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Electrical transport limited by electron-phonon coupling from Boltzmann transport equation:
An ab initio study of Si, Al, and MoS2
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We demonstrate the ab initio electrical transport calculation limited by electron-phonon coupling by using the
full solution of the Boltzmann transport equation (BTE), which applies equally to metals and semiconductors.
Numerical issues are emphasized in this work. We show that the simple linear interpolation of the electron-phonon
coupling matrix elements from a relatively coarse grid to an extremely fine grid can ease the calculational burden,
which makes the calculation feasible in practice. For the Brillouin zone (BZ) integration of the transition
probabilities involving one δ function, the Gaussian smearing method with a physical choice of locally adaptive
broadening parameters is employed. We validate the calculation in the cases of n-type Si and Al. The calculated
conductivity and mobility are in good agreement with experiments. In the metal case we also demonstrate
that the Gaussian smearing method with locally adaptive broadening parameters works excellently for the BZ
integration with double δ functions involved in the Eliashberg spectral function and its transport variant. The
simpler implementation is the advantage of the Gaussian smearing method over the tetrahedron method. The
accuracy of the relaxation time approximation and the approximation made by Allen [Phys. Rev. B 17, 3725
(1978)] has been examined by comparing with the exact solution of BTE. We also apply our method to n-type
monolayer MoS2, for which a mobility of 150 cm2 v−1 s−1 is obtained at room temperature. Moreover, the mean
free paths are less than 9 nm, indicating that in the presence of grain boundaries the mobilities should not be
effectively affected if the grain boundary size is tens of nanometers or larger. The ab initio approach demonstrated
in this paper can be directly applied to other materials without the need for any a priori knowledge about the
electron-phonon scattering processes, and can be straightforwardly extended to study cases with electron-impurity
scattering.
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I. INTRODUCTION

Many properties of materials, such as transport coefficients,
the transition temperature TC of superconductors, carrier and
phonon linewidths, indirect optical absorption [1], Raman
spectroscopy [2], and hot-electron cooling [3], are influenced
by electron-phonon coupling. The electron-phonon coupling
matrix elements can be investigated from ab initio density
functional theory (DFT) calculations [4–8], which have great
advantages over empirical methods. Despite the high accuracy
and unnecessity of parametrization for DFT calculations, the
expensive calculational resources needed limit such calcula-
tions to some applications but not to others. For decades, the
phonon linewidths of metals, the Eliashberg spectral function,
and the TC of superconductors have been obtained from full
DFT calculations [4,5,7]. As for the transport coefficients in
the diffusive transport regime, they can be conventionally
formulated by the Boltzmann transport equation (BTE).
However the solution of BTE is not an easy task due to
the complex integrodifferential nature of the BTE. Owing to
the approximation made by Allen [9] by relating the solution
of BTE for metals to the transport variant of the Eliashberg
spectral function, the conductivities of some simple metals
were calculated in the 1990’s [7,10]. This approximation [9]
does not apply to semiconductors. Moreover, only carriers
close to the band edges are excited in the semiconductors,
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and only a tiny portion of the phonon modes in the Brillouin
zone (BZ) with a quickly varying distribution contributes to
scattering. Therefore, very dense grids for both electrons and
phonons are expected for a converged transport calculation,
which can be beyond the current computational capabilities
and prevent the application to the semiconductor case in prac-
tice. Thus many approximations have been made, including
an effective mass for the band structure and deformation
potentials of the electron-phonon coupling matrix elements
that need to be fitted with the DFT calculations [11]. Many
fitting procedures are required and the accuracy of different
types of approximations are always the disadvantages of such
approaches [11]. Recently, the DFT calculation of mobilities
of semiconductors has been demonstrated with a simple
relaxation time approximation (RTA) for BTE [12,13] and with
a Monte Carlo simulation [14,15]. However, the convergence
and accuracy are questionable, considering the coarse grids
used there [12,13]. On the other hand, an adjustable constant
RTA has also been used, for instance, in the open-source
codes BOLTZTRAP [16] and BOLTZWANN [17], where detailed
scattering events are not considered at all, and thus the
approach is not predictive. Recently, the Wannier interpolation
[18] and a related open-source code EPW [19] have also
been developed for electron-phonon coupling, enabling one
to obtain the coupling matrix elements from coarse grids to
fine grids.

In this paper we study the transport properties of semi-
conductors and metals limited by electron-phonon coupling
from full DFT calculations in a uniform way. The band
structure and the phonon dispersion are calculated in dense
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grids in BZ, and the electron-phonon coupling matrix elements
are linearly interpolated from coarse grids to dense grids.
We demonstrate that this approach makes the full DFT
calculation feasible and accurate. The linearized BTEs are
accurately solved with an iterative approach beyond RTA,
and the approximated solution of BTEs for metals has been
examined. We also show the Gaussian smearing method
with locally adaptive broadening parameters for calculating
electron-phonon Eliashberg and transport spectral functions.
We validate the transport calculation in cases of n-type Si
and Al, and apply it to n-type monolayer MoS2, for which a
mobility of 150 cm2/V s and mean free paths (MFPs) of less
than 9 nm are found at room temperature.

II. METHODOLOGY

A. Electron-phonon coupling [20,21]

Any excitations in crystals perturb the potential acting on
electrons, and thus scatter electrons. One common type of
excitation is the phonon, which often provides the dominant
scattering channels in clean crystals. Phonons are the quanta
of lattice vibrational modes, and therefore the scattering
powers of electrons by phonons are determined by the change
of potential δV due to lattice vibrations. Under the linear
approximation, δV can be written as

δV (r) =
∑
lsα

uα
ls

∂V (r)

∂uα
ls

, (1)

where uα
ls is the lattice displacement from the ground state

structure for the sth atom in the lth unit cell along the αth
direction. Treating δV as a perturbation potential and relating
uα

ls to phonon operators, one can use the ordinary perturbation
theory to investigate the scattering effect.

In terms of phonon creation and annihilation operators â†

and â, uα
ls can be written as

ûα
ls =

∑
qp

√
�

2NMsωqp

εα
s (qp)eiq·Rl (âqp + â

†
−qp), (2)

with N being the number of unit cells, Ms being the
mass of the sth atom, and Rl being the lattice vector. The
polarization vector ε and angular frequency ω of the phonon
mode with wave vector q and branch p can be obtained
via diagonalizing the dynamic matrix. After including the
perturbation introduced by the phonons and considering the
momentum conservation (up to a reciprocal lattice vector G) in
periodic systems, the electron-phonon interaction Hamiltonian
can be expressed as

H =
∑

mnkqp

g
mk+q
nk,qp ĉ

†
mk+q(âqp + â

†
−qp)ĉnk, (3)

where ĉ
†
nk and ĉnk are the creation and annihilation operators

for the state with wave vector k and band index n and
with corresponding energy Enk. The electron-phonon coupling
matrix element g

mk+q
nk,qp can be calculated from the Bloch

waves’ periodic components ψn
k normalized in one single

unit cell,

g =
√

�

2Nωqp

∑
sαl

εα
s (qp)√

Ms

eiq·(Rl−R0)
∫

l

ψm
k+q

∂V

∂uα
0s

ψn
k dr,

(4)

where the integration domain l denotes the lth unit cell.
From the perturbation theory, the intrinsic transition proba-

bility for the process from state |nk〉 to |mk + q〉 by absorbing
a phonon in mode (qp) can be obtained as

γ
mk+q
nk,qp = 2π

�

∣∣gmk+q
nk,qp

∣∣2
δ(Enk + �ωqp − Emk+q), (5)

which is equal to γ
nk,qp

mk+q for the reverse process from |mk + q〉
to |nk〉 by emitting a phonon in state (q,p), satisfying the
microscopic reversibility. It is not the actual number of
transitions per unit time since the actual distribution functions
fnk and Nqp are not considered. The corresponding transition
rates at equilibrium 


mk+q
nk,qp for the absorption process and



nk,qp

mk+q for the reverse emission process are equal,



mk+q
nk,qp = 


nk,qp

mk+q = f 0
nk

(
1 − f 0

mk+q

)
N0

qpγ
mk+q
nk,qp , (6)

using f 0
nk(1 − f 0

mk+q)N0
qp = (1 − f 0

nk)f 0
mk+q(1 + N0

qp) under
the energy conservation condition (the superscript 0 denotes
the equilibrium statistics), which is required in order to
maintain a detailed balance between the forward and backward
transitions. For convenience of the next section, we also
explicitly write down



mk+q,−qp

nk = 2π

�

∣∣gmk+q
nk,qp

∣∣2
f 0

nk

(
1 − f 0

mk+q

)(
1 + N0

−qp

)
× δ(Enk − �ω−qp − Emk+q). (7)

B. Boltzmann transport equation

A nonzero electric current density J can arise from an
electric field E. By definition, the electric conductivity σ can
be obtained via J α = ∑

β σ αβEβ . Considering the number of
charge carriers per unit volume per spin at state nk is qfnk/NV ,
where V is the volume of the unit cell, J can be described as

J = 2q

NV

∑
nk

fnkvnk, (8)

where 2 accounts for the spin degeneracy, and the velocity

vnk = 1

�

∂Enk

∂k
. (9)

In the presence of a field, fnk deviates from the Fermi-Dirac
statistics f 0

nk, and can be obtained from BTE [20]. Two factors
affect the electron distribution: diffusion due to the electric
field E and scattering arising from the allowed scattering
processes. In the steady state, the distribution change rate
vanishes, as is expressed by the BTE,

∂fnk

∂t
= ∂fnk

∂t

∣∣∣∣
diff

+ ∂fnk

∂t

∣∣∣∣
scatt

≡ 0. (10)

It is convenient to write the equation in terms of the
deviation of fnk from f 0

nk defined as χnk = fnk − f 0
nk and

keep only the linear terms with χnk in the scattering term since
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the zeroth-order terms corresponding to the equilibrium state
simply vanish. Any scattering process annihilating an electron
in the state nk and creating an electron in mk′ has a factor fnk
involved in the actual transition rate, while its reverse process
creating an electron in state fnk has a factor 1 − fnk. If writing
χnk = f 0

nk(1 − f 0
nk)�nk and considering only linear terms in

the scattering term, then due to the two processes, the change
of fnk contributes to ∂fnk/∂t a term proportional to 
mk′

nk with
a prefactor −(1 − f 0

nk)�nk − f 0
nk�nk = −�nk. The change of

fmk′ involved in the same two processes contributes a similar
term but with a different prefactor �mk′ . If only two electronic
states are involved in a scattering event, the scattering term can
be written

∂fnk

∂t

∣∣∣∣
scatt

= −
∑


mk′
nk (�nk − �mk′), (11)

where the sum is taken over all possible processes from |nk〉 to
|mk′〉. This is the canonical form of the scattering integral (or
sum) in this particular case [20]. It relies on the processes
which can actually happen rather than those which would
be hypothetically possible only if they were not forbidden
by the exclusion principle. The scattering integral can be
easily generalized to handle collisions of arbitrary complexity.
The same formula also applies for the scattering integral for
bosons such as phonons when dealing with phonon transport
[20]. Specifically in the case of electron-phonon coupling, the
scattering term can be written as

∂fnk

∂t

∣∣∣∣
scatt

= −
∑
qp

(



mk+q
nk,qp + 


mk+q,−qp

nk

)(
�nk − �mk+q

)
.

(12)
We now switch to the diffusion term in BTE,

∂fnk

∂t

∣∣∣∣
diff

= −k̇ · ∂fnk

∂k
= −qE

�

∂fnk

∂k
, (13)

which can be approximated by keeping only the linear terms
in E (namely, fnk ≈ f 0

nk),

∂fnk

∂t

∣∣∣∣
diff

≈ qE
kBT

· vnkf
0
nk

(
1 − f 0

nk

)
. (14)

Since it contains a common factor qE
kBT

, it is convenient to

further write �nk = qE
kBT

· Fnk, and then Eq. (10) is linearized,

vnkf
0
nk

(
1 − f 0

nk

) =
∑
qp

(



mk+q
nk,qp + 


mk+q,−qp

nk

)
(Fnk − Fmk+q),

(15)

or equivalently,

Fnk

∑
qpm

(



mk+q
nk,qp + 


mk+q,−qp

nk

)

= vnkf
0
nk

(
1 − f 0

nk

) +
∑
qpm

(



mk+q
nk,qp + 


mk+q,−qp

nk

)
Fmk+q.

(16)

When the number of k is very large, solving these linear
equations of Fnk can also be a difficult task. One crude
approximation is neglecting the sum on the right-hand side of
the equation, which corresponds to the energy relaxation time

approximation (ERTA). Then it follows that FERTA
nk = vnk · τnk,

with

1

τnk
= 2π

�

∑
qpm

∣∣gmk+q
nk,qp

∣∣2[(
N0

qp + f 0
mk+q

)
× δ(Enk + �ωqp − Emk+q)

+ (
1 + N0

−qp − f 0
mk+q

)
δ(Enk − �ω−qp − Emk+q)

]
,

(17)

where the relations under the energy conservation condition,

f 0
nk

(
1 − f 0

mk+q

)
N0

qp = f 0
nk

(
1 − f 0

k

)(
N0

qp + f 0
mk+q

)
,

f 0
nk

(
1 − f 0

mk+q

)(
1 + N0

−qp

) = f 0
nk

(
1 − f 0

nk

)
×(

1 + N0
−qp − f 0

mk+q

)
,

have been used to cancel out the factors f 0
nk(1 − f 0

nk) present
in Eq. (16). A more accurate approximation is the momentum
relaxation time approximation (MRTA), which takes into
account the relative change of the electron velocity of each
scattering process [20,21]. Defining the efficiency factor
α characterizing the effective change of the velocity after
scattering,

α = 1 − vmk+q · vnk

|vnk|2 , (18)

and multiplying the term in the sum of Eq. (17) by α, one can
obtain the inverse of the momentum relaxation time τMRTA

nk
and then FMRTA

nk = vnk · τMRTA
nk . In the case where the average

change of velocity is vanishing, these two RTAs are equal.
Instead, Fnk in Eq. (16) can be accurately solved using

an iterative method [22] starting with a zero-order solution
F0

nk ≡ FERTA
nk :

Fi+1
nk =F0

nk + τnk

f 0
nk

(
1 − f 0

nk

) ∑
qpm

(



mk+q
nk,qp + 


mk+q,−qp

nk

)
Fi

mk+q.

(19)

Note that Fnk can be understood as the mean free displacement
[22], which is unnecessarily parallel to vnk. After determining
Fnk, the electric current density J can be calculated, and then
σ can be obtained as

σαβ = 2q2

NV kBT

∑
nk

f 0
nk

(
1 − f 0

nk

)
vα

nkF
β

nk. (20)

Practically, the iteration convergence is checked for σαβ rather
than for all Fnk [22,23]. For high-symmetry systems such as
those studied in this paper, the tensor σ can reduce to a scalar.
Mobility can be obtained as

μαβ = σαβ

nq
, (21)

where the carrier density

n = 2

NV

∑
nk

f 0
nk. (22)

The calculation applies equally to metals and semiconductors.

075405-3



WU LI PHYSICAL REVIEW B 92, 075405 (2015)

C. δ function

The singular delta function δ(Enk − W ) presented in
Secs. II A and II B, with W = ∓�ω±qp + Emk+q, can be
considered as the limit of the Gaussian function,

h(Enk − W ) = 1√
2πη

e
−(Enk−W )2

2η2 , (23)

as the broadening parameter η approaches zero. Considering
a finite number of discretized q points is summed over
for δ(Enk − W ) related quantities, one has to use a finite
broadening η that is as small as possible. In order for the sum
not to have spurious oscillations with nk, η can be chosen such
that two Gaussian functions at two neighboring W overlap.
The overlapping condition sets a criterion for η [22,24], which
means that η can be approximately half the maximal spacing
of W along three reciprocal primitive vectors G1, G2, and G3.
When using the N1 × N2 × N3 grid for q, this yields

η = max

{∣∣∣∣∂W

∂q
· G1

N1

∣∣∣∣,
∣∣∣∣∂W

∂q
· G2

N2

∣∣∣∣,
∣∣∣∣∂W

∂q
· G3

N3

∣∣∣∣
}

= max

{∣∣∣∣(vqp − vmk+q
) ·

[
G1

N1
,
G2

N2
,
G3

N3

]∣∣∣∣
}
, (24)

which varies from process to process.
This Gaussian smearing method can be applied equally

to any dimensionality, which is one advantage over the
tetrahedron approach [25]. As implied by the name, the
tetrahedron approach is intended for three-dimensional (3D)
systems, and some adaption needs to be made for other
dimensionalities.

III. APPLICATION TO SEMICONDUCTORS

In Secs. III and IV, electron energies, phonon frequen-
cies, and electron-phonon coupling matrix elements are
calculated with the QUANTUM ESPRESSO package [26], us-
ing density functional theory and density functional per-
turbation theory (DFPT) [8]. The local density approxi-
mation (LDA) for the exchange-correlation functional with
Perdew-Wang parametrization [27] and Troullier-Martins
type norm-conserving pseudopotentials [28] are used for Si.
The Perdew-Burke-Ernzerhof exchange-correlation functional
[29] and projector-augmented-wave (PAW) type pseudopo-
tentials [30,31] are used for MoS2. The LDA functional
with Perdew-Zunger parametrization [32] and von Barth–Car
type norm-conserving pseudopotentials [33] are used for Al.
Uniform gamma-centered and commensurate grids are used
for k and q. (Nel,Nph) represents the Nel × Nel × Nel grid for
k and the Nph × Nph × Nph grid for q in 3D, and refers to
the Nel × Nel grid for k and the Nph × Nph grid for q in two
dimensions (2D). The electron band structure can be directly
calculated on very fine grids. Converged interatomic force
constants can be obtained at a relatively coarse phonon grid
using a Fourier transform, enabling the precise calculation of
phonon frequencies for an arbitrarily fine phonon grid [8,26].
In the cases of Si and MoS2, we consider an n-type low doping
limit (nondegenerate semiconductors). Numerically the Fermi
level is manually set to be 0.3 eV below the conduction band
minimum. As long as the Fermi level is far away from the band

FIG. 1. (Color online) Room temperature scattering rate of Si vs
energy with respect to the conduction band minimum calculated by
interpolating from (16,16) to different (Nel,Nph) grids. Convergence
is well achieved at (96,96).

edges, the Fermi level only affects the carrier concentration but
not the scattering rates [34].

A. Si

The energy dependences of the room temperature scattering
rates [Eq. (17)] calculated with (16,16) grids are shown in
Fig. 1. There are only a few states present below 200 meV,
which dominate the electric conduction. Therefore, a much
finer electron grid is required. Considering the expensive
computational cost, it is not feasible to do a direct electron-
phonon coupling calculation on very fine grids. We linearly
interpolate the coupling matrix elements g from a coarse grid
to a fine grid without using a more complicated but more
accurate Wannier interpolation [18,19]. The scattering rates
calculated by interpolating from (16,16) to different (Nel,Nph)
grids are also shown in Fig. 1. They converge more easily
at higher energies than lower energies, because the phonon
modes effectively scattering high energy electrons are more
dispersed in BZ. All the scattering rates can well converge at
(96,96). The importance of enough numbers of phonon modes
present for scattering in the sampled grid is also manifested
in Fig. 2. As can be clearly seen, the 16 × 16 × 16 phonon
grid is far from enough to reach the convergence, especially
for low energy electrons. Extremely fine grids are crucial for
accurately determining the phase space available for scattering
and capturing the fast variation of distribution functions of
relevant electrons and phonons.

Depending on the smoothness of the coupling matrix
elements, the interpolation procedures might lead to some
error. Therefore, it is necessary to check the convergence
with different start grids. Figure 3 shows the convergence
of the results obtained on (96,96) grids using different start
grids. Figures 1–3 confirm that the (16,16) start grids can
lead to converged results after interpolating. Therefore, the
interpolation scheme enables affordable calculation without
losing accuracy.

When the involved phonon energies can be ignored
compared with the electron energy, the scattering processes
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FIG. 2. (Color online) Room temperature scattering rate of Si vs
energy with respect to the conduction band minimum calculated by
interpolating from (16,16) to different (96,Nph) grids. Nph = 16 is far
from enough to achieve convergence.

can be considered elastic, causing the scattering rates to
be proportional to the density of states [21]. Therefore, the
scattering rates approximately have

√
E dependence in 3D

[21]. They deviate from
√

E slightly, especially at the band
edges, where the electron energy is not much higher than
involved phonon energies.

We notice some ab initio [12,35–37] and empirical [38]
electron-phonon calculations for silicon in the literature. We
plot the comparison of scattering rates in Fig. 4, where the data
in Ref. [37] are not included in order to avoid overcrowding.
For high energies, our results agree well with Refs. [36,37]
using fine grids enabled by the Wannier interpolation [18,19]
but not with other ab initio results [12,35] using only coarse
grids. However, a large discrepancy still exists between our
results and Refs. [36,37] at low energies. Particularly, the
scattering rates obtained by Qiu et al. [36] are larger than
ours by one order of magnitude around the conduction
band minimum. This indicates that the constant Gaussian

FIG. 3. (Color online) Room temperature scattering rate of Si vs
energy with respect to the conduction band minimum calculated by
interpolating from different (Nel,Nph) to (96,96) grids. Calculated
scattering rates with different start grids converge to the same values.

FIG. 4. (Color online) Room temperature scattering rate of Si vs
energy with respect to the conduction band minimum in comparison
with other ab initio [12,35,36] and empirical [38] results. The scat-
tering rates for energies below 0.3 eV are obtained by interpolating
from (32,16) to (96,96) grids. For clarity, those for energies above
0.3 eV are obtained by interpolating from (32,16) to (32,32) grids,
and are well converged.

broadening parameters used there [36,37] are not valid for
low energies. Based on our adaptive broadening scheme [see
Eq. (24)], the broadening parameters for low energies should
be much smaller than those for high energies. Moreover,
as shown in our calculation, the scattering rates rise faster
around 60 meV than at lower energies, since optical phonon
emission processes start to occur [21]. However, the onset of
the phonon emission processes at 60 meV is not evident in
other calculations, except for Ref. [38]. Rideau et al. [38] used
a parametrized tight-binding model, allowing calculations on
extremely fine grids. In addition, Ref. [38] used the tetrahedron
method for the δ-function integration. As a result, the onset
of phonon emission processes was recovered there. Compared
with our results, the parametrized tight-binding model used in
Ref. [38] overestimated the scattering rates.

The resulting mobilities are shown in Fig. 5. Our theoretical
results are slightly higher than the experimental data [39,40].
Specifically at room temperature, the experimental value is
less than 1700 cm2 v−1 s−1, in comparison with our calculated
value of 1860 cm2 v−1 s−1. The difference could be related
to the impurity scattering, which is not included in our
calculation, or limitations of DFT [41], or both. Therefore,
our calculation provides the intrinsic upper limit of the
mobilities limited by electron-phonon coupling. We have also
quantitatively examined the accuracy of the ERTA and the
MRTA (Fig. 5). The MRTA is almost identical to the exact
solution. The ERTA is also an excellent approximation for Si,
which is due to the fact that the forward scattering is almost
equal to the backward scattering.

B. MoS2

The monolayer MoS2 is a promising alternative to silicon
for use in next generation nanoelectronic devices [42]. The
monolayer MoS2 was first found to have mobilities of 0.5–3
cm2 v−1 s−1 [43], where the samples were heavily doped with
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FIG. 5. (Color online) The mobilities of Si calculated with an
exact solution (solid line), ERTA (dashed line), and MRTA (squares)
of BTE. The measured mobilities are taken from Ref. [39] (diamonds)
and Ref. [40] (triangles).

a concentration between 1012 and 1013 cm−2. More recently,
Radisavljevic et al. [44] reported a value of more than 200
cm2 v−1 s−1 [45,46]. The latter ab initio calculations found
values ranging from 130 to 410 cm2 v−1 s−1 [11,13,14].
Different approaches have been employed to solve BTE:
Reference [11] uses an iteration scheme based on quasielastic
scattering rates and an inelastic scattering integral determined
by the fitted acoustic and optical deformation potentials,
respectively; Ref. [14] uses the Monte Carlo simulation;
Ref. [13] uses ERTA. We notice that the scatting rates obtained
in Ref. [11] are lower than ours and Ref. [14]. In contrast
to strongly polar materials such as SrTiO3 [47], where the
scattering is dominated by the Fröhlich interaction related to
the longitudinal optical (LO) mode, the Fröhlich interaction
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FIG. 6. (Color online) The q dependence of the electron-phonon
coupling matrix element

√
N |gmk+q

nk,qp | (in units of eV) calculated with
(36,36) grids for k at one conduction band minimum K point [k =
(4π/3a,0), with a being the lattice constant], p corresponding to
the longitudinal acoustic (LA) mode, and m and n are limited to the
conduction band. The hexagon marks the first Brillouin zone.

FIG. 7. (Color online) Room temperature scattering rate of MoS2

vs energy with respect to the conduction band minimum calculated by
interpolating from (36,36) to different (Nel,Nph) grids. Convergence
is well achieved at (216,216).

in MoS2 can be neglected [11,14]. Therefore, the Fröhlich
interaction is not included in the present calculation.

The calculated conduction band minimum (CBM) is located
at the K and K ′ points, which are related by time-reversal
symmetry. The absolute value of the coupling matrix element
g

mk+q
nk,qp shows threefold rotational symmetry in q space at CBM.

For instance, in Fig. 6 we plot the |gmk+q
nk,qp | calculated with

(36,36) grids at one K point and for the LA mode, in good
agreement with Ref. [14].

The room temperature scattering rates calculated with
(36,36) start grids are plotted in Figs. 7 and 8, which evidence
the necessity of interpolation. The comparison with different
start grids (Fig. 9) shows that the calculated scattering rates
with (36,36) start grids are converged, especially for those
above 0.2 eV. The scattering rate is closely related to the
density of states [21], which is energy independent in 2D in
the neighborhood of band edges. As a result, the scattering
rates have a characteristic stepwise behavior in 2D [11].
We notice that the calculation is not well converged below

FIG. 8. (Color online) Room temperature scattering rate of MoS2

vs energy with respect to the conduction band minimum calculated by
interpolating from (36,36) to different (216,Nph) grids. Convergence
is not reached below 0.1 eV with Nph = 36.
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FIG. 9. (Color online) Room temperature scattering rate of MoS2

vs energy with respect to the conduction band minimum calculated by
interpolating from different (Nel,Nph) to much finer grids. Calculated
scattering rates with (36,36) start grids are converged, especially for
those above 0.2 eV. Mean free paths obtained by interpolating from
(36,36) to (216,216) grids are also shown.

5 meV, since the calculated scattering rates are quite low.
Considering the nearly vanishing velocity, the error caused in
the latter mobility calculation can be ignored. The jump of
the scattering rates at 50 meV manifests the onset of apparent
phonon emission processes involving optical phonons. The
high energy scattering rates are important for the hot carrier
dynamics [37]. A detailed analysis shows the out-of-plane
vibrations have no influence on the transport properties, which
agrees with the previous calculations [11,14]. This suggests
that the mobility engineering by phonons should focus on the
in-plane lattice vibrations.

The calculated mobilities are shown in Fig. 10. A room
temperature mobility of 150 cm2 v−1 s−1 is obtained, which is
close to the value of 130 cm2 v−1 s−1 reported in Ref. [14] and
smaller than the experimental value [44–46] and other theoreti-
cal works [11,13]. Reference [14] relates the smaller calculated
mobilities to a smaller energy at which the neighboring valley
is present than that in Ref. [11]. However, the neighboring

FIG. 10. (Color online) The mobilities of MoS2 calculated with
an exact solution (solid line), ERTA (dashed line), and MRTA
(squares) of BTE.

valley occurs at 263 meV in our calculation (which can be
seen in Fig. 9), even slightly higher than the value of 200
meV in Ref. [11]. Therefore, the difference in the calculated
neighboring valley energy should not be the essential cause for
the distinct calculated mobilities. The temperature dependence
approximately follows T −1.34 around the room temperature,
and the power factor is close to the value of −1.69 obtained
in Ref. [11]. As in Si, the MRTA is also identical to the exact
solution, and the ERTA also works very well (Fig. 10). The
grain boundaries are often present in experimental samples,
and thus provide an additional scattering mechanism. If the
grain boundaries are much larger than the intrinsic mean free
paths limited by the electron-phonon coupling, the influence
of the grain boundaries can be neglected. The mean free
paths are plotted in Fig. 9, showing a maximum MFP of 9
nm at room temperature. This indicates that the mobilities
should not be effectively affected if the grain boundary size
is tens of nanometers or larger. In the meantime, the thermal
conductivity can be significantly reduced, due to the fact that
the phonon MFPs of MoS2 are several hundreds of nanometers
[48]. Therefore, the thermoelectric figure of merit can be
increased in nanograined monolayer samples.

IV. APPLICATION TO THE METAL: Al

Interpolation from (16,16) to (64,64) grids results in con-
verged results for room temperature and above. The resulting
scattering rates at room temperature and the resistivity versus
temperature are plotting in Figs. 11 and 12, respectively.
The scattering rates are greatly scattered, and the difference
can be 30% at the Fermi energy. This is simply because
the corresponding k wave vectors at the Fermi energy are
dispersed in BZ. The calculated resistivity is lower than the
experimental data [49]. Unlike for semiconducting Si and
MoS2, the estimation from ERTA evidently differs from the
exact solution for metallic Al, although the MRTA is also
identical to the exact solution. Since the k wave vectors at the
Fermi energy are away from the band edge and dispersed
in BZ, the scattering is neither isotropic nor symmetric.
Therefore, the forward scattering generally is not equal to

FIG. 11. (Color online) Room temperature scattering rate of Al
vs energy with respect to the Fermi energy calculated by interpolating
from (16,16) to (64,64) grids.
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FIG. 12. (Color online) The resistivity of Al calculated with an
exact solution (solid line), ERTA (dashed line), MRTA (squares), and
Allen’s model (dotted line) of BTE. The experimental data are taken
from Ref. [49].

the backward scattering, and the ERTA might overestimate
or underestimate the resistivity in metals such as Al. In
addition, there are many more large q wave vectors suited for
scattering than in semiconductors. However, below the Bloch-
Grüneissen temperature [20], only those phonons with short q
are effectively excited. Consequently, the forward scattering is
stronger than the backward scattering, and therefore the ERTA
significantly overestimates the resistivity of metals at very low
temperatures.

Allen [9] obtained an approximation relating the conductiv-
ity of metals to the transport spectral function α2Ftr, which is a
variant of the Eliashberg spectral function α2F . It is interesting
to examine the accuracy of Allen’s model. α2F can be written
as

α2F (ω) = 1

2N

∑
qp

λqpωqpδ(ω − ωqp), (25)

where the electron-phonon coupling constant λqp is

λqp = 2

ωqpNF N

∑
mnkqp

∣∣gmk+q
nk,qp

∣∣2
δ(Emk+q − EF )δ(Enk − EF ),

(26)

with NF being the density of states per unit cell and per spin
at the Fermi level EF . The total coupling constant can be
obtained as

λ = 1

N

∑
qp

λqp = 2
∫

dω
α2F (ω)

ω
. (27)

Multiplying the term in the sum of Eq. (26) by the efficiency
factor α [Eq. (18)], one can obtain the transport analog
of coupling constants λtr

qp. Accordingly, α2Ftr and the total
transport coupling constant λtr can be obtained based on
Eqs. (25) and (27) after replacing λqp with λtr

qp. Allen found
an approximated solution to BTE and related the resistivity ρ

of metals to the α2Ftr via [9]

ρ(T ) = 2πV kBT

e2�NF

〈
v2

z

〉 ∫ ∞

0

dω

ω

x2

sinh2x
α2Ftr(ω), (28)

FIG. 13. (Color online) The Eliashberg and transport spectral
function of Al calculated with different (Nel,Nph) grids.

where x = �ω/2kBT , and 〈v2
z 〉 is the average square of the

Fermi velocity along the transport z direction.
α2F and α2Ftr involve double δ-function integration, which

can be evaluated with the tetrahedron method [7,50]. As for
the single δ-function integration, the tetrahedron methodology
depends on the dimensionality. A Gaussian approximation to
the δ function can also be used for the double δ-function
integration, as done in Ref. [51]. However, the Gaussian
broadening constant there is not fixed and can give arbitrary
results if not chosen properly. As we do with the one δ-function
integration, we can also physically choose locally adaptive
broadening parameters for the broadening, explicitly,

η = max

{∣∣∣∣vmk+q ·
[

G1

N1
,
G2

N2
,
G3

N3

]∣∣∣∣
}

(29)

and

η = max

{∣∣∣∣vnk ·
[

G1

N1
,
G2

N2
,
G3

N3

]∣∣∣∣
}
, (30)

for the first and the second δ function in Eq. (26), respectively.
α2F and α2Ftr calculated in this way are plotted in Fig. 13.

As can be seen, they can be converged quickly even without
interpolation. The calculated λ and λtr are 0.37 and 0.32,
respectively. The resulting resistivity calculated with Eq. (28)
is also plotted in Fig. 12, where the deviation from the exact
solution can reach as high as 7% at 500 K. Allen’s model
averages the scattering of electrons around the Fermi energy,
and the averaged scattering rate is [9]

τ−1 = (2π/�)kBT λ, (31)

when the temperature is much higher than the Debye tem-
perature. The estimated average rate at room temperature is
91.3 ps−1, which is well located in the middle of the actual
scattering rates (Fig. 11). The relative difference between λ

and λtr is 16%, in agreement with the ∼20% difference in the
calculated resistivity between ERTA and MRTA.

V. SUMMARY

We have developed a fully ab initio electron transport
calculation limited by electron-phonon coupling with the
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Boltzmann transport equation. All quantities, including the
electron band structure, phonon dispersion, and the electron-
phonon coupling matrix, are obtained from first principles.
In order to enable practical calculation, a linear interpolation
of the electron-phonon coupling matrix elements from a rela-
tively coarse grid to an extremely fine grid has been used. The
Gaussian smearing method with locally adaptive broadening
parameters is employed to deal with BZ integration with one
δ function for the transition probabilities, and BZ integration
with double δ functions involved in the Eliashberg function
and its transport variant. This ab initio approach can be applied
to semiconductors and metals, of any dimensionality, without
the need for any a priori knowledge about the electron-phonon
scattering processes, and can be straightforwardly extended to
study cases with electron-impurity scattering. The calculation

has been validated for n-type Si and Al, and used to examine
the accuracy of some approximations used in the literature.
We have also applied our method to n-type monolayer MoS2,
and obtained a room temperature mobility of 150 cm2 v−1 s−1.
Moreover, the mean free paths are less than 9 nm, suggesting
that the mobilities should not be effectively affected if the grain
boundary sizes of the samples are tens of nanometers or larger.
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