation
for the density operator of an ensemble of (↑) or (↓) excitons
(see, e.g., [9,13]):

∂ρ̂mn

∂t
= − i

�
(ĥmpρ̂pn − ρ̂mpĥpn) + R̂mn + F̂mn. (13)

Here ρ̂mn(r,t) is the Heisenberg density operator, R̂mn the
relaxation operator, and F̂mn is the Langevin noise operator
describing fluctuations in an excitonic system. The Heisenberg
density matrix operator can be determined in a number of ways.
One can use the projection operator ρ̂mn = |n〉〈m| [8,14].
Another way is to use operators of annihilation and creation
of quantum states, ρ̂mn = â

†
nâm [8,15]. Both approaches lead

to quite similar results. We will call the operator matrix
ρ̂mn a density operator regardless of its representation. The
Hamiltonian is

ĥmn = Wnδnm − dnmÊ(z = 0), (14)

where the monolayer is located in the z=0 plane, and Wn are
eigenvalues of the unperturbed Hamiltonian of excitons. The
density operator determined from (13) allows one to calculate
the spatial density of any physical quantity A(r,t):

A(r,t) = 〈�0|Anmρ̂mn(r,t)|�0〉,
where Amn is the matrix element of the operator Â correspond-
ing to quantity A and |�0〉 is the initial state function in the
Heisenberg picture. If the initial wave function is normalized to
unity, 〈�0|�0〉 = 1, the normalization of the density operator
of an extended system is

∑
n ρ̂nn(r,t) = N (r), where N (r) is

the density of particles which is assumed to be constant in this
case. For a monolayer the quantity N (r) = N (r⊥) is a surface
density, where r⊥ is the radius vector in the monolayer plane.

The Langevin noise operator satisfies the general conditions
F̂nm = F̂

†
mn, 〈F̂mn〉 = 0, where 〈...〉 means averaging over the

statistics of a noise reservoir. Other properties of the noise
operator are determined by the properties of the relaxation
operator. We will define the latter in the simplest form through
a constant relaxation rate:

R̂mn = −γmnρ̂mn, m �= n,
(15)

R̂mm =
∑

n

wmnρ̂nn.

The definition (15) implies that the relaxation operator is
delta correlated in time. Using generalized Einstein rela-
tions [8,16,17] and assuming also delta correlation in space,
one can derive the following relationship for the noise

correlators for a two-level system [18,19]:

〈F̂ †
mn(t,r⊥)F̂mn(t ′,r′

⊥)〉
= 〈2γmnρ̂mm + R̂mm〉δ(t − t ′)δ(r⊥ − r′

⊥),
(16)

〈F̂mn(t,r⊥)F̂ †
mn(t ′,r′

⊥)〉
= 〈2γmnρ̂nn + R̂nn〉δ(t − t ′)δ(r⊥ − r′

⊥).

In a two-level system, we denote the transverse relaxation
rate as γmn ≡ γ10 = γ . Assuming that the exciton system is
not too far from the equilibrium and the Fermi level is far
below the exciton band edge (so that the number of excitons
is always small), we can also obtain

R̂11 = −R̂00 ≈ −�ρ̂11. (17)

Under these conditions and for γ � � we can also take R̂mm ≈
0 and R̂nn ≈ 0 in Eqs. (16) and (D1) as in [9].

B. Response of the MX2 monolayer to an incident field

Now we derive the optical-frequency current induced in the
valleys and the properties of the reemitted field. We start from
the following ansatz for the field operator in the monolayer
Ê(z = 0) ≡ Ê(0):

Ê(0) = Ê(+)e−iωt + Ê(−)eiωt ; Ê(+) = e+ÊR + e−ÊL,
(18)

Ê(−) = (
Ê(+))†.

Next we will use the equations for the density operator (13)
and (14). They can be split into two pairs of equations, for
↑ +R and ↓ +L states. These pairs can be coupled via an
entangled initial state as we showed in the previous section;
however, this does not affect the form of the equations.

Introducing slowly varying amplitudes of the off-diagonal
density operators (“coherences”),

ρ̂(10)↑,↓ = σ̂(10)↑,↓e−iωt ,ρ̂(01)↑,↓ = σ̂(01)↑,↓eiωt , (19)

we obtain the density operator for an R-and L-polarized surface
current:

ĵ↑,↓ = (e±ĵ↑,↓e−iωt + e∓ĵ
†
↑,↓eiωt )

= (e±j ∗
↑,↓σ̂(10)↑,↓e−iωt + e∓j↑,↓σ̂(01)↑,↓eiωt ), (20)

where we introduced the notation j(10)↑ ≡ j↑ = iωd, j(10)↓ ≡
j↓ = iωd∗.

Assuming that the spectral bandwidth of the radiation does
not exceed the relaxation rate γ we obtain the stationary
solution of Eqs. (13), (19), and (20):

ĵ↑ = ω|d|2
�γ

(ρ̂(00)↑ − ρ̂(11)↑)ÊR − iωd∗

γ
ˆ̃F↑,

ĵ↓ = ω|d|2
�γ

(ρ̂(00)↓ − ρ̂(11)↓)ÊL − iωd

γ
ˆ̃F↓,

(21)

ρ̂(11)↑ = 1

��ω
(ĵ †

↑ÊR + Ê
†
Rĵ↑) + F̂(11)↑

�
,

ρ̂(11)↓ = 1

��ω
(ĵ †

↓ÊL + Ê
†
Lĵ↓) + F̂(11)↓

�
,
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where ˆ̃F↑,↓e−iωt = F̂(10)↑,↓. We will assume that fluctuations
in different valleys are not correlated:

〈 ˆ̃F †
↑

ˆ̃F↓〉 = 〈F̂(11)↑F̂(11)↓〉 = 0. (22)

For a single photon flux we can safely assume that the
surface density of excited excitons is much lower than the max-
imum density of exciton states N determined by the spectral
bandwidth �ω and the density of states. Then, taking into
account the normalization condition,

ρ̂(00)↑ + ρ̂(11)↑ = ρ̂(00)↓ + ρ̂(11)↓ = N, (23)

we can replace ρ̂(00)↑ − ρ̂(11)↑ → N and ρ̂(00)↓ − ρ̂(11)↓ → N

in Eq. (21), which gives

ĵ↑ = ω2
c⊥ÊR

4πγ
− iωd∗

γ
ˆ̃F↑, ĵ↓ = ω2

c⊥ÊL

4πγ
− iωd

γ
ˆ̃F↓, (24)

where ω2
c⊥ = 4πω|d|2N

�
is the surface cooperative frequency

squared which has the dimension of [cm/s2].
Equation (24) and the last two in Eq. (21) give a complete

description of the response of electron-hole or exciton states
in an MX2 monolayer to the field (18). In particular, the
polarization of the surface optical current excited in the
monolayer and of the radiation emitted by the current can
be found by calculating the Stokes parameters:

sx = 〈ĵ †
x ĵx〉, sy = 〈ĵ †

y ĵy〉, (25)

where

ĵx = 1√
2

(ĵ↑ + ĵ↓), ĵy = i√
2

(ĵ↑ − ĵ↓),

and the brackets 〈...〉 mean averaging over the statistics of the
reservoir and over the quantum state.

C. Self-consistent optical field in the monolayer

Next, we need to relate the unknown field Eq. (18) in a
monolayer to an incident field. For simplicity we will consider
a one-dimensional propagation problem, corresponding, for
example, to a wide enough beam. If the monolayer is located
in the z = 0 plane on a substrate with dielectric constant ε = n2

for z < 0, the electromagnetic field incident on the monolayer
from both directions can be written as

(i) Pump:

Êi(z < 0) = Eε(e+eikz−iωt ĉR + e−e−ikz+iωt ĉ
†
R

+ e−eikz−iωt ĉL + e+e−ikz+iωt ĉ
†
L). (26)

(ii) Vacuum noise:

Êi(z > 0) = E0(e+e−ikz−iωt ĉVR + e−eikz+iωt ĉ
†
VR

+ e−e−ikz−iωt ĉVL + e+eikz+iωt ĉ
†
VL). (27)

Here Eε = √
2π�ω/ε and E0 = √

2π�ω are the normaliza-
tion amplitudes. In a more general and realistic case, the
incident field is not exactly monochromatic but occupies a
narrow frequency band �ω � ω. In this case the creation
and annihilation operators are defined for slowly varying
amplitudes of the Heisenberg operators (see also [9,10]). Note
that the operators ĉR and ĉVR, and other similar combinations

(same for ĉL,ĉVL) correspond to the field modes with different
wave numbers: k = |k| and k = −|k|. Therefore they always
commute.

After performing a standard calculation of the operators of
the reflected and transmitted fields, we obtain the following
expression for the field operators ÊR,L used in Eq. (18):

ÊR,L = 2E0

n + 1
(ĉR,L + ĉVR,VL) − 4πĵ↓,↑

(n + 1)c
. (28)

The last term on the right-hand side of Eq. (28) gives rise to the
the collective superradiant relaxation of the excitonic ensemble

with the rate 	SR = ω2
c⊥

(n+1)c [21]. Taking into account Eq. (24)
it is easy to find that this term can be neglected provided γ �
	SR; see Appendix D below. We will assume this inequality to
be true and neglect radiative corrections (back reaction) when
calculating the current excited in the monolayer.

Normalization amplitudes in Eqs. (26) and (27) correspond
to a unit quantization volume V = 1, i.e., the dyadics ĉ

†
RĉR and

ĉ
†
LĉL are the operators of the photon density (see [9,10,20]),

and the quantities like 〈ĉ†RĉR〉 ≡ 〈�0|ĉ†RĉR|�0〉 and 〈ĉ†LĉL〉 =
〈�0|ĉ†LĉL|�0〉 have the dimension of [cm−3], where �0 is the
initial state function present in the Heisenberg picture, which
is normalized as 〈�0|�0〉 = 1.

We will consider three different photon states �0 of the
incident field:

(i) Single-photon Bell state in the circularly polarized basis,
equivalent to the linearly polarized field:

�± = |1R〉|0L〉 ± |0R〉|1L〉√
2

; (29)

(ii) Other Bell states, e.g.,

�± = |0R〉|0L〉 ± |1R〉|1L〉√
2

; (30)

(iii) A state with the same average energy �ω which is not
entangled in the circularly polarized basis and is equivalent to
an unpolarized field, e.g.,

�D = |0R〉 + eiφ|1R〉√
2

× |0L〉 + eiψ |1L〉√
2

. (31)

We do not present the derivation details for circularly po-
larized factorized states of the type |1R〉|0L〉 or |0R〉|1L〉 since
their absorption would lead to the creation of excitons only in
one particular valley and subsequent circularly polarized PL,
which is a trivial result.

The averages of certain products of operators important for
subsequent derivation are given in Table I.

Whenever it is important to include Langevin noise terms,
one has to take into account the finite spectral bandwidth
of radiation �ω � ω. In this case one has to introduce
commutators and correlators for spectral components of the
field. For example, for a paraxial beam with the aperture cross
section S⊥ we obtain following [9,10] that

[ĉσωĉ
†
σω′] = n

2πcS⊥
δ(ω − ω′), (32)

where ĉσ = ∫
�ω

ĉσωe−iωtdω, n is the refractive index, and the
subscript σ = R or L denotes the polarization of a normal
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mode of the field. For correlators of spectral components of
the field satisfying 〈Ê〉 = 0 we have

S⊥
c

n
〈ĉ†σωĉσω′ 〉 = Nσω

2π
δ(ω − ω′), (33)

where the dimensionless quantity Nσω/2π determines the
power Pσω = �ω(Nσω/2π ) incident on the area S⊥ per unit
frequency interval per unit time for a given polarization, so
Pσω has a dimension of energy; for the vacuum field Nσω = 0.
Some properties of the correlators for spectral components of
the field are summarized in the last column of Table I.

Note that since the duration of a single-photon “pulse” is
of the order of �ω−1, the maximum power of a single photon
illumination regime within the spectral bandwidth �ω of the
order of �ω�ω; for a higher power individual photons overlap.
Here we don’t consider the possibility of using “multiphoton”
fluxes of quantum correlated fields.

D. The polarization of the photoluminescence from excitons
excited by a single-photon field

The initial (Heisenberg) state of our system can be repre-
sented as

|�0〉 = |�↑↓〉|�V 〉|�(R+L)〉, |�↑↓〉 = |0 ↑〉|0 ↓〉,
(34)|�V 〉 = |0VR〉|0VL〉.

First let us neglect the contribution of the Langevin sources.
Consider an incident field in the Bell state,

|�R+L〉 = �±, (35)

which corresponds to a single-photon linearly polarized field
|1x〉|0y〉 or |0x〉|1y〉, respectively (see Appendix B). If we
substitute Eq. (D1) in Eqs. (24) and (25), then after performing
the averaging in Eq. (25) all dyadics that include the vacuum
field operators will become zero. A nonzero contribution
comes only from averaging the dyadics ĉ

†
RĉR , ĉ

†
LĉL, ĉ

†
RĉL,

and ĉ
†
LĉR (see Table I).

As a result we obtain sx �= 0,sy = 0 for |�R+L〉 = �+ and
sy �= 0,sx = 0 for |�R+L〉 = �−. In other words, the reemitted
photons will have linear polarization corresponding to the
linear polarization of the incident field.

At the same time, the reemitted photons will be unpolarized,
sx = sy , if the incident field corresponds to other Bell states
of a single-photon energy, Eq. (30), or if it is a single-photon
state which is not entangled, Eq. (31). Possible outcomes are
summarized in Table II below.

So what is the role of the exciton entanglement here?
The fact that a linearly polarized radiation remains linearly
polarized after interacting with a system of equal numbers
of “left” and “right” rotators (such as K and K ′ valleys in
MoS2) does not by itself constitute the evidence that left and
right subsystems are entangled. Indeed, the same result can
be obtained for a classical field [6] which cannot entangle the
noninteracting quantum systems; see Appendix A. However,
for a quantum incident field, e.g., for a single-photon field
the conservation of the linear polarization in the reemitted
radiation is possible only if left and right excitons are
entangled. Therefore, in this case the degree of the linear
polarization of the reemitted field can be used to verify the
exciton valley entanglement.

Now we include the effect of fluctuations. In order to get
an explicit expression for the noise-induced depolarization
of the reemitted field, we need to sum over all modes in a
spectral bandwidth �ω. If we take the Langevin noise terms
into account in Eq. (24) and use Eqs. (32) and (33), the Stokes
parameters for the incident photons linearly polarized along
the x axis, |�R+L〉 = �+, are

sx = 2

(
ω2

c⊥E0

2πγ (n + 1)

)2
n(NRω + NLω)�ω

2πcS⊥
+ �, (36)

sy = �, (37)

where the mean square of the noise current is given by

� = ω2|d|2
γ 2

〈 ˆ̃F †
↑

ˆ̃F↑ + ˆ̃F †
↓

ˆ̃F↓〉. (38)

When calculating the value of � we take into account
only the spatial harmonics of the Langevin noise within the
spectral bandwidth �ω that correspond to a paraxial beam of
the aperture S⊥. We will also assume that the relaxation of
coherence is much faster that the recombination rate, γ � �,
which is typically the case in semiconductors. Using also
Eq. (D1), we arrive at

� = ω2|d|2�ω
〈�0|ρ̂(11)↑|�0〉 + 〈�0|ρ̂(11)↓|�0〉

2πγS⊥
. (39)

One can introduce the dimensionless parameter α as a ratio
of the mean squared noise current � to the squared signal
current [first term on the right-hand side of Eq. (36)]:

α = 〈�0|ρ̂(11)↑|�0〉 + 〈�0|ρ̂(11)↓|�0〉
2N (NRω + NLω)

× cγ

ω2
c⊥

× (n + 1)2

2n
.

(40)

The degree of depolarization of the PL, defined as

sy

sx

= α

α + 1
, (41)

varies between 0 when α � 1, i.e., noise is insignificant, and
1 when α � 1, i.e., noise is dominant.

In order to evaluate the magnitude of α we need to calculate
the averages of the operators ρ̂(11)↑ and ρ̂(11)↓ in Eq. (39).
Substituting (24) and (28) into the last two in Eq. (21) it is easy
to find that the resulting noise-dependent terms are linear with
respect to the Langevin noise operators, so that they vanish
after averaging over the reservoir. As a result, we obtain

ρ̂(11)↑ = χ (ĉ†R + ĉ
†
VR)(ĉR + ĉVR),

(42)
ρ̂(11)↓ = χ (ĉ†L + ĉ

†
VL)(ĉL + ĉVL),

where χ = ω2
c⊥|E0|2

πγ�(n+1)2�ω
. After summing over the modes within

the bandwidth �ω and taking into account Eqs. (32) and (33),
we get

〈�0|ρ̂(11)↑|�0〉 = 〈�0|ρ̂(11)↓|�0〉

= n

(n + 1)2

ω2
c⊥

γ c�S⊥

N(R,L)ω�ω

2π
. (43)
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Substituting Eq. (43) into (40) yields a very simple and
transparent expression:

α = �ω

2π�

1

2NS⊥
. (44)

Note that the parameter α is effectively the ratio of the noise
power to the coherent PL signal power, and as such it does
not depend on the incident power; see also in [9]. Indeed,
both the PL signal and the noise power which is proportional
to the number of excited excitons are linearly proportional to
incident power. Also as expected, α decreases with increasing
the number of particle states within the illuminated spot
and with decreasing the exciton lifetime 1/�. Assuming
� ∼ 109 − 1010 s−1, a standard two-dimensional density of
states N/�ω ∼ m/(π�) for parabolic bands, and the beam
aperture S⊥ > λ2 ∼ 10−8 cm−2, the magnitude of α is smaller
than 10−2.

IV. PHOTOCURRENT IN A VALLEY-ENTANGLED
ELECTRON-HOLE SYSTEM

Quantum correlations between photoexcited carriers should
manifest themselves in the fluctuations of the photocurrent or
photovoltage under the applied bias. A dc electric field applied
along the monolayer can lead to separation of photoexcited
electrons from holes while not affecting their valley index and
any possible entanglement with respect to the valley degree
of freedom; see Fig. 3. This will create a photocurrent or
photovoltage depending on the way the detector is wired in
an external circuit. Note that breaking the binding energy
of excitons may require a very high electric field. In exper-
iments [7] the charge separation most likely originated from
the metal-semiconductor contact regions with a high built-in
electric field.

A lot of attention has been recently devoted to the valley
Hall effect which generates photovoltage in the transverse
direction under a circularly polarized excitation [2,7]. How-
ever, for a linearly polarized excitation there will be zero
Hall voltage with equal amounts of positive and negative
charges accumulated on the sides as sketched in Fig. 3. Here
we consider the longitudinal photocurrent along the direction
of the applied dc field. Specifically, the current detector will

EDC

hK eK’

eK hK’

e   
h

JP = ĴP

FIG. 3. (Color online) A sketch of photocurrent detection. Under
illumination with a linearly polarized single-photon field and in the
presence of an in-plane dc electric field EDC there is charge separation
in the direction along EDC which gives rise to a photocurrent JP if
a monolayer is contacted and included in a proper external circuit.
There is no photocurrent or photovoltage in the transverse direction.

measure the quantity JP = 〈�0|ĴP |�0〉, where the averaging
is taken over the initial state (34) and ĴP is the photocurrent
operator:

ĴP = η(ρ̂(11)↑ + ρ̂(11)↓), (45)

where η is a certain coefficient. Obviously, equal amounts of
photogenerated electrons and holes from K and K ′ valleys
will contribute to the signal. When characterizing quantum
correlation properties of carriers, the quantity of interest is not
the current itself but current fluctuations defined as

δJP =
√〈

Ĵ 2
P

〉 − 〈
ĴP

〉2
. (46)

Using the initial quantum state defined by Eq. (34), we
compare the current fluctuations due to the following three
states of an incident field that have the same average energy:
Bell state (linearly polarized field) �+ from Eq. (29), other Bell
state �+ from Eq. (30), and not entangled state (unpolarized
field) �D from Eq. (31).

To calculate the photocurrent fluctuations, we need to eval-
uate the averages of both the excited-state density operators in
Eq. (42) and their products. The first of them gives

ρ̂(11)↑ = χ (ĉ†RĉR + ĉ
†
VRĉR + ĉ

†
RĉVR + ĉ

†
VRĉVR); (47)

ρ̂(11)↑ρ̂(11)↑ = χ2(ĉ†RĉRĉ
†
RĉR + ĉ

†
VRĉ

†
VRĉRĉR + ĉ

†
Rĉ

†
RĉVRĉVR

+ ĉ
†
VRĉVRĉ

†
VRĉVR + ĉ

†
VRĉRĉ

†
RĉR

+ ĉ
†
Rĉ

†
RĉRĉVR + ĉ

†
RĉRĉ

†
VRĉVR + ĉ

†
RĉRĉRĉ

†
VR

+ ĉVRĉ
†
VRĉ

†
RĉR + ĉ

†
VRĉ

†
VRĉVRĉR + ĉ

†
RĉRĉ

†
RĉVR

+ ĉ
†
VRĉVRĉRĉ

†
R + ĉ

†
VRĉVRĉVRĉ

†
R + ĉ

†
RĉRĉ

†
VRĉVR

+ ĉ
†
VRĉ

†
VRĉVRĉR + ĉVRĉ

†
VRĉVRĉ

†
R). (48)

The same result can be obtained for the population of
the “↓” states after replacing ↑ with ↓ and R with L. After
averaging (47) and (48) over the initial quantum state Eq. (34)
and taking into account the commutation relations we obtain

〈ρ̂(11)↑〉 = χ〈�R+L|ĉ†RĉR|�R+L〉,
(49)〈ρ̂(11)↓〉 = χ〈�R+L|ĉ†LĉL|�R+L〉,

〈ρ̂(11)↑ρ̂(11)↑〉
= χ2〈�R+L|ĉ†RĉR|�R+L〉(1 + 〈0VR|ĉVRĉ

†
VR|0VR〉),

〈ρ̂(11)↓ρ̂(11)↓〉
= χ2〈�R+L|ĉ†LĉL|�R+L〉(1 + 〈0VL|ĉVLĉ

†
VL|0VL〉). (50)

As is clear from Eq. (50), vacuum fluctuations of the field
amplify the fluctuations of the photocurrent. In the absence
of an incident field JP = δJP = 0 as expected. It also follows
from Eqs. (49) and (50) that the following relations are true
for all three states of the field:

〈ρ̂(11)↑〉 = 〈ρ̂(11)↓〉 = χ, 〈ρ̂(11)↑ρ̂(11)↑〉 = 〈ρ̂(11)↓ρ̂(11)↓〉 = 2χ2.

(51)

075409-7



MIKHAIL TOKMAN, YONGRUI WANG, AND ALEXEY BELYANIN PHYSICAL REVIEW B 92, 075409 (2015)

TABLE III. Photocurrent fluctuations for different states of
incident photons.

State of incident single-photon field Photocurrent fluctuations δJP

Linearly polarized, Eq. (29) JP

Unpolarized, Eq. (30)
√

2JP

Unpolarized, Eq. (31)
√

2JP

Next, we calculate the averages for “mixed” products
ρ̂(11)↑ρ̂(11)↓ and ρ̂(11)↓ρ̂(11)↑:

〈ρ̂(11)↑ρ̂(11)↓〉 = 〈ρ̂(11)↓ρ̂(11)↑〉 = 2χ2〈�R+L|ĉ†RĉRĉ
†
LĉL|�R+L〉.

(52)

Proceeding in the same way as above, for an unpolarized
field given by Eqs. (30) and (31) we obtain 〈ρ̂(11)↑ρ̂(11)↓〉 =
〈ρ̂(11)↑〉 × 〈ρ̂(11)↓〉, whereas for the linearly polarized field
Eq. (29) 〈ρ̂(11)↑ρ̂(11)↓〉 = 〈ρ̂(11)↓ρ̂(11)↑〉 = 0. The latter result
is entirely due to the entanglement of “↓“ and “↑” excitons.

Using Eqs. (51) and (52) to calculate the current (45) and its
fluctuations (46) we obtain δJP = √

2JP for an illumination
with unpolarized fields and δJP = JP in the case of a linearly
polarized incident field. Possible outcomes are summarized
in Table III. This reduction of fluctuations by

√
2 is the main

result of this section and direct consequence of the interference
within the valley-entangled state of photoexcited carriers. Note
that there is no reduction for the state given by Eq. (30):
Although also a Bell state, it does not create correlations
between K and K ′ excitons.

In conclusion, we have shown that excitons in K and
K ′ valleys of transition metal dichalcogenide monolayers
can be efficiently entangled by interacting with linearly
polarized single photons. Valley entanglement can be verified
by measuring the degree of linear polarization of excitonic
photoluminescence and suppression of the photocurrent fluc-
tuations by a factor of

√
2.
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APPENDIX A: CONDITIONS FOR ENTANGLEMENT
WITH CLASSICAL FIELDS

Consider two quantum systems described by generalized
coordinates q1 and q2. Their wave function �(q1,q2,t) obeys
Schroedinger’s equation,

i��̇ = Ĥ�. (A1)

Assume that these two systems are not coupled with each
other directly but interact with a classical electromagnetic
field described by a classical variable u(t). In this case the
Hamiltonian in Eq. (A1) can be written as Ĥ = Ĥ1(q1,u(t)) +

Ĥ2(q2,u(t)) where the operators Ĥ1 and Ĥ2 act only on
the functions of variables q1 and q2, respectively. Then,
substituting � = ψ1(q1,t)ψ2(q2,t) into Eq. (A1), we obtain

ψ2(i�ψ̇1 − Ĥ1ψ1) + ψ1(i�ψ̇2 − Ĥ2ψ2) = 0. (A2)

If the quantum systems were not entangled at the initial mo-
ment of time t = 0, i.e., �(q1,q2,0) = ψ1(q1,0) × ψ2(q2,0),
Eq. (A2) splits into two independent equations for each system:

i�ψ̇1 = Ĥ1ψ1, i�ψ̇2 = Ĥ1ψ2, (A3)

and the solution will remain in the form of the direct
product �(q1,q2,t) = ψ1(q1,t) × ψ2(q2,t), corresponding to
unentangled systems.

Entanglement may appear if the classical field gives rise to
the interaction Hamiltonian V̂ (u(t),q1,q2) that directly couples
the two systems, for example,

Ĥ = Ĥ1(q1) + Ĥ2(q2) + χu(t)q1q2, (A4)

where χ is a coupling constant. This particular example
corresponds to the Hamiltonian describing the generation
of entangled photons in a medium with a second-order
nonlinearity as a result of parametric frequency conversion [8].

APPENDIX B: RELATIONSHIP BETWEEN XY AND RL
BASIS STATES FOR PHOTONS

Consider the quantum field in vacuum in a quantization
volume V :

Ê = E0(x0e
ikz−iωt ĉx + x0e

−ikz+iωt ĉ†x

+ y0e
ikz−iωt ĉy + y0e

−ikz+iωt ĉ†y), (B1)

where x0,y0 are unit vectors along x,y coordinate axes,∫
V

sin kz d3r =
∫

V

cos kz d3r =
∫

V

sin 2kz d3r

=
∫

V

cos 2kz d3r = 0, (B2)

E0 =
√

2π�ω

V
.

Let’s expand the field given by Eq. (B1) in terms of circularly
polarized orthogonal modes:

Ê = E0(e+eikz−iωt ĉR + e−e−ikz+iωt ĉ
†
R

+ e−eikz−iωt ĉL + e+e−ikz+iωt ĉ
†
L), (B3)

where e± = x0±iy0√
2

. Comparing Eqs. (B1) and (B3) we obtain

ĉx,y = ĉR ± ĉL√
2

, ĉR,L = ĉx ∓ ĉy√
2

. (B4)

Next, we introduce the vacuum state |0�〉; 〈0�||0�〉 = 1.
By definition of creation and annihilation operators,

|Nx〉|Ny〉 = (ĉ†x)Nx (ĉ†y)Ny |0�〉√
Nx!Ny!

,

(B5)

|NR〉|NL〉 = (ĉ†R)NR (ĉ†L)NL |0�〉√
NR!NL!

.
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Expanding the linearly polarized photon state,

� = |1x〉|0y〉, (B6)

in the basis of circularly polarized modes, we obtain

� =
∞,∞∑

NR=0,NL=0

ANR,NL
|NR〉|NL〉. (B7)

Taking into account Eq. (B4), one can obtain from Eqs. (B6)
and (B7) that

ANR,NL
= 〈NR|〈NL||1x〉|0y〉 = 〈0�| (ĉR)NR (ĉL)NL

√
NR!NL!

ĉ†x |0�〉

= 〈0�| (ĉR)NR (ĉL)NL(ĉ†R + ĉ
†
L)√

2NR!NL!
|0�〉

=
{

0 if NR + NL �= 1
A1R0L

= A0R1L
= 1√

2
if NR + NL = 1.

(B8)

As is clear from Eq. (B8), the product state |1x〉|0y〉 in the
basis of linearly polarized modes is one of the Bell states in
the basis of circularly polarized modes:

�+ = |1R〉|0L〉 + |0R〉|1L〉√
2

. (B9)

The relationship |1x〉|0y〉 = �+ also can be obtained in a
less formal way from average values of squares of Cartesian
components of the field. Indeed, for the field given by
Eqs. (B1), (B2), and (B3) one can obtain the following
expressions for the averages:

1

4π

〈∫
V

ÊÊ d3r

〉
= 2�ω,

1

4π

〈∫
V

ÊxÊx d3r

〉
= �ω

(
1 + 1

2

)
, (B10)

1

4π

〈∫
V

ÊyÊy d3r

〉
= �ω

2
.

Using the relationships,

Êx = E0√
2

(eikz−iωt ĉR + e−ikz+iωt ĉ
†
R

+ eikz−iωt ĉL + e−ikz+iωt ĉ
†
L), (B11)

Êy = E0√
2

(ieikz−iωt ĉR − ie−ikz+iωt ĉ
†
R

− ieikz−iωt ĉL + ie−ikz+iωt ĉ
†
L), (B12)

we can express the averages through creation and annihilation
operators of circularly polarized modes:

1

4π

〈∫
V

ÊÊ d3r

〉
= �ω

2
〈ĉRĉ

†
R + ĉ

†
RĉR + ĉLĉ

†
L + ĉ

†
LĉL〉,

(B13)
〈∫

V

ÊxÊx d3r

〉
= �ω

4
〈ĉRĉ

†
R + ĉ

†
RĉR + ĉLĉ

†
L + ĉ

†
LĉL

+ 2ĉRĉ
†
L + 2ĉ

†
RĉL〉, (B14)

〈∫
V

ÊyÊy d3r

〉
= �ω

4
〈ĉRĉ

†
R + ĉ

†
RĉR + ĉLĉ

†
L

+ ĉ
†
LĉL − 2(ĉRĉ

†
L + 2ĉ

†
RĉL)〉. (B15)

The first of Eq. (B10) can be satisfied by any states of the type,

� = A|1R〉|0L〉 + B|0R〉|1L〉, (B16)

if

|A|2 = |B|2 = 1
2 . (B17)

Taking into account the last two equations in Eq. (B10), we
obtain

(|A|2 + |B|2) + 1
2 (AB∗ + A∗B) = 3

2 ,

(|A|2 + |B|2) − 1
2 (AB∗ + A∗B) = 1

2 ,

which yields

A = B = eiφ

√
2
,

which is equivalent to the result in Eq. (B8) up to insignificant
common phase φ.

It is easy to see that if we start from another linearly
polarized product state |0x〉|1y〉 instead of Eq. (B6), we arrive
at another Bell state:

�− = |1R〉|0L〉 − |0R〉|1L〉√
2

. (B18)

APPENDIX C: THE SOLUTION TO SCHROEDINGER’S
EQUATION (7) FOR A COUPLED EXCITON-PHOTON

SYSTEM IN A CAVITY

The state of the exciton-photon system at an arbitrary
moment of time at the same energy �ω which is conserved
as a result of field-matter interaction is

� =
N∑

j=1

Cj (t)|1j 〉
N∏

i �=j

|0i〉
N∏

ξ=1

|0ξ 〉|0R〉|0L〉e−iωt

+
N∑

ξ=1

Cξ (t)|1ξ 〉
N∏

η �=ξ

|0η〉
N∏

j=1

|0j 〉|0R〉|0L〉e−iωt

+CR(t)|1R〉|0L〉
N∏

j=1

|0j 〉
N∏

ξ=1

|0ξ 〉e−iωt

+CL(t)|1L〉|0R〉
N∏

j=1

|0j 〉
N∏

ξ=1

|0ξ 〉e−iωt . (C1)

Substituting (C1) into (7), we obtain the equations for
coefficients,

i�ĊR = −(d↑E∗
R)

N∑
j=1

Cj , i�Ċj = −(d↑ER)CR

(C2)

i�ĊL = −(d↓E∗
L)

N∑
ξ=1

Cξ , i�Ċξ = −(d↓EL)CL.
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After introducing the complex Rabi frequency d↑E∗
R

�
= 	 =

|	|ei
, Eq. (C2) can be written as

iĊR = −	

N∑
j=1

Cj , iĊj = −	∗CR

(C3)

iĊL = −	∗
N∑

ξ=1

Cξ , iĊξ = −	CL.

Taking the second derivative yields

C̈R,L + N |	|2CR,L = 0. (C4)

For the initial field in the linearly polarized product state,
which is one of the Bell states (B9) or (B18) in the circularly
polarized basis (see Appendix B), i.e., when

CR(0) = 1√
2
, CL(0) = ± 1√

2
,

�f (0) = �± = |1R〉|0L〉 ± |1L〉|0R〉√
2

,

we obtain the solution,

CR = cos (
√

N |	|t)√
2

, CL = ±cos (
√

N |	|t)√
2

. (C5)

Substituting (C5) into (C2), we can obtain for Cj,ξ :

Cj = −i
e−i


√
2N

sin (
√

N |	|t),
(C6)

Cξ = ∓i
ei


√
2N

sin (
√

N |	|t).

APPENDIX D: THE EFFECT OF RADIATIVE
CORRECTIONS

To study the effect of radiative corrections on the ex-
cited state populations 〈ρ̂11〉 it is convenient to introduce a

space-time spectrum of noise,

F̂mn =
∫

∞
F̂q,v,;mne

iqr⊥−ivt dvd2q, F̂q,v;mn = F̂
†
−q,−v;nm.

One can obtain from Eq. (16) the following correlators for the
spectral components of the noise operator:

〈F̂ †
q,v;mnF̂q ′,v′;mn〉 = 1

4π3

(
γmn〈ρ̂mm〉 + 1

2
〈R̂mm〉

)

× δ(v − v′)δ(q − q′),
(D1)

〈F̂q,v;mnF̂
†
q ′,v′;mn〉 = 1

4π3

(
γmn〈ρ̂nn〉 + 1

2
〈R̂nn〉

)

× δ(v − v′)δ(q − q′).

Note that the harmonics of the current with wave vectors q >

ω/c cannot excite propagating modes and therefore cannot
give rise to radiative losses. Therefore we can put q,q ′ � ω/c

in Eq. (D1) and, using Eqs. (21), (24), (28), and (D1), after
lengthy but straightforward calculations, obtain an estimate of
the radiative relaxation rate of populations induced by noise:

	rad � 2ω|d|2
c�

∫ ω/c

0
q dq.

As expected, this rate corresponds to the inverse spontaneous
emission time.

To summarize, when calculating the excited state pop-
ulations 〈ρ̂11〉 the radiative corrections can be neglected if
2	SR,	rad � �. Taking into account the back reaction effects
will make the derivation more complicated, and the result will
amount to renormalization of the relaxation rates in the final
expressions:

γ → γ + 	SR, � → � + 2	SR + 	rad.

To keep the derivation more streamlined, we ignore the
radiative corrections and assume that

ÊR,L = 2E0

n + 1
(ĉR,L + ĉV R,V L).
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