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Formation of localized impurity levels within the band gap in bigraphene under applied electric field and the
conditions for their collectivization at finite impurity concentrations are considered. It is shown that a qualitative
restructuring of the quasiparticle spectrum within the initial band gap and subsequent metal-insulator phase
transitions are possible for such disordered systems, being effectively controlled by variation of the electric field
bias. Since these effects can be expected at low enough impurity concentrations and accessible applied voltages,
they can be promising for practical applications in nanoelectronics devices.
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I. INTRODUCTION

Between various derivatives from the basic graphene
system [1–3], special interest is attributed to its bilayer
combination [4]. This interest is mainly due to the important
possibility of realizing here a semiconductor with a control-
lable band gap through the application of an electric field
normal to the layers [5–8]. It should be noted that a similar
crystalline structure of two planes with hexagonal lattices
is now recognized for a whole family of materials, either
really fabricated or theoretically predicted. Besides the two
known modifications of bilayer graphene itself, the Bernal (or
A-B) structure [9] and its alternative, the A-A structure [10],
there exist also the bilayers of silicene, the silicon analog to
graphene [11], the bilayers of boron nitride [12] or its bilayered
combination with graphene [13], the bilayered chalcogenides
of transition metals (pure or alloyed) [14], etc. However, the
most reliable structure for external tuning and rather simple
for theoretical study is seen in the Bernal-stacked bilayer
graphene, hence chosen here as the basic host system for
studying impurity effects. Having introduced impurities in
such a system, such as dopants in common semiconductor
systems [15,16], there is a possibility for localized impurity
levels to appear within the host spectrum gap [17,18]. Next,
it is known that, at high enough impurity concentration, an
intensive interaction between the localized impurity states
related to these levels can take place. This can essentially
modify the band spectrum near the gap edge [19,20], giving
rise to specific narrow energy ranges of bandlike states near
impurity levels (called impurity bands) and even producing
a phase transition from insulating to metallic states [21],
with important practical applications. An attempt to treat such
impurity bands in doped bilayer graphene was done by Nilsson
and Castro Neto [17]; however, it missed the crucial issue of
whether the respective states in a disordered crystal are really
bandlike (extended) or localized and where the separation
points between these two kinds in the energy spectrum (the
mobility edges [21]) are located. A consistent study of these
questions is one of our main purposes here. Having it resolved,
the resulting possibility of continuous control on band gap and
of controllable phase transitions can make the in-gap impurity
states in bilayer graphene quite a flexible tool with regard
to electronic properties. A similar situation was recognized

long ago in some magnetic crystals with impurities at the
magnon spectra, and so the observable properties can be
controlled by an applied magnetic field [22]. Such a possibility
for fermionic systems could open interesting possibilities for
future nanoelectronics.

The paper is organized as follows. In Sec. II, the second
quantization Hamiltonian is defined for a biased Bernal-
stacked graphene bilayer (with no impurities) and the related
matrix representation for Green’s functions (GFs) is built,
giving rise to its four-subband electronic spectrum. Section III
introduces the model impurity perturbation and analyzes
formation of impurity levels and their possible development
into impurity bands, based on specific self-energy matrices for
the GF matrices. Such impurity bands are considered in more
detail in Sec. IV, including the estimates for mobility edges
between the bandlike and localized states. Then the possibility
for metal-insulator phase transitions in doped bilayer graphene
under electric field bias (at fixed impurity concentration) and
the resulting transport effects are analyzed in Sec. V. The final
Sec. VI presents the main conclusions and suggestions for
practical applications of the described impurity effects.

II. BILAYER GRAPHENE UNDER APPLIED FIELD

As is well known, the relevant electronic dynamics of a
graphene sheet are generated by the carbon sp3 orbitals (whose
energy level can be chosen as the energy reference) in the
simplest approximation of single hopping parameter t between
nearest-neighbor carbons from different sublattices at distance
a in the honeycomb lattice [2]. The bilayer graphene structure,
furthermore, involves the interlayer hopping tz by vertical
links between nearest neighbors from different sublattices (for
Bernal stacking) shown in Fig. 1. With an account taken
of an electric bias V = eEd between the layers (with the
electron charge e, the applied electric field E, and the interlayer
spacing d), this defines the tight-binding (Fourier-transformed)
Hamiltonian 4 × 4 matrix [6]:

Ĥk =

⎛
⎜⎜⎜⎝

V/2 γk 0 tz

γ ∗
k V/2 0 0

0 0 −V/2 γk

tz 0 γ ∗
k −V/2

⎞
⎟⎟⎟⎠. (1)

1098-0121/2015/92(7)/075401(9) 075401-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.075401


Y. G. POGORELOV, M. C. SANTOS, AND V. M. LOKTEV PHYSICAL REVIEW B 92, 075401 (2015)

FIG. 1. Schematic of Bernal-stacked bilayer graphene under
applied electric bias V . The A- and B-type sites in each plane are
indicated by black and white circles, respectively, the solid and dashed
lines indicate the in-plane t and interplane tz links. Inset: the Brillouin
zone in k plane with two Dirac points ±K and an equivalent circle of
radius kmax = √

K/a.

Here the wave vector k lies in the first Brillouin zone
(see inset in Fig. 1) and the in-plane dispersion follows
from the sums γk = t

∑
δ eik·δ over nearest-neighbor vectors

δ of the honeycomb lattice. It suitably approximates as
γk ≈ ξkeiϕk , with ξk = �vF|k − K| near the Dirac points K =
±(4π/3

√
3a,0), where the Fermi velocity vF = 3ta/2�, and

ϕk = arctan ky/(kx − Kx). The relevant range of |k − K| ∼
Ktz/W is really narrow, since tz is weak besides the total
bandwidth W (see below). Then the second-quantization
Hamiltonian (in absence of impurity perturbation),

H0 =
∑

k

ψ
†
kĤkψk, (2)

involves the spinors ψ
†
k = (a†

1k,b
†
1k,a

†
2k,b

†
2k) made of

Fourier-transformed second quantization operators ajk =
N−1 ∑

n ajneik·n and bjk = N−1 ∑
n bjneik·n, where the on-

site operators ajn and bjn relate to A- and B-type sites from
nth unit cell in the j (=1,2)th layer, and N is the number
of cells in a layer. Generally, the energy spectrum is defined
by the matrix of Fourier-transformed two-time GFs [23,24]
Ĝk = 〈〈ψk|ψ†

k〉〉 as solutions of the dispersion equation:

Re det Ĝ−1
k = 0. (3)

Thus for the nonperturbed system by Eq. (2), the GF matrix
reads Ĝ

(0)
k = (ε − Ĥk)−1 and, after diagonalization of Ĥk in

spinor indices, its dispersion near the Dirac points is suitably
expressed through the radial variable ξk ≡ ξ . It includes two
positive energy subbands [6],

εν(ξ ) =

√√√√ t2
z

2
+ V 2

4
+ ξ 2 − (−1)ν

√
t4
z

4
+ ξ 2

(
t2
z + V 2

)
, (4)

the “external” (ν = 1) and “internal” (ν = 2) ones, and their
negative energy counterparts, as shown in Fig. 2(a). The most
relevant feature of this spectrum is the bias-controlled energy
gap between the extrema ±εg = ±V/[2

√
1 + (V/tz)2] of two

internal subbands, attained along a circle around each Dirac
point (the so-called Mexican hat) whose radius in the ξ variable
is ξ0 =

√
ε2
g + V 2/4.

FIG. 2. (a) Dispersion laws for the bilayer in Fig. 1 vs the radial
variable ξ near a Dirac point, given by Eq. (4) at the choice of V = 2tz;
the dash-dotted line indicate the Dirac dispersion for monolayered
graphene. (b) DOS for this choice; the dash-dotted line marks the
linear DOS for monolayered graphene.

The GF matrix generates physical characteristics of this
system as, for instance, the density of states (DOS) of
electronic quasiparticles,

ρ(ε) = 1

π
Im Tr Ĝ(ε), (5)

where Ĝ(ε) = (2N )−1 ∑
k Ĝk(ε) is the local GF matrix, and its

imaginary part for exact band spectrum results usually from an
infinitesimal imaginary shift of energy argument, ε − i0 [24].
In what follows, the sum in k over triangular halves of the
Brillouin zone is approximated by the ξ integration,

1

2N

∑
k

fk(ε) ≈ 2

W 2

∫ W

0
f (ξ,ε)ξdξ,

over two equivalent circles around the Dirac points (inset in
Fig. 1) of the ξ radius W = �vFkmax (where kmax = √

K/a,
see inset in Fig. 1). This approximation is well justified at low
energies, |ε| 	 W , compared to the effective bandwidth W .
For the pure bilayer graphene system by Eq. (1), the result for
Eq. (5) is generated by the explicit diagonal elements of the
nonperturbed local GF matrix [17]:

G
(0)
11 ≈ 2

ε − ε2

W 2

[
εε2

δ2

(
π − arctan

δ2

ε2 + ε2
2

)
+ ln

γ

W

]
,

G
(0)
22 = G

(0)
11 (ε) − t2

z

ε + ε2

W 2δ2

(
π − arctan

δ2

ε2 + ε2
2

)
, (6)

where

δ2(ε) =
√(

t2
z + V 2

)(
ε2
g − ε2

)
,

γ 2(ε) =
√(

ε2 − ε2
1

)(
ε2 − ε2

2

)
.
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These elements reveal the inverse square root divergences
at the gap edges ±εg (of Im G beyond the gap and of Re
G within the gap); also note the finite steps of Im G at
the limiting energies ε1,2 ≡ ε1,2(0) of the two subbands. The
resting diagonal elements are simply G

(0)
33 (ε) = −G

(0)
22 (−ε) and

G
(0)
44 (ε) = −G

(0)
11 (−ε), so that finally DOS is a function of ε2,

as shown in Fig. 2(b), in agreement with the known previous
calculations [8]. It presents BCS-like divergences near ε2

g ,
finite steps at ε2

1,2, and coincides with the linear DOS for
monolayer graphene [2,3] beyond ε2

1 due to joint (nonlinear)
contributions from both subbands.

Within the gap, only real parts of Gjj (ε) are nonzero, and
their divergences near the gap edges are crucial for appearance,
under the effect of localized impurity perturbations, of in-gap
localized levels, and related collective states, which is the main
focus for the analysis below.

III. IMPURITY LEVELS AND IMPURITY SUBBANDS

As was recognized from experimental studies of graphene
systems [25], they can contain a variety of defects, ranging
from topological ones (vacancies, dislocations, edges, bound-
aries, etc.) to impurity adatoms (or some functional groups)
near one of the planes and in-plane substitutes or interstitials.
This provides a doping of charge carriers (of both signs) into
these systems, as well as scattering of carriers on impurity
potentials and possibly formation of localized (or resonance)
impurity states on such potentials. The latter must be charac-
terized by some model parameters within the common tight-
binding approximation, and the simplest case is the Lifshitz
model, involving only the on-site perturbation potential U ,
identical for all impurity sites randomly distributed among the
lattice sites [26]. This model was already used in the literature
on impurity problems in graphene systems, with U values
ranging from the Born regime, |U | 	 W [17,27,28], to the
unitary limit, |U | 
 W [28,29]. For the case of substitutional
impurities in graphene, this value can be roughly estimated by
the differences between the first ionization potential of 11.26 V
for C and those for its neighbors in the periodic table: 8.3 V
for B and 14.53 V for N. Then, for the commonly adopted
graphene bandwidth of W ≈ 7 eV, the choice of |U |/W ∼ 1/2
looks to be plausible. Also, for diluted impurities at separations
much greater than the screening radius [27], the Lifshitz
model looks more adequate than the alternative choice of
the Anderson model [30], with random perturbations at each
lattice site in Ref. [31]. Another alternative is the Anderson
hybrid (or s-d) model [32] with two parameters, the impurity
binding energy and its coupling to the host excitations. Its use
for the so-called deep impurity levels in semiconductors is
known to result in formation of the above-mentioned impurity
bands and related phase transitions [19]. However, such a
perturbation model, when introduced into the framework of
a four-component host spectrum of Sec. II, could make the
treatment of interactions between impurities and of impurity
band coherence technically unfeasible. This determines our
choice for the Lifshitz model (though known to provide less
freedom for impurity band formation than the s-d model). Due
to similar reasons, we do not consider the long-range Coulomb
impurity potentials [33,34].

Let us build the perturbation Hamiltonian by Lifshitz
impurities on certain impurity sites. In accordance with the
composition of ψ spinors, the A and B sites from the first
plane can be referred to the types j = 1,2, respectively,
and those from the second plane to j = 3,4, and then pj

denotes the defect sites of j th type with relative concentrations
cj = ∑

pj
N−1 such that the total impurity concentration∑

j cj = c 	 1. Then the sought Hamiltonian in terms of local
Fermi operators reads

H1 = U

(∑
p1

a
†
1p1

a1p1 +
∑

p2

b
†
1p2

b1p2

+
∑

p3

a
†
2p3

a2p3 +
∑

p4

b
†
2p4

b2p4

)
, (7)

or, in terms of ψ spinors by Eq. (2), it takes the form of a
scattering operator,

H1 = 1

N

∑
j,pj

∑
k,k′

ei(k′−k)·pj ψ
†
kÛjψk′ , (8)

where the diagonal matrix Ûj has a single nonzero element
U at the jj site. Considering now the Hamiltonian in the
presence of impurities H0 + H1 and following a similar routine
to Ref. [35], we arrive at solutions for the GF matrix in two
specific forms adequate for two alternative types of excitation
states in a disordered system [21,26]: the bandlike (extended)
states and localized states. Thus, the first of these types is better
described by the so-called fully renormalized representation
(FR) of GF [22],

Ĝk = [(
(Ĝ(0)

k

)−1 − �̂k
]−1

, (9)

providing the roots of the dispersion equation [Eq. (3)],
classified along the quasimomentum k. Here the self-energy
matrix is additive in different types of impurity centers:
�̂k = ∑

j �̂j,k, with the partial matrices given by the related
FR group expansions (GEs) in complexes of impurity centers
(of the same j type, involved in multiple scattering processes):

�̂j,k = cj T̂j

[
1 + cj

∑
n �=0

(e−ik·nÂj,n + Âj,nÂj,−n)

× (1 − Âj,nÂj,−n)−1 + · · ·
]
. (10)

Each T matrix T̂j = Ûj (1 − ĜÛj )
−1

describes all the scat-
terings on a single impurity center of j th type, and the
next-to-unity term in the right-hand side of Eq. (10) accounts
for scatterings on pairs of j impurities through the matrices
Âj,n = T̂j (2N )−1 ∑

k′ �=k Ĝk′eik′ ·n of indirect interaction (via
bandlike excitations) in such pairs at separation n. Notice the
excluded quasimomentum k (for given �̂k) in this sum; also the
FR GE excludes coinciding quasimomenta in all the multiple
sums for products of interaction matrices [22]. The omitted
terms in Eq. (10) relate to all scattering processes in groups of
three and more impurities, and their general structure can be
found in similarity with the known group integrals from the
Ursell-Mayer classical theory of nonideal gases.
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Otherwise, for the range of localized states, the nonrenor-
malized representation (NR),

Ĝk = Ĝ
(0)
k − Ĝ

(0)
k �̂Ĝ

(0)
k , (11)

defining rather DOS from Eq. (5) than dispersion from Eq. (3),
is more adequate. Here the respective NR self-energy matrix
�̂ = ∑

j �̂j has a similar structure to the FR structure by

Eq. (10) but with the NR matrices T̂
(0)
j = Ûj (1 − Ĝ(0)Ûj )−1,

Ĝ(0) = (2N )−1 ∑
k Ĝ

(0)
k , and with no restrictions in all the

quasimomentum sums for the products of NR interaction ma-
trices Â

(0)
j,n = T̂

(0)
j (2N )−1 ∑

k Ĝ
(0)
k eik·n (that are only present

in their even combinations Â
(0)
j,nÂ

(0)
j,−n).

The best-known effect of local perturbations consists in
emergence of localized energy levels within the band gap,
and those were already indicated for impurities in bilayer
graphene [17,18]. As known from general theory [22,26], such
levels are most pronounced at sufficiently low concentration of
impurities (so that their indirect interactions can be neglected)
when they are given by the poles of T matrices. In the present
case, the matrices T̂

(0)
j give rise to four different local levels

ε(j ) within the band gap, and their locations depend on the
magnitude and sign of perturbation parameter U (like the
known situations in common doped semiconductors [15,16])
but yet on the applied field V (as a specific of doped bilayer
graphene). The positions of four impurity levels ε(j ) by each
type of impurity center are the roots of related Lifshitz
equations,

UG
(0)
jj (ε(j )) = 1, (12)

so that choosing for definiteness U = −W/2 and using Eq. (6)
provides their dependence on the applied bias V as shown in
Fig. 3 (for their relative separations from the gap edge). It
is seen that generally they stay rather shallow at growing V ,

FIG. 3. (Color online) Separations of the in-gap impurity levels
ε(j ) from the gap edge as functions of the applied bias V (all in tz units)
for the choice of impurity perturbation parameter U = −W/2. Note
the different behaviors of ε(1,2) and ε(3,4) pairs and the interchange of
the deepest level from ε(2) to ε(4) at the bias value Vcr ≈ 2.6tz (see
also the text).

but with a notable difference between the levels ε(1,2) (by
impurities in the positive biased layer) and ε(3,4) (by those in
the negative biased layer). In particular, a specific interchange
of the deepest levels occurs in this course, from ε(2) to ε(4),
at Vcr ≈ 2.6tz for the given U . This feature was not indicated
in the former analysis of the same model in Ref. [17] where
only ε(2) was considered as the deepest level. However, for the
commonly used value of tz ≈ 0.35 eV, this interchange bias
would amount to Vcr ≈ 0.91 eV, well above the experimentally
realized (to the moment) V values of up to ≈ 0.36 eV [5].
Thus, the much stronger separation of the ε(2) level at lower
bias voltages could be of more practical importance.

Also, we note that while the impurity levels generally
become deeper at greater U values, the indicated interchange
bias decreases in this course: from Vcr ≈ 3.53tz at U = −W/4
to Vcr ≈ 1.88tz at U = −W .

The well-known property of localized states by shallow
energy levels is their long effective radius [22], also indicated
for impurities in biased bilayer graphene [17], defining
intensive interactions between them already at their very low
concentrations. Such interactions were shown to allow, at
certain conditions, collectivization of impurity states to form
specific bandlike states within narrow energy bands (called
impurity bands) around the initial localized levels [19]. As
will be seen below, this effect is possible as well in the
present case of multiple localized levels, where the most
essential specifics is their joint participation in forming the
lowest impurity subband of much stronger dispersion than in
higher-lying subbands (if those are permitted).

Formally, in similarity to the nonperturbed case, the band
spectrum for the disordered system can be evaluated from
the dispersion equation, Eq. (3), with the FR GF matrix by
Eqs. (9) and (10). Of course, if treated rigorously, it presents
a tremendous problem of developing an infinite sequence
of renormalization procedures in all possible terms of the
corresponding GE, and there is no reasonable hope for its
exact solution. On the other hand, validity of the relatively
simpler NR, Eq. (11), is only limited to the energy ranges of
localized states.

One could try to use the coherent potential approximation
(CPA) [36], a useful tool, e.g., in the theory of disordered
alloys, where the full self-energy is presented in a self-
consistent T-matrix form. It reduces the impurity effect at each
given energy to a certain spatially uniform potential adjusted
to make the average scattering zero. This is done through a
stable iterative procedure and readily provides a definite band
spectrum. However, this approach treats the disordered system
as if keeping unbroken translation symmetry and so leads
to a purely extended spectrum, unlike its real composition
of bandlike and localized ranges [21]. Therefore the CPA
results can be only justified within the bandlike ranges, far
enough from their edges [37], accordingly to the known
Ioffe-Regel-Mott (IRM) criterion of long enough mean free
path compared to the wavelength [21,38]. Moreover, for the
disorder due to diluted impurities, CPA applies only to the
less perturbed interiors of the broad initial bands but not to
the narrow impurity bands between close mobility edges. This
can be verified by comparing its results to those by more
consistent theories or to experimental data (when available).
The CPA versions were also suggested for impurity effects
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both in monolayer graphene [39] and bilayer graphene [17],
producing in the latter case some band features within the
initial band gap. But our analysis below, starting from the
same structure of impurity levels as in Ref. [17], results in a
quite different picture of impurity bands and we justify it based
on the IRM criteria relevant for this case.

The practical approach to this picture is done through
partial renormalizations of the full self-energy in Eq. (10), first
substituting there the NR T matrix and interaction matrices and
then subsequently introducing such approximate self-energies
into the next generations of GF and interaction matrices. In
this course, convergence of the obtained GEs is checked in
order not to extend the renormalizations to irrelevant GE terms.
Namely, it is reasonable to define the lth-generation GF matrix
Ĝ

(l)
k by an analog to Eq. (9) with the respective self-energy �̂

(l)
k

by an analog to Eq. (10) but containing the matrices T̂ (l−1) and
Â

(l−1)
n built from the preceding generation Ĝ

(l−1)
k matrices.

This algorithm leads to the true FR at l → ∞. However, even
its first nontrivial l = 1 approximation can be reasonable for
the bandlike energy ranges where the true FR GE converges.

Then, in the first step of this routine, the formal solutions of
Eq. (10) with the self-energies in the NR T-matrix approxima-
tion, �̂j,k ≈ cj T̂

(0)
j , display four narrow subbands near four

impurity levels ε(j ), besides the four broad principal bands
±εν(ξ ) [here only slightly modified compared to Eq. (4)].
An example of such a modified spectrum (at a natural choice
of equal partial concentrations cj = c and taking the total
impurity concentration 4c = 0.01) for the cases of Fig. 3 is
shown in Fig. 4. The lowest impurity subband, conventionally
denoted here as ε(2)(ξ ) by its proximity to the lowest ε(2)

level, is seen to strongly dominate in its dispersion over all
the resting ones, and the direct analysis of Eq. (10) shows that
this domination is due to the above-mentioned constructive
interplay between all ε(j ).

Note that all the impurity subbands in this approximation
produce BCS-like divergences in DOS, as well near the
levels ε(j ) as near subband terminations. However, since
quasimomentum is not a true quantum number in a disordered
system [26], the analysis of its real energy spectrum, especially
for the in-gap states, should also take account of the damping
�j (ξ ) of each ε(j )(ξ ) state resulting from Im �j . Hence one
can consider these states Bloch-like (or conducting) only if the
IRM criterion is fulfilled or the GE, Eq. (10), is convergent at
related energies. Otherwise they should pertain to the localized
type. As will be seen, all the formal DOS singularities fall
within the localized energy ranges and so are effectively
broadened.

The mentioned criteria also permit one to estimate the Mott
mobility edges between the bandlike and localized ranges.
Of course, such edges can be found near the limits of both
principal and impurity bands, but our main focus here will be
on the most dispersive impurity band, for instance, ε(2)(ξ ) in
the above example. Finally, a certain special value VA of bias
control (at given impurity concentrations cj and perturbation
parameter U ) can be indicated, such that mobility edges from
both sides of a conducting impurity band will merge. This
collapse of the impurity band will manifest a kind of Anderson
transition [30] in a disordered system, realized in a controllable
way at V → VA.

FIG. 4. (Color online) Formation of impurity subbands near the
impurity levels by the solutions of Eq. (3) in the first step of
renormalization (see text) for the case of Fig. 3 at V = 2tz and
c = 0.01 (with the variables ε and ξ presented in tz units). Only the
most dispersive ε(2)(ξ ) subband extends well beyond the shadowed
vicinity of the ε(2) level, which delimits the range of localized states
down to the respective mobility edge εc,2. Together with the localized
states around ε(4,3,1), this range continues up to above the gap edge εg .

It should be noted that all these fundamental features of
the energy spectrum in a disordered system are lost when the
impurity bands are treated within the CPA approximation (as,
e.g., in Refs. [17] and [39]).

IV. CONDITIONS FOR THE EXISTENCE
OF IMPURITY SUBBANDS

As known from studies on many disordered systems where
a localized impurity level εimp near an edge εg of pure
crystal energy band can give rise, at high enough impurity
concentration, to a specific impurity band εimp(k) [22], the
latter is restricted by the general IRM criterion,

k · ∇kεimp(k) 
 �imp[εimp(k)], (13)

where the linewidth �imp(ε) of a Bloch-like state with quasi-
momentum k and energy ε is defined as the imaginary part
of the corresponding self-energy. For the present multiband
system, this criterion should be formulated for each of the
ε(j )(ξ ) subbands by expanding the general determinant from
Eq. (3) near a given energy ε in a complex form, det
Ĝ−1

k ≈ [ε − ε(j )(ξ ) + i�j (ε)]j (ε), to obtain the correspond-
ing linewidth �j (ε) [aside from a certain factor j (ε) of
energy-to-cube dimension].
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In the adopted Lifshitz model, each partial T matrix
T̂j (regardless of its renormalization) has a single nonzero
element at the jj site (alike Ûj itself): Tj = U/(1 − UGjj ).
For the above suggested first step renormalization, we have
ImT

(0)
j = 0 for ε within the band gap. Here the imaginary

part of related self-energy function �
(1)
j is only due to the

GE terms next to unity in Eq. (10), dominated by the pair
term once GE is convergent. It can be also shown that the
most relevant contribution to Im�j (ε) comes from the jj th
matrix element of the GE pair term, while those from its other
elements (though generally nonzero) are strongly reduced by
the quantum interference effects. This contribution,

Bj (ε) = Im
∑
n>a

A
(0)
j,nA

(0)
j,−n

1 − A
(0)
j,nA

(0)
j,−n

, (14)

can be obtained from the residues at zeros of the denomi-
nator, using the explicit spatial behavior of scalar interaction
functions (see Appendix for details),

A
(0)
j,n(ε) = T

(0)
j (ε)

2N

∑
k

eik·n(G(0)
k

)
jj

≈
√

rj,ε

n
e−n/rε sin

n

r0
cos K · n, (15)

where the characteristic scales are

rj,ε = r0

(
π

εg − ε(j )

ε − ε(j )

)2

, rε = r0
ξ 2

0

δ2
, r0 = �vF

ξ0
.

A similar behavior with two oscillating factors in effective in-
terimpurity interactions was previously indicated for the impu-
rity states within a superconducting gap in iron pnictides [35],
where a faster cosine factor had Fermi wavelength. But the
present case is simplified by the K-point specific property that,
for all separations n between lattice sites of the same j th type,
cos2 K · n only takes the values σ = 1 and 1/4 (with respective
weights pσ = 1/3 and 2/3), whose contributions can be then
simply added up in Eq. (14). These partial contributions are
obtained by subsequent integrations [35], first over the poles
of fast oscillating sine and then over its residues with the slow
envelope function F 2

j,n,σ = σrj,εe−2n/rε /n:

Bj =
∑

σ

pσ Im
∑
n>a

F 2
j,n,σ sin2(n/r0)

1 − F 2
j,n,σ sin2(n/r0)

≈
∑

σ

4πpσ√
3a2

∫ rmax

a

rdr√
F 2

j,r,σ − 1
, (16)

where rmax corresponds to Fj,rmax = 1. The latter integration is
simplified within the energy range of

ε(j ) − ε 
 (εg − ε(j ))5/4/ε1/4
g , (17)

where rj,ε 	 rε so that the exponential factor in Eq. (15) is
approximately unity for all r < rmax ≈ rj,ε. In this approxima-
tion, the explicit result for the most dispersive subband reads

B2(ε) = 7π

64

(
r2,ε

a

)2

, (18)

with the prefactor resulting precisely from weighting of σ

values. Then the above-suggested expansion of det Ĝ−1
k for ε

closer to ε(2) than to other ε(j ) (so that all �j except �2 can be
neglected) provides the linewidth,

�2(ε) ≈ c2(ε(2) − ε)B2(ε), (19)

valid until ε(2) − ε � εg − ε(2). Upon going farther from ε(2),
we have rj,ε < r0 so that B2(ε) vanishes and finite �2 values
can only result from the higher-order GE terms (if not to
include, of course, such relaxation processes as by thermal
phonons, electron-electron collisions, etc.). From Eq. (19), the
IRM criterion is reduced to the inequality

cB2(ε) 	 1

(agreeing with the GE convergence), and, supposing Eq. (17)
to be valid, this criterion permits one to estimate the mobility
edge separation from the ε(2) level:

ε(2) − εc,2 ∼ c1/4

√
W

2ξ0
(εg − ε(2)). (20)

All the states with energies closer to ε(2) than εc,2 are localized
on certain clusters of second-type impurity centers. The first
conclusion from the estimate, Eq. (20), is that existence of
the impurity subband itself is only assured if its bandwidth
≈ε(2) − εg,2 surpasses the width of localized range around ε(2).
This is fulfilled when the total impurity concentration exceeds
the critical value:

ccr ∼
(

tz

W

)8/3( |U |
W

)4/3(
V

W

)2/3

×
(
tz + √

t2
z + V 2

)(
2t2

z + V 2
)

(
t2
z + V 2

)2/3
t

5/3
z

. (21)

[It is obtained by approximating Eq. (6) only to its diverging
terms.] Smallness of this expression is mainly due to its
first three essential factors of interlayer coupling, impurity
perturbation, and applied bias, while the last factor stays almost
constant for all realistic (not-too-high) V values. Thus, for
the sample choice of W = 20tz, |U | = 10tz, and V = 2tz, we
obtain ccr ∼ 1.8 × 10−5. Then for the example of c = 0.01
chosen in Fig. 3, the mobility edge εc,2 extends from ε(2) to
about the distance εg − ε(2), while the dispersion of ε(2)(ξ )
subband is about an order of magnitude bigger (see Fig. 4).
Finally, from comparison of ranges by Eqs. (20) and (17), it
follows that the latter one for c > ccr always occurs within the
localized range and so the exponential factor in Eq. (15) cannot
influence the above-obtained estimates. In summary, only the
most dispersive impurity subband by the lowest impurity level
can be considered to really emerge beyond its mobility edge.
Its main specifics is in anomalously strong variation of the
lifetimes τ (ε) along very narrow energy intervals. As to other
formal solutions of Eq. (3) (analyzed with inclusion of the
resting Bj ), they are mostly invalidated within the common
overlapped range of localized levels that extends up to εc,+,
the mobility edge of the upper main band. The states in this
area can be characterized only by their DOS. Though the latter
function cannot be directly found here from the above-defined
GEs [Eqs. (9) and (11)], it can be plausibly expected to vary
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FIG. 5. (Color online) Schematics of extended (ext) and local-
ized (loc) ranges in the energy spectrum of bilayer graphene with
impurities for the situation like that of Fig. 4. Note the position of the
Fermi level εF (separating occupied and empty states) with respect to
the mobility edges (separating ext and loc states); the narrow impurity
band emerges below only the lowest impurity level ε(2), while the
resting ε(j ) levels get buried within the localized range from εc,2 up
to εc,+ (see text).

smoothly up to the peak near εg (Fig. 5) so that the total number

of states
∫ W

−W
ρ(ε)dε = 4 is kept.

Similarly, some finer details of the energy spectrum can
be found, as, for instance, the rest of the mobility edges εc,±
that define the broadened edges of main subbands, and those
near the extremum εg,2 ≈ ε(2)(ξ0) of the impurity subband
(see Fig. 5). Finally, the case of low impurity concentration,
c < ccr , can be also considered when there is no impurity
band within the gap, but the localized levels ε(j ) turn to be
separately resolved. Since all these data are less relevant for
our main practical purpose below, they are left beyond the
present scope. Nevertheless, the presented results essentially
develop the general picture of quasiparticle spectra in crystals
with impurities under external fields [22].

V. BIASED METAL-INSULATOR TRANSITIONS
AND THEIR OBSERVABLE EFFECTS

Now we can pass to the important processes of electric
transport in the system with the above-described band spec-
trum. For simplicity, this consideration is restricted to the case
of zero temperature, and the main attention is paid to the
position of Fermi level εF and to the lifetime τF of Fermi
states under the applied bias control V at given parameters of
impurity perturbations c and U . The basic condition for the
Fermi level,

2
∫ εF

−∞
ρ(ε)dε = 1 + c′, (22)

defines its shift from the zero energy position in the unper-
turbed system, in order to accommodate the total of c′ extra
carriers per unit cell (brought by impurities themselves and
possibly by some external sources). This generally requires
knowledge of DOS functions for all the impurity subbands
(besides weakly perturbed main subbands). But our main
interest here is in finding a possibility for εF to be located within
the most dispersive impurity band ε(2)(ξ ), so we focus on the

related DOS, especially in proximity to this band termination
εg,2 (Fig. 5). An important simplification of this task is obtained
by noting that for this energy range all the self-energies �j in
Eq. (10) can be taken as constants, small enough compared
to the gap width; thus the solutions of the dispersion equation
[Eq. (3)] almost reproduce here the nonperturbed ε2(ξ ) band
within accuracy to a constant shift of its edge from εg to εg,2

(see also Fig. 4), just due to the common effect of all �j . The
resulting DOS function,

ρ2(ε) ≈ 2ε

W 2

t2
z + V 2

δ2
, (23)

at 0 < ε − εg,2 � ε(2) − εg,2 defines from Eq. (21) the Fermi
level εF position by the equation

c′ ≈
(

2

W

)2√(
t2
z + V 2

)(
ε2
g − ε2

F

)
. (24)

Let c′
max be the maximum permitted amount of carriers such

that εF stays within the conducting range. Then, for the case of
Fig. 4, this value results in c′

max ≈ 4 × 10−3, that is, somewhat
lower than the proper impurity concentration, c = 10−2 in
this case. Nevertheless, conduction through the impurity band
can be realized if c′ is brought below the indicated limit of
c′

max, e.g., by external compensation of a part of the charge
carriers [16]. Once this is assured, one can then strongly change
the conductivity by raising the applied V , since the localized
range width by Eq. (19) grows with bias faster than ∝V 2/3

against the almost bias-insensitive (at V � Vcr ) width of the
impurity band, while the Fermi level εF goes to the band edge
εg,2 slower than ∝V −2. Then the faster advancing mobility
edge εc,2 will finally cross εF at some bias VM−I , giving rise to
a Mott metal-insulator transition and vanishing conductivity.
Thus, for the proposed choice of U = −W/2 = −10tz and
c′ = 3 × 10−3, we obtain VM−I ≈ 0.87 eV. In this course, at
V → VM−I , conductivity can vary by orders of magnitude,
when we drive the Fermi inverse lifetime τ−1

F ∼ �2(εF)/�

close to divergence, under very tiny variations (say, some
meV) of bias. This indicates a tremendous potentiality of such
types of doped semiconducting systems in comparison with
traditional materials.

Besides their evident field transistor applications, critical
effects by the biased Mott transition can be also expected in
other observable properties of this doped system, for instance,
in its optical response at the frequency ωi,b ≈ (ε(2) + εg)/� of
transition from the top of the occupied −ε2(ξ ) band and the
Fermi states of impurity ε(2)(ξ ) band (like the case formerly
considered by the authors for doped superconducting iron
pnictides [35]), which can be switched on and off by tiny
variations of the bias.

At last, with further growing bias, the collapse of upper
and lower mobility edges within the impurity band and the
aforementioned Anderson transition to a fully localized in-gap
spectrum can be realized. From Eq. (20) at V � tz, this
bias value estimates as VA ∼ c3/2W 7|U |−2t−4

z , though this
analytic expression applies only (at moderate |U |) for as low
impurity concentrations as c � 10−5. However, a numerical
analysis with use of the full Eq. (6) shows that VA remains
attainable up to c ∼ 10−2 as well. This transition can also
produce observable effects; in this case the collapse of a narrow
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impurity band would lead to a dramatic drop of the plasmonic
resonance frequency [40].

VI. DISCUSSION AND CONCLUSIONS

The above main conclusion regarding the possibility of
attaining extensive control of electrical conduction through
very slight variations of applied potential implies, of course,
many additional factors to be taken into account. They can
be indicated both from the fundamental and practical sides.
Thus, the theoretical approach used is restricted to a simple
model of impurity perturbation by a single on-site parameter,
and some elaboration of it could be done involving, for
instance, perturbations of hopping parameters. These kinds
of analyses are known for traditional doped semiconductors
and also have demonstrated possibilities for similar impurity
bands near localized impurity levels at high enough impurity
concentrations. Notably, for those materials, the Lifshitz
perturbation model was found to be the most restrictive for
such effects, for instance, due to unrealistically high critical
concentrations, of the order of unity or even more [unlike that
in Eq. (19)]. This permits the expectation that modifications of
the present Lifshitz model, as in Ref. [18] for single impurities
at a gapless spectrum, or using the Anderson hybrid model [32]
as in Ref. [41] (provided all the technical aspects be assured),
will not essentially change the physical behavior of the system.
On the other hand, there are yet many properties of this
simple model that can be further studied, for instance, the
possibilities to realize multiple conducting impurity subbands
and subsequent processes of multiple switching between them,
including, e.g., optical transitions under electrical biasing. Of
course, a more realistic approach should also take account
of topological defects (see the beginning of Sec. III) as
well as the above-mentioned Coulombic interactions, thermal
effects, etc. Generally, this would require the impurity band
structure to exceed a certain “background” relaxation level
that could be achieved by varying either the impurity sort
(that is, U parameter) and concentration and/or the applied
bias V . Finally, similar impurity multiband effects can be also
sought in other atomically multilayered systems, such as those
mentioned in the Introduction, where a special focus might be
put on the tuned band gap in silicene bilayers (yet wider than
in bilayer graphene [11]), or even on single layers of buckled
silicene or germanene [42].

As to the practical issues, first of all, rather strict conditions
on fabrication of the basic doped bilayered system are in
order, perhaps mainly aimed to minimize all the “foreign”
defects vs the chosen dopants, but the next requirement to
control the levels of dopants (and possibly their compensating
species) within fractions of percent should not be a real
problem for modern nanoelectronics. Special attention is also
required for precise control and manipulation of the applied
bias V , particularly in exploring possibilities to realize its
near-critical and supercritical regimes, like those indicated
in the above analysis. Finally, the practical arrangement of
an experimental transistor-type setup based on the suggested
conductivity control by tiny impurity subbands would perhaps
require some specific technical solutions. However, they do
not look too difficult to be found in the available engineering

depository. Thus a fair hope exists for this theoretical proposal
to be realized in a practical device.

In conclusion, the effects of localized on-site perturbations
by rather disperse impurities on a bilayered graphene system
under applied electrical bias between the layers are analytically
considered using the Green’s function techniques adapted
for a multiband electronic system. Thus the conditions for
different types of localized impurity levels to appear within
the bias-induced band gap in the electronic spectrum of this
system and then for extension of these levels into specific
narrow energy bands at impurity concentrations above certain
characteristic values are demonstrated. The analysis of these
processes demonstrated their similarities to those known from
literature on various crystalline materials with impurities.
Also, some specifics of the present system were shown in
considerable bias dependencies of impurity bands and of
critical concentrations for their formation. These dependen-
cies can be further treated to provide some specific phase
diagrams in variable “bias concentrations,” as they occurred in
antiferromagnetic insulators where such diagrams in variable
“magnetic field concentrations” were quite informative [22]. A
practical application of the described electronic band structure
is suggested in a form of highly sensitive bias control of the
system’s conductivity through the impurity subband when
brought close to a regime of bias-controlled Mott metal-
insulator transition.
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APPENDIX

In calculation of the interaction function, Eq. (15), the
essential task consists in the integration as follows:

1

2N

∑
k

eik·n(G(0)
k

)
jj

= 2 cos K · n
W 2

∫ W

0
J0

(
ξn

�vF

)

× (Nj (ε) − ξ 2)ξdξ(
ξ 2 − ξ 2

1

)(
ξ 2 − ξ 2

2

) , (A1)

where J0 is the zeroth-order Bessel function, ξ 2
1,2 = ε2 + ε2

2 ±
δ2(ε) are the complex poles of detĜ(0)

k in ξ variable, and all
|Nj (ε)| ∼ ε2

g [as seen from Eq. (6)]. Since this integral is fast
converging after ξ � εg , its upper limit can be safely extended
to infinity. Then, after expanding the factor besides the Bessel
function in simple fractions,

Nj (ε,ξ )(
ξ 2 − ξ 2

1

)(
ξ 2 − ξ 2

2

) = Nj (ε) − ξ 2
1

ξ 2 − ξ 2
1

− Nj (ε) − ξ 2
2

ξ 2 − ξ 2
2

, (A2)
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the Hankel-Nicholson integration formula can be applied to
each of them: ∫ ∞

0

J0(x)xdx

x2 + z2
= K0(z), (A3)

with the zeroth-order Macdonald function K0, valid for
complex z if Rez > 0 (Ref. [43]). The z arguments related to
the terms in Eq. (A2) can be defined as z2

1,2 = −ξ 2
1,2(n/�vF)2

and the above requirement will read Re
√

−ξ 2
1,2 > 0. For the

relevant energy range 0 < εg − ε 	 εg , we can use the choices√
−ξ 2

1,2 =
√

δ2(ε) − ε2 − ε2
2 ∓ i

√
δ2(ε) + ε2 + ε2

2. At last,
for relevant distances n � r0, the resulting K0(z1,2) have
big enough arguments, |z1,2| = |nξ1,2/�vF| � 1, to use
their asymptotics: K0(z1) ≈ −

√
2/πz1e−z1 and K0(z2) ≈√

2/πz2e−z2 . Then, taking account of all prefactors besides
these expressions present in Eqs. (15) and (A2), we arrive at
the final result of Eq. (15).
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