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We study the transport properties of a charge qubit coupling two chiral Luttinger liquids, realized by two
antidots placed between the edges of an integer ν = 1 or fractional ν = 1/3 quantum Hall bar. We show that in
the limit of a large capacitive coupling between the antidots, their quasiparticle occupancy behaves as a pseudospin
corresponding to an orbital Kondo impurity coupled to a chiral Luttinger liquid, while the interantidot tunneling
acts as an impurity magnetic field. The latter tends to destabilize the Kondo fixed point for the ν = 1/3 fractional
Hall state, producing an effective interedge tunneling. We relate the interedge conductance to the susceptibility
of the Kondo impurity and calculate it analytically in various limits for both ν = 1 and ν = 1/3.
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I. INTRODUCTION

Fractional quantum Hall (FQH) systems [1] are strongly
correlated topological states, realized in clean two-
dimensional electron gases under a large perpendicular mag-
netic field, where the bulk contains an incompressible fluid
and the low-energy dynamics is controlled by chiral Luttinger
liquids at the edges [2]. There has recently been a renewed
interest in these systems due to a promise of the celebrated
topological quantum computation using non-Abelian anyons
[3–6] and also in connection to impurities in helical liquids of
the quantum spin Hall systems [7–11]. However, there is still a
considerable gap between theoretical and experimental studies
of Abelian anyons in the FQH edge states, which motivates a
more thorough study of their properties. Here, we study the
problem of elastic co-tunnelling of Laughlin quasiparticles
through two antidots and show that in certain limits, it maps
to a Kondo impurity [12,13] embedded between two chiral
Luttinger liquids [14–19] and exhibits interesting transport
signatures.

Transport through antidots in the FQH regime has been
studied in the past, experimentally [20–25] and theoretically
[26–29] in a regime where the transport was dominated by
correlated but incoherent transfers of individual quasiparticles.
In contrast, in this paper, we are interested in a regime where
this sequential tunneling is blocked due to a large interantidot
capacitive coupling.

Combining the pseudospin of a double dot with the intrinsic
spin, Borda et al. [30] predicted an SU(4) Kondo effect which
has been recently observed [31]. The use of double dots to real-
ize a pseudospin SU(2) Kondo model and its generalizations at
ν = 1 integer quantum Hall regime was proposed in Ref. [32].
Here, we extend those ideas by studying the realization and
transport properties of a Kondo impurity coupled to chiral Lut-
tinger liquid edge states in the FQH regime. A similar model
arises in the study of a double dot inserted in a spinless nonchi-
ral Luttinger liquid, once the occupancy of the dots is limited
so that they act as an effective spin. In contrast to most previous
studies that focus on zero temperature, we provide analytical
expressions for the conductance in all asymptotic temperature
regimes. In this paper, we only deal with fully polarized (or
spinless) systems and spin refers to the orbital pseudospin.

II. THE MODEL

We consider the system depicted in Fig. 1, in which each
antidot is represented by a single fermionic quasiparticle level.
This is valid for small enough antidot radius. In this limit, the
system can be described by the following Hamiltonian:

H = H0 − [tRψ
†
qp,R(0)dR + tLψ

†
qp,L(0)dL + H.c.]

+U (d†
RdR + d

†
LdL − 1)2 − tC(d†

RdL + H.c.), (1)

where tL, tR, and tC are the tunneling amplitudes and U is
the Coulomb energy. Here, dL/R annihilates quasiparticles on
the upper/lower antidot and ψqp,R/L(x) annihilates right/left-
moving quasiparticles on the upper/lower edge of the Hall bar,
with the corresponding Hamiltonian H0. We are interested in a
parameter regime T ,tL,tR,tC � D, where D ∼ min(δε,U ) �
�. Here, δε is the antidot level spacing and � is the bulk
energy gap (we set kB = 1 throughout the paper). Then U

limits the antidots charge configuration to the (0,1) and (1,0)
sectors. Sequential tunneling is blocked in this large U limit
and different methods must be developed to study the system.
Temporarily ignoring the interdot tunneling tC , we see that to
transfer one quasiparticle from the upper to the lower edge, we
must start in a state with the lower dot occupied, pass through
a high-energy intermediate state with both dots occupied or
empty and end up with only the upper dot occupied. Thus
it is convenient to identify L and R with pseudospin up
and down, respectively. The Schrieffer-Wolff transformation
[33] then yields a Kondo model with impurity pseudospin
operators �S ≡ d†

α �σαβdβ/2 and quasiparticle pseudospin den-
sity �J (x) ≡ ψ

†
qp,α(x)�σαβψqp,β (x)/2. The Kondo interaction,

J⊥[SxJx(0) + SyJy(0)] + JzS
zJz(0) contains Kondo cou-

plings J⊥ = 4tLtR/U , Jz = 2(t2
L + t2

R)/U + δJz, where δJz is
an additional positive contribution arising from the Coulomb
interaction between quasiparticles on the antidots and edges
[29,34]. Interantidot tunneling corresponds to a magnetic field
term in the Kondo Hamiltonian, coupled to the impurity spin
only, −tCSx .

While ψqp,L/R(x) are simply free chiral fermion fields for
the integer Hall state occurring at ν = 1; for ν = 1/3, it
is very useful to bosonize ψqp,R/L(x) ∝ e±iϕR/L(x) in terms
of chiral bosons ϕR/L(x), obeying the basic commutation
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FIG. 1. (Color online) The system considered here. Two antidots
enable tunneling of quasiparticles between the outer edge states in the
ν = 1/q Laughlin FQH liquids. The gapped incompressible liquid
(blue) plays the role of tunnel barrier for the quasiparticles. Only
one state per antidot is considered. The capacitive coupling between
the antidots is large enough to keep their total relative occupancy
constant.

relation [ϕR/L(x),ϕR/L(y)] = ±iπνsign(x − y). Then H0 =
[v/(2πν)]

∫ ∞
−∞ dx[(∂xϕR)2 + (∂xϕL)2], where v is the quasi-

particle velocity. It is then convenient to define commuting
right-moving spin and charge bosons, ϕs,c(x) ≡ [ϕR(x) ±
ϕL(−x)]/

√
2, since only the spin boson appears in the

Kondo interaction. Then, we obtain J− ≡ Jx − iJy ∝ ei
√

2ϕs

and Jz = ∂xϕs/(2πν
√

2). The renormalized Kondo couplings
grow larger as the energy scale is reduced [35], becoming large
at the crossover scale TK . For the ν = 1 case, TK = De−1/λ,
where λ ≡ �J , � is the density of states, and we have assumed
J⊥ = Jz (similar behavior occurs in the anisotropic case).
For ν = 1/3, ei

√
2ϕs has renormalization group (RG) scaling

dimension 1/3. Thus λ⊥(E) = (D/E)2/3λ⊥, so TK ∝ Dλ
3/2
⊥ .

III. CONDUCTANCE

We are interested in the interedge tunneling conductance,
corresponding to backscattering, defined using the charge
current operator I = iνetC(d†

LdR − H.c.) = 2νetCSy . In the
linear response regime, the Kubo formula gives [30]

G = −8πνt2
C lim

ω→0

χ ′′
yy(ω)

ω
, (2)

in units of νe2/h where χ ′′
yy is the imaginary part of the dynam-

ical impurity spin susceptibility of the Kondo model, χyy(ω) ≡
−i

∫ ∞
0 dteiωt 〈[Sy(t),Sy(0)]〉. Every transmitted quasiparticle

contributing to the transport involves a spin-flip process at the
impurity, relating the conductance to the spin relaxation.

A. High temperatures: TK ,tC � T

In this limit, we may neglect tC in the Hamiltonian
and attempt to calculate the susceptibility using perturbation
theory, but this gives a result which diverges at ω → 0:

χ ′′
yy(ω) = −πν

2ω

[
γ (ν)

z λ2
z + γ

(ν)
⊥ λ2

⊥(T/D)2ν−2]. (3)

Here, γ (ν)
z and γ

(ν)
⊥ are dimensionless coefficients of O(1).

This surprising infrared divergence is not connected to the
usual renormalization of the Kondo couplings since T � TK .
Nonetheless, it suggests that an infinite subset of diagrams
must be resummed to get a finite conductance [36]. One way
to solve this problem is to phenomenologically describe the
impurity spin by the Bloch equations [37,38]

∂t 〈Sa〉 = [�h(t) × 〈�S〉]a − 〈Sa〉 − χ̃0ha(t)

τa

, a = x,y,z. (4)

Here, �h(t) = (−tC,hy(t),0), where hy(t) is an infinitesimal
time-dependent y component of the magnetic field, introduced
to obtain χyy . We expect Eq. (4) to hold as the equation of
motion for the averaged impurity spin in a theory where the
quasiparticles are formally integrated out. Here, χ̃0 ≈ −1/4T

is the static susceptibility 〈�S〉0 = χ̃0 �h, in the presence of the
static field −tC . 〈Sa〉(t) rotates around the external magnetic
field and relaxes towards it within the time scale τa because
of its coupling to the quasiparticles. Therefore, using the
definition χyy(ω) ≡ 〈Sy〉ω/hy(ω) for the imaginary part of the
susceptibility, we obtain

χ ′′
yy(ω → 0) = ωχ̃0τy

1 + t2
Cτyτz

. (5)

To obtain the conductance, we need τy,z. The main “Bloch-
equation” assumption, justifiable at T � TK , tC , is to neglect
the frequency dependence of these rates, thus obtaining
them from a large frequency limit of our perturbative
result using χ̃0/τz = limω→∞ ωχ ′′

zz(ω) ∝ λ2
⊥(T/D)2ν−2 and

χ̃0/τy = limω→∞ ωχ ′′
yy(ω) = γzλ

2
z + γ⊥λ2

⊥(T/D)2ν−2. So at
high temperatures,

Gν=1 ∝ t2
C

T 2
(
λ2

⊥ + λ2
z

) , Gν=1/3 ∝ t2
C

λ2
⊥T 2/3D4/3

. (6)

(We show explicitly that this result can be obtained, at high T ,
from a resummation of Feynman diagrams in the special case
λy = λz = 0, see Appendix F.) More correctly, λ⊥, λz should
be replaced by the renormalized quantities at the energy scale
T , but this is an unimportant correction assuming T � TK .

B. T,TK � tC

In this regime, the impurity spin becomes a classical field
pointing in the direction of the instantaneous field �h(t) (see
Appendix E), so we may approximate:

H ≈ H0 + (1/2)λ⊥[Jx(0) + (hy(t)/tC)Jy(0)]. (7)

This corresponds to a direct tunneling term between edges:
HT = (1/4)λ⊥[eihy (t)/tC ψ

†
qp,L(0)ψqp,R(0) + H.c.]. For ν = 1,

this is a simple noninteracting tunneling model giving a
conductance G ∝ λ2

⊥. [More accurately, λ⊥ should be re-
placed by the renormalized coupling λ⊥(tC) but this is again
unimportant for TK � tC .] For the fractional quantum Hall
case, the behavior is much different [39] since this direct tun-
neling interaction is relevant and λ⊥(T ) = (tC/T )2/3λ⊥(tC).
Therefore the conductance starts to grow as G ∝ T −4/3. It
starts to level off at T of order TK eventually saturating at
ν, corresponding to perfect transmission through the double
antidots. The nature of this zero temperature infrared fixed
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point can be straightforwardly understood from bosonization.
The relevant tunneling term, ∝ −λ⊥ cos[

√
2ϕs(0)], pins ϕs(0)

at 0. To understand the physical implications of this boundary
condition, note that while the charge boson remains continuous
at x = 0 at both high-T and low-T fixed points, implying
ϕR(0+) − ϕL(0−) = ϕR(0−) − ϕL(0+), the high-T and low-
T boundary conditions on the spin boson imply ϕR(0+) +
ϕL(0−) = ±[ϕR(0−) + ϕL(0+)], respectively. Together, these
boundary conditions merely imply continuity of ϕR/L at the
origin at high T but imply ϕR(0±) = −ϕL(0±) at low T ,
corresponding to a breaking of the system into x < 0 and
x > 0 parts, perfect transmission through the double dots
and perfect backscattering. The leading low-T reduction of
the conductance is conveniently calculated by considering
the small horizontal current between the nearly disconnected
x < 0 and x > 0 parts of the system [inset of Fig. 2(a)].
This involves electrons tunneling through vacuum (as opposed
to quasiparticle tunneling through incompressible liquid)
between the x < 0 and x > 0 sides and corresponds to a term
in the effective Hamiltonian, ∝ cos[(ϕR(0+) − ϕR(0−))/ν], of
RG scaling dimension 1/ν. Thus the horizontal conductance,
past the double dots is Gh ∝ T 2/ν−2 = T 4. By current con-
servation, we expect the vertical conductance through the

Weak Coupling 
Fluctua�ng Spin 

Strong Kondo Coupling 
Screened Spin 

Infrared Fixed point 

Weak Coupling 
Fluctua�ng Spin 

Effec�ve Hamiltonian 
Classical Spin 

Infrared Fixed point 

(a) 

(b) 

e 

FIG. 2. (Color online) Interedge conductance vs temperature for
ν = 1 and 1/3 quantum Hall states at (a) tC � TK and (b) tC �
TK . The dashed lines are interpolations, which we expect to be
qualitatively correct for the crossover regimes. Whereas the ν = 1
case exhibits a crossover only at larger crossover scale max(tC,TK ),
the ν = 1/3 case has an additional crossover at TK and T ∗ for the case
(a) and (b), respectively. Insets: (a) schematic of the stable infrared
fixed point in the case of ν = 1/3. The leading irrelevant processes
correspond to electron tunneling through vacuum. (b) The Kondo
fixed point conductance in the case of ν = 1 has a nonmonotonous
dependence on w ≡ tC/TK , with a peak of O(1) at w ∼ 1.

antidots to behave as G → ν − α(T/TK )4, for a dimensionless
constant of O(1), α. The behavior of the conductance when
TK � tC for various temperature ranges and ν = 1 and ν =
1/3, is plotted in Fig. 2(a). The zero-temperature conductance,
as well as the exponents for T � tC agree with previous
numerical results [39].

C. Strong Kondo coupling fixed point, tC � T � TK

In this parameter regime, the Kondo coupling constants λ⊥
and λz renormalize to large values but the interdot tunneling
tC may be treated as a small perturbation. The impurity spin
is then screened by the quasiparticles and, for ν = 1, we may
apply Fermi liquid theory. The impurity spin Sx appearing in
the interdot tunneling Hamiltonian can then be represented by
(v/TK )ψ†

qp(0)σxψqp(0), the lowest dimension operator with
the correct SU(2) spin transformation properties [40,41]. The
factor of v/TK can be inserted by dimensional analysis, rec-
ognizing that TK is the characteristic energy scale, or reduced
bandwidth at this fixed point. The corresponding Hamiltonian
is noninteracting, with this tunneling term being marginal
under the renormalization group. This leads to the familiar
Shiba formula [42] giving G ∝ (tC/TK )2. Similar reasoning
may be applied to the ν = 1/3 case but now the effective
interaction ∝ ψ

†
qp(0)σxψqp(0) is relevant, with dimension 1/3.

Thus calculating the conductance to lowest order in tC gives
G ∝ (tC/TK )2(TK/T )2(1−ν) ∝ T −4/3. This diverges at low-T
signaling the breakdown of perturbation theory in tC .

D. T � tC � TK regime

For ν = 1, there is no significant change in behavior as
T is lowered to zero below tC , with the conductance being
approximately constant. On the other hand, for ν = 1/3, the
growth of the interdot tunneling term under renormalization
signals the crossover to the same fixed point discussed above
for T ,TK � tC , corresponding to perfect transmission through
the antidots. Renormalized interdot tunneling becomes strong
at the scale T ∗ ∝ t

3/2
C /T

1/2
K and below this scale the con-

ductance should again crossover to ν − α(T/T ∗)4 behavior.
The behavior of the conductance when tC � TK for various
temperature ranges is plotted in Fig. 2(b).

Note that the conductance versus temperature looks rather
similar in the two cases, TK � tC and tC � TK . One essential
difference is the crossover temperature scales. For ν = 1, there
is only one crossover that occurs at the larger of tC and TK . For
ν = 1/3, there are two crossover scales: tC and TK for tC �
TK , but TK and t

3/2
C /T

1/2
K for tC � TK . It is also interesting

to note that, for ν = 1 and λ⊥ = λz, the T = 0 conductance is
∝ λ⊥(tC)2 = 1/ ln2(tC/TK ) for TK � tC but ∝ (tC/TK )2 for
tC � TK . G(0) decreases as tC/TK becomes large or small,
going through a peak of O(1) at TK of order tC [see inset of
Fig. 2(b)].

IV. CONCLUSION

We have mapped the conductance through two antidots in
ν = 1 integer and ν = 1/3 fractional quantum Hall systems
onto the susceptibility of a Kondo impurity in a Luttinger liq-
uid, analyzed the fixed points and calculated the conductance in
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all asymptotic regimes. Calculations of noise, and extension to
more exotic filling factors ν = 5/2 and 12/5 with non-Abelian
statistics are left as future extensions of these results.
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APPENDICES

In the Appendices, we provide details and proofs of some
results presented in the paper. Appendix A discusses the weak
coupling and strong Kondo coupling fixed points and the
corresponding gluing conditions. Appendix B contains some
discussion about the antidots and experimental considerations.
Appendix C provides a calculation of the susceptibility using
the semiclassical Bloch equation. Appendix D provides the
result of perturbation theory to second order in Kondo coupling
but exact in tC . In Appendix E, we provide a detailed discussion
of the effective Hamiltonian derivation in the case of T ,TK �
tC . Finally, Appendix F contains an exact solution of the case
λy = λz = 0, using techniques developed to study the x-ray
edge singularity. We show that it is possible to derive the
Bloch equation as the high-temperature (T � tC) formula for
the susceptibility. The exact result in this special case also
demonstrates the breakdown of perturbation theory at high
temperatures.

APPENDIX A: GLUING CONDITIONS AT FIXED POINTS

1. Folding transformation

For a discussion of the fixed points, it is convenient to fold
the chiral bosons, according to

φs,c ≡ ϕs,c(x) + ϕs,c(−x)√
2

θs,c(x) ≡ ϕs,c(x) − ϕs,c(−x)√
2

,

for x > 0, in terms of which the Hamiltonian becomes

H = H0 + J⊥
2

(S+eiφs (0) + H.c.)

+ Jz

4πν
Sz∂xθs(0) − tCSx + hzS

z, (A1)

where we also allowed for a detuning hz ≡
εR − εL between the two antidots. Here, H0 =∫ ∞

0
vdx
4πν

[(∂xφs)2 + (∂xθs)2 + (∂xφc)2 + (∂xθc)2] and the
nonchiral bosons obey [φs(x),θs(y)] = 2πiν�(x − y), where
�(x) is the Heaviside step function.

2. Weak coupling

The only boundary condition at the weak coupling
fixed point is that ϕs,c(x) are continuous at x = 0, i.e.,
θs,c(0) = 0. Using the definition [

∫
dxρR/L(x),ψqp,R/L(y)] =

−ψqp,R/L(y), we obtain the density operator for both bosons to
be ρR/L(x) = 1

2πν
∂xϕR/L. From this, assuming a finite length

L with periodic boundary conditions, the mode expansions are

ϕR/L(x) = 2πν

L
NR/Lx + ϕR/L,0

+
∞∑

n=1

√
2πν

Lkn

(âR/L,ne
±iknx + â

†
R/L,ne

∓iknx)e− kna
2 .

(A2)

Here, kn = 2πn/L, and the harmonic bosons and the
zero mode obey the standard commutation relation
[aR/L,n,a

†
R/L,m] = δnm and [ϕR/L,0,NR/L] = i. This leads to

the mode expansion of the charge/spin bosons

ϕc/s(x) = 2πν√
2L

(NR ± NL)x + 1√
2

(ϕR0 ∓ ϕL0) + · · · .

(A3)

Defining the total bulk charge Q = NR + NL and spin 2sz =
NR − NL, for Q even, sz has to be integer, while for Q odd it
must be half-integer. So, the gluing condition for (Q,sz) at a
weak-coupling fixed point is [41]

(Q,sz) = (even,integer) ⊕ (odd,half-integer). (A4)

3. Kondo fixed point

By power counting, the Jz term is marginal but the J⊥
terms is relevant. In order to account for this, we define
dimensionless couplings λz = 2πJz/v and λ⊥ = J⊥Dν−1 and
will frequently switch between Jz,⊥ and λz,⊥ notations in the
following. These couplings grow as the bandwidth is reduced
[35] and the system flows to the Kondo fixed point. Although Jz

is naively marginal, because of the coupling to Sz, it controls
the scaling dimension of the J⊥ term. This can be seen if
we apply a unitary transformation [16,43] H → V †

μHVμ with
Vμ = exp[iμSzφs(0)], which gives

H → H0 + J⊥
2

(S+ei(1−μ)φs (0) + H.c.)

+
(

Jz

4πν
− μv

)
Sz∂xθs(0) + hzS

z

− tC[Sx cos μφs(0) + Sy sin μφs(0)] (A5)

and changes the dimension of J⊥ from 1 − ν to 1 − ν(1 − μ)2.
In order to understand the strong coupling Kondo fixed point, it
is convenient to either tune this dimension to zero (the so-called
Toulouse [44] point) so that it could be refermionized [16] or
to 1 (the so-called decoupling point) so that it becomes a
boundary magnetic field. We use the latter approach, which
happens at μ = 1 and the transverse Kondo coupling becomes
J⊥Sx . In the case of tC = hz = 0, and if λz = 4πν, the Kondo
coupling reduces to a Zeeman field on the isolated (but dressed)
impurity spin, which projects to the ground state of Sx at
low energies. The Kondo temperature is ∼J⊥ in this highly
anisotropic Kondo model [45]. It is easy to check that ϕs(x)
develops a discontinuity at x = 0,

ϕ̃s(x) = V †
μϕs(x)Vμ = ϕs(x) − πνμSzsign(x), (A6)

or equivalently, in the folded basis, the new boundary condition
corresponds to φ̃s(0) = φs(0) and a new pinning of θ̃s(0) =
∓πν. The pinning is dynamically switching between these
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two values as in the instanton-gas representation of the Kondo
problem [46]. The charge boson is unchanged by the unitary
transformation followed by the projection and the new gluing
condition at the strong Kondo coupling fixed point is [41]

(Q,sz) = (even,half-integer) ⊕ (odd,integer). (A7)

This change in the gluing condition implies that a spin boson
has decoupled from the edge states to screen the impurity spin.
We have used the decoupling point to discuss the Kondo fixed
point, and this requires tuning Jz to the large value of 4πvν,
which is not physical, as the bare Kondo coupling is usually
assumed to be small. However, it is expected that other values
of Jz would have a similar qualitative behavior.

APPENDIX B: ANTIDOTS

We can find the spectrum of the antidot by inserting the
mode expansion (A2) into the free Hamiltonian

H = v

2πν

∫ L

0
dx(∂xϕ)2 =

∑
k>0

vka
†
kak + ECn2, (B1)

where EC = 2πvν/L acts like the “charging energy” of the
antidot and L is its circumference. We see that the number
of quasiparticles n is a good quantum number n̂|n〉0 = n|n〉0.
These two sectors are coupled to each other because L = 2πR

and R = √
2N�B in terms of magnetic length �B = √

�/eB,
but we can assume that the antidots are large enough so that
the radius of |n〉0 and |n + 1〉0 are effectively the same [29]
and assume that charge and neutral sectors decouple. This
corresponds to the constant interaction model in quantum dots
[47]. For the antidots, we are interested in a regime where the
bosonic excitation energy δε = 2πv/L is much larger than
kBT and we can assume that the harmonic part of the field
is in its ground state ak|0〉n = 0. Note that |n〉0 and |ϕ〉n are
analogous to the number of charges and the excited states of
normal quantum dots.

We also need to take into account the Aharonov-Bohm
contribution of the magnetic flux going through the antidots.
The number of quasiholes nR in antidot R is such that it is equal
to the number of flux quanta going through φR/φ0 = nR where
φ0 = h/e. This is another way of stating that RR = √

2nR�B , at
the ground state. These numbers change as we change φR . This
is done by replacing ECn2

R in Eq. (B1) by EC(nR − φR/φ0)2

with ϕ0 ≡ h/e. We are interested in a regime where two states
in the same antidot with nR and nR + 1 quasiparticles become
degenerate. This is possible for φR/φ0 = 2mR + 1, where mR

is an integer. Also we need a similar degeneracy to be valid for
the second antidot φL/φ0 = 2mL + 1. To have both of these at
the same magnetic field, we obviously need some fine tuning
of the area of at least one of the antidots. We assume that this is
possible by tuning the voltage applied to the gates that defined
the antidots at the first place, or by a combination of voltages
applied to the outer edges. To capture the deviation from this
ideal case, one can add a term hzS

z to the Hamiltonian, but we
assumed a perfect tuning in the paper.

If the temperature is low enough (T � vF /L � EF ) so
that the bosonic modes of the antidots are not excited, they
effectively behave as hardcore fermions [29]. To see this,
following Ref. [48], we assume that N and N + 1 states of

the antidot are degenerate and denoting them by |0〉 and |1〉, it
can be seen that due to the commutation relation [ϕ0,N ] = i,
the operators s± ∝ e±iϕ0 are raising and lowering operators of
the “spin” made of |0〉 and |1〉. From [ϕ0,N ] = i, it follows
that

[N,e±iϕ0 ] = ±e±iϕ0 and Ne±iϕ0 = e±iϕ0 (N ± 1).

These can be combined with the bosonization Klein factors
�L,R to represent the creation and annihilation operators for
the additional fermion on the dot.

d
†
L ≡ �LeiϕL0 and d

†
R ≡ �ReiϕR0 . (B2)

APPENDIX C: BLOCH EQUATION: NONZERO tC

Considering that �h = (−tC,hy,0) and λy �= λz, there is no
spin symmetry present and we have to allow for different
relaxation rates along each direction. Therefore we can write
the Bloch equations [Eq. (4) of the paper] as

∂t 〈Sx〉 = hy〈Sz〉 − 〈Sx〉 − 〈
S0

x

〉
τx

, (C1)

∂t 〈Sy〉 = tC〈Sz〉 − 〈Sy〉 − 〈
S0

y

〉
τy

, (C2)

∂t 〈Sz〉 = −tC〈Sy〉 − hy〈Sx〉 − 〈Sz〉 − 〈
S0

z

〉
τz

, (C3)

where 〈S0
a 〉 are the components of the steady-state magnetiza-

tion. To find the steady-state magnetizations, we do a rotation
(tan ϑ = −hy/tC)

O(ϑ) =
(

cos ϑ − sin ϑ

sin ϑ cos ϑ

)
(C4)

on

(h̃x 0) = (−tC hy)O(ϑ),

(
Sx

Sy

)
= O(ϑ)

(
S̃x

S̃y

)

to obtain h̃x = cos ϑ(−tC + h2
y/tC) = −tC + O(h2

y). The
Hamiltonian is diagonal in this “tilde” basis and we find

〈
S0

x

〉 = cos ϑ
〈
S̃0

x

〉 = −1

2
tanh

h̃xβ

2
cos ϑ, (C5)

〈
S0

y

〉 = −1

2
tanh

h̃xβ

2
sin ϑ,

〈
S0

z

〉 = 0. (C6)

Since eventually we are interested in χyy = d〈S〉y/dhy |hy=0,
we can drop O(h2

y) and the above results simplify to

〈
S0

x

〉 ≈ 1

2
tanh

tCβ

2
, (C7)

〈
S0

y

〉 ≈ −1

2

hy

tC
tanh

tCβ

2
,

〈
S0

z

〉 = 0. (C8)

For T � tC where we expect the Bloch equation approach to
be valid, tanh(tCβ/2) ≈ tCβ/2 and we get the linear response
result 〈S0

y 〉 ≈ χ0hy , but for T � tC , we have tanh(tCβ/2) ≈ 1.
More generally, we can define an effective static susceptibility
given by 〈�S0〉 ≈ χ̃0 �h, where

χ̃0(T ) ≡ −1

2tC
tanh

tCβ

2
= χ0

(
T → tC

2 tanh tCβ

2

)
(C9)
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Fourier transforming, we obtain

(1 − iωτx)〈Sx〉ω = −2πδ(ω)χ eff
0 tC + τxhy(ω) ∗ 〈Sz〉ω,

(1 − iωτy)〈Sy〉ω = χ eff
0 hy(ω) + tCτy〈Sz〉ω,

(1 − iωτz)〈Sz〉ω = −tCT z
2 〈Sy〉ω − τzhy(ω) ∗ 〈Sx〉ω.

These are easily generalized to the more general memory-full
case, by allowing a frequency-dependence for τa(ω). These
set of equations are difficult to solve. One approximation that
greatly simplifies this, is to ignore the fluctuations of the spin
along the external field, x direction. This amounts to dropping
the second (convolution) term on the right-hand side of the
first equation and makes sense because we expect the second
term to be O(h2

y). Then everything simplifies: we get 〈Sx〉ω ≈
−2πδ(ω)χ̃0tC , i.e., constant in time. Thus the convolution in
the last line also simplifies and we obtain

(1 − iωτz)〈Sz〉ω ≈ −tCτz[〈Sy〉ω − χ̃0hy(ω)], (C10)

from which we get

χyy(ω) ≡ lim
hy→0

〈Sy〉ω
hy(ω)

= χ̃0
(
1 − iωτz + t2

Cτzτy

)
(1 − iωτz)(1 − iωτy) + t2

Cτzτy

(C11)

with the imaginary part

χ ′′
yy(ω) = ωχ̃0τy

[
1 + t2

Cτzτy + ω2τ 2
z

]
[
1 + (

t2
C − ω2

)
τzτy

]2 + ω2(τy + τz)2
. (C12)

Let us look at this formula, in various limits. Without Kondo
coupling τx,y,z → ∞, and we get

χyy(ω) → − t2
Cχ̃0

ω2 − t2
C

= tC

2

tanh(βtC/2)

ω2 − t2
C

. (C13)

For tC
√

τzτy � 1, we basically get the simple result χyy(ω) =
χ̃0/(1 − iωτy) that we would get if we had neglected tC from
the beginning. Generally, we see that

χ ′′
yy(ω → 0) = ωχ̃0τy

1 + t2
Cτyτz

, G = −8πt2
Cχ̃0τy

1 + t2
Cτyτz

. (C14)

However, for ω → ∞,

χ ′′
yy(ω → ∞) = χ̃0

ωτy

, → χ̃0

τy

= lim
ω→∞ ωχ ′′

yy(ω). (C15)

To obtain the conductance, we also need τz, which can be
obtained using

χ̃0

τz

= lim
ω→∞ ωχ ′′

zz(ω) (C16)

or from τy with a rotation along Sx , i.e., by interchanging
λy ↔ λz.

APPENDIX D: SUSCEPTIBILITY TO ORDER O(λ2)
BUT EXACT IN tC

In this section, we provide the result of perturbative
calculations of the imaginary part of the susceptibility to
second order in Kondo coupling but exact in interantidot
tunneling tC . The goal of this section is to demonstrate
that once a finite tC is included, the infrared divergence of

the perturbation theory is cut off. Using equation of motion
techniques, it can be shown that the correlation functions to
second order in Kondo coupling are

χ ′′(zz)
yy = λ2

z

16

ω2(
ω2 − t2

C

)2 Im
[
�R

zz(ω)
]
, (D1)

χ ′′(yy)
yy = λ2

y

16

t2
C(

ω2 − t2
C

)2 Im
[
�R

yy(ω)
]
. (D2)

Here, �R
aa(ω) ∼ 〈JaJa〉ω are retarded correlation functions of

the current operators,

�R
yy(ω,ν = 1) = �R

zz(ω,ν = 1), �R
zz(ω,ν) = −iω

8πνv2
,

�R
yy(ω,ν <1/2) = −

(
2π

β

)2ν−1

sin(πν)B

(
ν − iωβ

2π
,1−2ν

)
,

where B(x,y) is the beta function. The λ2
x contribution has a

more complicated form:

χ ′′(xx)
yy (ω < tC) = −g

{
π

2

ω

ω2 − t2
C

+ 1

2
tanh(βtC/2)

[
2π

β

tC

ω2 − t2
C

+ Hν(ω)

]}
,

(D3)

where g = λ2
x/4 and the function Hν(ω) for ν = 1 is

Hν=1(ω) ≡ Im

[
ψ

(
1 − iβ(ω+tC )

2π

)
ω + tC

− ψ
(
1 + iβ(tC−ω)

2π

)
ω − tC

]

in terms of digamma function ψ(z). Note that in the limit of
tC → 0, these results reduce to Eq. (3) of the paper.

APPENDIX E: EFFECTIVE HAMILTONIAN
FOR T,TK � tC

Temporarily ignoring the infinitesimal time-dependent part
of the field, hy(t), introduced to calculate the dynamical
susceptibility, χ ′′

yy , it is clear that in this regime we may replace
Sx by 1/2 (and Sy,z by zero) since the impurity spin is polarized
by the strong field. Now consider the effect of hy(t). We again
wish to integrate out the impurity spin to obtain an effective
Hamiltonian for the quasiparticles. It is now not appropriate
to consider any relaxation term in the Bloch equations, since
such terms arise from the integrating out the quasiparticles
instead. So, lets consider the solutions of the simple spin torque
equation

∂t
�S = �h(t) × �S(t) (E1)

with �h(t) ≡ (−tC,hy(t),0), hy(t) = εtC cos ωt , taking the limit
where both ε → 0 and ω → 0. We also assume that the
oscillating component of the field is turned on slowly in the
infinite past. Thus we write

�S(t) = (1/2)(1,0,0) − �S ′. (E2)

We will see that �S ′ is O(ε). Working to first order in ε,

�h × �S/tC ≈ −(1/2)(0,0,ε cos ωt) + (0, − Sz′,Sy ′). (E3)
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Thus

1

tC

dSz ′

dt
= Sy ′ − ε

2
cos ωt, (E4)

1

tC

dSy ′

dt
= −Sz′. (E5)

Thus

1

tC

d2Sz′

dt2
= −tCSz′ + 1

2
εω sin ωt (E6)

with solution

Sz′ ≈ εtCω

2
(
t2
C − ω2

) sin ωt ≈ εω

2tC
sin ωt. (E7)

Thus

dSy ′

dt
≈ −εω

2
sin ωt (E8)

with solution

Sy ′ = ε

2
cos ωt. (E9)

In summary,

�S ≈ (1/2)(1, − ε cos ωt, − ε(ω/tC) sin ωt). (E10)

At small ω we may drop the last component, giving

�S ≈ −(1/2tC)�h(t). (E11)

Thus we see that, even with no relaxation term in the Bloch
equations, purely a precession term, the spin tracks the
instantaneous time-dependent field, in the limit where the
time-dependent term in the field is small and slowly varying.

APPENDIX F: EXACT SPIN SUSCEPTIBILITY
WHEN λ y = λz = 0

1. Derivation of Bloch equation result for tC ≈ 0

The fact that Eqs. (3) and (6) of the paper contain a simple
summation of λ2

⊥ and λ2
z contributions to lowest order, suggests

that the same IR divergence and the necessity to use Bloch
equation occurs even if only one Kondo coupling, say λz �= 0,
is nonzero. In this limit and assuming we could neglect tC ≈ 0
at T � tC , it is possible to map our Kondo problem to the
x-ray absorption problem and find a nonperturbative formula
for the susceptibility.

With only λz nonzero, the Hamiltonian is H = H0 +
λzS

zJz(0) and the Kondo interaction is just a boundary
magnetic field, depending on the spin state of the impurity. We
are interested in the dynamic susceptibility 〈SySy〉ω, defined
after Eq. (2) of the paper. However, Sy itself, is not present in
the Hamiltonian and its influence is just suddenly switching
the sign of the boundary magnetic field, via Sy |↑〉 = i|↓〉 and
Sy |↓〉 = −i|↑〉. Before this switching, the spin-up fermions
see a phase shift and spin-down fermions another and these
two phase shifts are suddenly switched. The ground states
before and after switching are orthogonal to each other in
the thermodynamic limit [49] and the transition creates lots
of electron-hole pairs, the so-called orthogonality catastrophe.
It is more convenient to discuss this in terms of the spin-
up/down bosons. Setting the velocity to 1, dropping constants

and following Ref. [50] by introducing ϕ↑/↓ ≡ ϕR/L, the
Hamiltonian density at ν = 1 is

H = H0 + δ(x)
Jz

4π
Sz(∂xϕ↑ − ∂xϕ↓), (F1)

where H0 = (∂xϕ↑)2 + (∂xϕ↓)2. Depending on the state of the
impurity spin | ↑〉 or | ↓〉, the Hamiltonian breaks into two
sectors: H = H+| ↑〉〈↑ | + H−| ↓〉〈↓ |, where using λz =
�Jz = Jz/2πv, we get

H± =
[
∂xϕ↑ ± πλz

2
δ(x)

]2

+
[
∂xϕ↓ ∓ πλz

2
δ(x)

]2

, (F2)

up to a constant. Defining λ′ ≡ λz/4, these two Hamiltonians
are related toH0 by the Schotte-Schotte unitary transformation
[50]

U = e−iλ′ϕ↑(0)e+iλ′ϕ↓(0), (F3)

so that

H+ = U †H0U, H− = UH0U
†. (F4)

Writing Sy as 2iSy = S+ − S− and applying the unitary
evolution operator,

2iSy(t) = eitH+S+e−itH− − eitH−S−e−itH+ . (F5)

Here, we used that before/after applying S+, the system has
to be in the −/+ sectors, respectively. Inserting this into the
dynamic susceptibility and dropping S±S± terms, we obtain

χR
yy(t) ∝ �(t)[〈eitH+e−itH−S+S−〉 + 〈eitH−e−itH+S−S+〉

− 〈eitH+e−itH−S−S+〉 − 〈eitH−e−itH+S+S−〉].
Using Eq. (F4), we can write e±itH+ = U †e±itH0U and
e±itH− = Ue±itH0U †. We have to apply the same procedure as
in Eq. (F5) to the Boltzman factors. If the correlation function
contains S+S−, the Boltzman factor becomes e−βH /Z →
e−βH+/Z = U †e−βH0U/2Z0 and a similar version for the
S−S+ terms. After these substitutions, the spins have done their
job and can be simply dropped from the correlation functions
and we arrive at

χR
yy(t) ∝ �(t)[〈eiH0tU 2e−iH0tU †2〉 + 〈eiH0tU †2e−iH0tU 2〉

− 〈U †2eiH0tU 2e−iH0t 〉 − 〈U 2eiH0tU †2e−iH0t 〉]
∝ �(t)[〈U 2(t)U †2〉 + 〈U †2(t)U 2〉

− 〈U †2U 2(t)〉 − 〈U 2U †2(t)〉]. (F6)

The first term 〈U 2(t)U †2〉 at T = 0 reduces to

〈e−2iλ′ϕ↑(t)e2iλ′ϕ↑(0)〉〈e2iλ′ϕ↓(t)e−2iλ′ϕ↓(0)〉

= e4iπλ′2〈e−2iλ′[ϕ↑(t)−ϕ↑(0)]〉〈e2iλ′[ϕ↓(t)−ϕ↓(0)]〉 = e4iπνλ′2

t8νλ′2 . (F7)

Doing a similar procedure for the other terms and summing up
all the terms, at zero temperature, we obtain

χR
yy(t) = −�(t)

2t2g
sin πg, g ≡ 4λ′2 = λ2

z

4
. (F8)

This correlation function is a power law in absence of any bulk
interaction, because of the physics of orthogonality catastrophe
[49,50]. Using conformal mapping to a finite-radii cylinder
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t → β

π
sinh πt

β
, we can bring this retarded function to the finite

temperature,

χR
yy(t) = −

(
π

β

)2g
�(t) sin πg

2
∣∣ sinh πt

β

∣∣2g
. (F9)

The Fourier transform gives [51]

χR
yy(ω) = −

(
2π

β

)2g−1

B(g − iωβ/2π,1 − 2g)
sin πg

2
.

where B(x,y) is the beta function. We are interested in the limit
of small Kondo coupling, g → 0. Therefore, using properties
of the beta function,

χR
yy(ω) ≈ −

(
2π

β

)−1

B(g − iωβ/2π,1)
πg

2
= χ0

1 − iωτK

,

where χ0 = −β/4 and β/τK = 2πg = 2πλ2
z/4. We have

dropped g in the second argument of the beta function,
but kept it in the first argument. This is what one would
obtain assuming tC ≈ 0 in Eq. (C11), which relies on the
Bloch equation approach. This form was proved using some
analytical assumption [37] or by using the phenomenological
Bloch equation [38], but we provided an exact derivation here,
when λx,y = 0. We expect a similar result for λx �= 0 but
λz,y = 0 by a spin rotation along the y direction.

2. Nonzero tC

When tC is nonzero, for λy �= 0 or λz �= 0, the Hamil-
tonian contains noncommuting spin terms and the problem
is complicated. However, the special case of only λx �= 0
(but λy,z = 0) can be still solved exactly using techniques
similar to those described above. Note that having λx �= λy is
unphysical as a Schrieffer-Wolff transformation would always
produce equal transverse Kondo couplings. Nevertheless, this
unphysical case can be used as a check on our Bloch equation
result. Following the same technique as in the previous section,
it can be easily shown that

χR
yy(t) = i�(t)

4
[

β

π
sinh(πt/β)

]2g
(e−itC tA − eitC tA∗), (F10)

where

A = − cos(πg) tanh(πb) + i sin(πg). (F11)

and b = βtC/2π . The Fourier transform of (F10) gives

− 4iχR
yy(ω) =

(
2π

β

)2g−1[
AB

(
g − iβ(ω − tC)

2π
,1 − 2g

)

−A∗B
(

g − iβ(ω + tC)

2π
,1 − 2g

)]
. (F12)

FIG. 3. (Color online) The special unphysical case of λy = λz =
0, but λx �= 0 and tC �= 0. Conductance G(b,g) as a function of
T/tC for various values of g = λ2

x/4 on a logarithmic scale. These
values are g = 0.002, 0.004, 0.006, 0.008, 0.010, and 0.012, from
the lowest to highest conductance, respectively. The exact result
is compared with perturbation theory to second order in Kondo
coupling and exact in tC (red color) and the Bloch equation result
(green).

Using Eq. (2) of the paper, the conductance can be written as
a closed formula

G = −4πb2Im{A(b,g)B(g + ib,1 − 2g)

× [ψ(g + ib) − ψ(1 − g + ib)]}, (F13)

where again ψ(z) is the digamma function. Note that the
conductance is a function of b = βtC/2π and g = λ2

x/4 only.
Higher values of Kondo coupling squared g correspond to
larger conductance. This function is plotted in Fig. 3, as a
function of (2πb)−1 = T/tC for various values of g, and it is
compared with the perturbation theory result [Eq. (D3)] and the
Bloch equation result [Eq. (C14)]. Although the second-order
perturbation theory (but exact in tC) is sufficient at T � tC ,
it fails in the opposite regime of T � tC as pointed out
in the paper. On the other hand, the Bloch equation result
provides an accurate estimation of the conductance in this
high-temperature regime of T � tC .
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