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Optical properties and Zeeman spectroscopy of niobium in silicon carbide
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The optical signature of niobium in the low-temperature photoluminescence spectra of three common polytypes
of SiC (4H, 6H, and 15R) is observed and confirms the previously suggested concept that Nb occupies preferably
the Si-C divacancy with both Si and C at hexagonal sites. Using this concept we propose a model considering a
Nb-bound exciton, the recombination of which is responsible for the observed luminescence. The exciton energy
is estimated using first-principles calculation and the result is in very good agreement with the experimentally
observed photon energy in 4H SiC at low temperature. The appearance of six Nb-related lines in the spectra of the
hexagonal 4H and 6H polytypes at higher temperatures is tentatively explained on the grounds of the proposed
model and the concept that the Nb center can exist in both C1h and C3v symmetries. The Zeeman splitting of the
photoluminescence lines is also recorded in two different experimental geometries and the results are compared
with theory based on phenomenological Hamiltonians. Our results show that Nb occupying the divacancy at the
hexagonal site in the studied SiC polytypes behaves like a deep acceptor.
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I. INTRODUCTION

It is well known that silicon carbide exists in many different
polytypes. Among these the simplest is the cubic SiC (3C-SiC,
zinc-blende structure) and all other polytypes can be viewed as
differing by the stacking sequence of the Si-C atomic biplanes
along the [111] direction of 3C-SiC. With the exception of
3C-SiC and 2H-SiC (würtzite structure) all other polytypes
possess different numbers of inequivalent sites for both Si and
C within their unit cell, hence one and the same substitutional
atom replacing a host atom at different inequivalent lattice sites
exhibits different properties. Three common polytypes, 4H-
SiC, 6H-SiC, and 15R-SiC are considered in the present study,
all of them displaying different combinations of hexagonal and
cubic (a.k.a. quasicubic) inequivalent lattice sites. [In common
terminology a site is referred to as hexagonal or cubic if the
stacking arrangement at this site mimics the arrangement of
the hexagonal (würtzite) or the cubic (zinc-blende) structure,
respectively.] Thus, 4H-SiC and 6H-SiC (crystals of hexagonal
symmetry) both have one hexagonal site per unit cell (for Si or
C), but differ in the number of cubic sites, one in 4H-SiC and
two in 6H-SiC. 15R-SiC (rhombohedral crystal symmetry) has
two hexagonal and three cubic inequivalent lattice sites.

Due to the site dependence of the properties of a sub-
stitutional impurity, i.e., an impurity atom replacing a host
atom (e.g., Si), the number of optical centers observed in
photoluminescence (PL) is expected to be equal to the number
of inequivalent sites. This is clearly demonstrated in the case
of incorporation of transition metals from the first row of
the periodic table in SiC, which can be seen from optical
studies on, for instance, vanadium [1–5], chromium [5,6],
and titanium [5,7–9]. All these elements replace Si atoms
due to their rather large atomic radii. However, optical and
electron spin resonance studies of SiC doped with tungsten
(W) [10], Mo [5,11–13], and Nb (considered in this work)

show that at least for some transition metals from the second
and the third row of the periodic table the number of optical
centers does not follow the number of inequivalent sites, which
suggests that these elements might incorporate in SiC in a
configuration different from the mere substitutional one. In
the case of W, for example, the number of PL centers observed
in different polytypes equals the number of quasicubic sites
[10]. There exist also several other unidentified defects under
discussion in the literature; for example, UD-2 [14] and UD-3
[15], for which the number of optical centers differs from
the number of inequivalent lattice sites. Thus, the number of
optical centers associated with UD-2 replicates the number of
possible nearest-neighbor pair configurations, while for UD-3
this number follows the number of inequivalent hexagonal
sites in different polytypes.

In a recent work [16], new theoretical results on transition
metal incorporation in SiC were published. Several transition
metals from the first, second, and third rows of the periodic
table (Ti, V, Cr, Nb, Mo, and W) are considered in this
work, and first-principles calculations have been carried out for
two possible configurations of the defect: pure substitutional
on Si site (denoted as MSi, where M is the corresponding
transition metal), and the so-called asymmetric split-vacancy
(ASV) configuration which can be denoted MSi − VC, where
VC denotes the carbon vacancy. The latter case can be viewed as
the impurity atom M occupying the silicon-carbon divacancy
VSi − VC with M shifted closer to the Si site, hence the
asymmetry. A comparison of the formation energies of the
ASV configuration (MSi − VC) and pure substitutional (MSi)
shows that for the metals from the first row (Ti, V, Cr) the
MSi configuration is strongly prevailing (it has significantly
lower formation energy). On the other hand, for the rest
of the metals considered (Nb, Mo, W) one of the possible
ASV configurations and the substitutional configuration have
similar formation energies, but the ASV configuration is
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favored. In the case of Nb, it was found that maximum overlap
between the dangling bonds of the Si atoms and the d orbitals
of the Nb atom occurs in the ASV hexagonal-hexagonal (h-h)
configuration (i.e., the vacant C and Si sites are hexagonal
nearest neighbors aligned along the crystal c axis). Thus,
this configuration (denoted hereafter as ASV h-h) is expected
to form in significantly larger concentrations than any other.
Electron spin resonance (ESR) measurements are consistent
with the ASV h-h configuration for the case of Nb-doped
4H-SiC [16] (more details on the ESR spectra are presented
in [17]). The observed ESR spectrum clearly shows the
hyperfine interaction of an S = 1/2 spin with two Si atoms,
demonstrating also the Jahn-Teller distortion to C1h symmetry,
in accord with the calculation.

In this work we give a detailed description of the optical
transitions assigned to Nb-related centers in SiC, propose a
model for their origin, and compare the experimental results
with the results from first-principles theoretical calculation.
(A preliminary account on some of the experimental data
and the model was presented in [18]). We consider also
the Zeeman splitting of the Nb-related lines on the grounds
of phenomenological models and compare the experimental
line splitting with the predictions of these models. Section II
describes experimental details concerning the samples and
the experimental setups used. Section III presents the optical
signature of the Nb center in three polytypes of SiC and
considers in more detail the temperature dependence and
photoluminescence excitation (PLE) spectroscopy of the Nb
lines revealing similar electronic structure of the defect in
the hexagonal 4H and 6H polytypes. Section IV presents the
model of a Nb-bound exciton and the results of first-principle
calculations. Section V deals with the Zeeman effect on the
Nb lines, presenting the experimental data and the models used
for its interpretation. Finally, the conclusions are summarized
in Section VI.

II. SAMPLES AND EXPERIMENTAL DETAILS

The SiC samples considered in this study are grown using
high-temperature chemical vapor deposition (HTCVD) [19].
In order to confirm the association of the PL lines discussed
further on with Nb, doping experiment is carried out with
the 4H-SiC polytype by placing a Nb metallic flake upstream
in the reactor during growth. The Nb-doped sample was
grown right after growing an undoped reference sample in
a standard HTCVD reactor. Both samples are unintentionally
doped n type (N doping in the 1014 cm−3 range). The outcome
of the doping experiment is summarized in the inset of
Fig. 1; the figure displays also the niobium-associated lines
observed at low temperature in the three studied polytypes.
The low-temperature (T = 2 K) PL spectrum of the Nb-doped
sample shows a single line at 1.3825 eV, which is not observed
in the reference sample grown in the previous run. Secondary
ion mass spectrometry (SIMS) was performed on both samples
confirming that Nb is indeed incorporated in concentration
∼9 × 1015 cm−3 in the doped sample, whereas in the reference
sample its concentration is below the detection limit of
∼2 × 1013 cm−3 (see the inset in Fig. 1). On the grounds of this
doping experiment we assign the observed PL line at 1.3825
eV (1382.5 meV) in 4H-SiC to Nb-related defect. We note

FIG. 1. (Color online) PL spectra of 4H-, 6H-, and 15R-SiC
showing the Nb-associated lines at T = 5 K. The inset summarizes
the results of the doping experiment discussed in text. The weak
contribution of the 15R and 4H Nb-related lines in the spectrum of the
6H sample, as well as of the Nb line of 6H in the 4H spectrum are due
to the presence of microscopic polytype inclusions in these samples.
In particular, the 15R sample was obtained from a macroscopic
inclusion in the 6H polytype. (Some data is adapted with permission
from Ref. [18].)

that, to the best of our knowledge, this line is not among the
commonly detected lines in as-grown samples [14]. However,
this PL line is observed in semi-insulating (SI) 4H-SiC samples
grown in a reactor where the susceptor has parts made of
niobium carbide (NbC). The concentration of Nb in these latter
samples (including also 6H and 15R polytypes) as estimated
by SIMS is somewhat higher, ∼3 × 1016 cm−3, and the rest of
the results presented here are from such unintentionally doped
samples grown in a reactor with NbC susceptor parts. Figure 1
(except for the inset) also presents the spectra from these
samples. The 15R-SiC sample was cut from a macroscopic
(several millimeters large) inclusion in the 6H polytype, and
the 15R polytype was verified by monitoring the near-band
gap luminescence in several random points (not shown) at low
temperature [20].

Ar+-ion laser ultraviolet lines (351 and/or 364 nm) are used
as above-band-gap excitation in the PL measurements. The
luminescence is detected by either a monochromator coupled
to a CCD camera or a double monochromator equipped with
an InGaAsP photomultiplier tube, although the general low-
temperature spectra displayed in Fig. 1 are obtained using
a Fourier-transform spectrometer. In all cases, the spectral
resolution is by at least a factor of 2 better than the observed
linewidth (∼0.3 meV at full width at half maximum for all Nb
lines). PLE spectroscopy and the Zeeman measurements using
fiber with strong damping in the ultraviolet are performed
using a Ti:sapphire laser as an excitation source.

Zeeman measurements in magnetic fields perpendicular to
the crystal c axis (B⊥c) up to 10 T are performed using a
cryostat coupled to an optical fiber, hence only the Faraday
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configuration is available (the direction of propagation of the
detected light is parallel to the magnetic field). Due to weaker
luminescence received through the fiber the spectral resolution
has to be sacrificed in favor of the signal, which results in
slight broadening of the Nb lines to ∼0.4 meV. The Zeeman
effect in magnetic field parallel to the c axis (B ‖ c, up to
5 T) is measured in another cryostat where also only Faraday
configuration is available, but it is possible also to study the
polarization of the lines. Left and right circularly polarized
light is detected using an achromatic quarter-wave plate in
combination with a linear polarizer. Finally, the decay time of
the Nb-related emission is measured using photon-counting
and pulsed excitation at 355 nm (the third harmonic of a
Nd:YAG laser) with a time resolution ∼1 ns.

III. OPTICAL PROPERTIES OF THE Nb CENTER

A. Photoluminescence signature of Nb in 4H-, 6H-, and 15R-SiC

The low-temperature PL spectra of 4H-, 6H-, and 15R-SiC
are displayed in Fig. 1. (The PL line due to the commonly
observed but unidentified defect UD-3 is also visible in the
displayed region [15].) We notice that in the 4H and 6H
polytypes we observe only one line associated with Nb,
whereas in 15R-SiC there are two lines (denoted Nba and
Nbb in Fig. 1). Apparently, the number of optical centers
corresponds to the number of inequivalent hexagonal sites in
the unit cell of each polytype, in agreement with the theoretical
expectation that Nb prefers the ASV h-h configuration (at
hexagonal site) in these three polytypes [16].

B. Temperature dependence and PLE spectroscopy

The temperature dependence of the Nb-related part of the
PL spectra in 4H-SiC recorded with polarization perpendicular
to the c axis (E ⊥ c) and parallel to it (E ‖ c) is displayed
in Fig. 2(a). As the temperature increases, five new lines
enumerated in order of increasing energy in the figure appear
on the high-energy side of the low-temperature Nb0 line.
The interplay of the relative intensities of the six lines
with the temperature shows thermalization between sublevels
of the excited (initial) state involved in the optical transition,
whereas the ground (final) state behaves as a single energy
level. The structure of the spectrum of 6H-SiC is very similar,
hence only the polarized spectra at 27 K are shown in Fig. 2(b).
The PLE spectra detected at the Nb0 line for 4H and 6H SiC are
shown as the bottom curve in Figs. 2(a) and 2(b), respectively.
We notice that the Nb5 line is hardly visible in the PL spectra
of both polytypes due to its weakness, the proximity of the
strong Nb4 line, and rapid temperature-induced broadening of
the lines. Also, in the case of 6H SiC the clear observation
of Nb5 is impeded by the appearance of the Nba line of 15R,
which is due to microscopic inclusions of this polytype in the
6H sample (cf. Fig. 1). We have plotted also one unpolarized
spectrum for each polytype, chosen so as to show the Nb5

line as a weak shoulder on the high-energy side. [We note
that Nb5 is better visible in the spectra detected along the c

axis (with E ⊥ c polarization), e.g., in the Zeeman experiments
with magnetic field parallel to the c axis (cf. the spectra at zero
field in Sec. IV), because the strong Nb4 line polarized E ‖ c
is completely suppressed.] However, Nb5 is clearly visible in

FIG. 2. (Color online) (a) Temperature dependence of the polar-
ized PL spectra associated with Nb in 4H-SiC. (b) Polarized spectra
of the Nb-related spectrum in 6H-SiC at 27 K. The lowermost curve
in both panels is the corresponding PLE spectrum. One unpolarized
spectrum per polytype is also shown, chosen so as to illustrate the
appearance as a shoulder of the very weak Nb5 line. (Some data is
adapted with permission from Ref. [18].)

the PLE spectra for both polytypes [see the bottom curves
in Figs. 2(a) and 2(b)], and its line positions displayed in
Table I are obtained from these curves. Thus, the PLE spectra
confirm that Nb0 − Nb5 lines are related to the same center,
although the Nb1 line, being too close to Nb0, falls in the
Rayleigh wing of the laser and cannot be distinguished in
PLE. Furthermore, Nb1 and Nb4 lines have predominantly
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TABLE I. Photon energies in meV (wavelength in Å in parentheses) of the six Nb-related transitions in 4H- and 6H-SiC. The polarization
of each line is also shown (‖: parallel to the c axis; ⊥: perpendicular to it).

Nb0 Nb1 Nb2 Nb3 Nb4 Nb5

Polytype ‖ and ⊥ ‖ ‖ and ⊥ ‖ and ⊥ ‖ ‖ and ⊥
4H SiC 1382.5 1383.15 1384.3 1387.4 1388.2 1389.2

(8965.5 Å) (8961.4 Å) (8953.9 Å) (8933.9 Å) (8928.8 Å) (8922.4 Å)
6H SiC 1360.6 1360.8 1362.5 1363.9 1364.6 1366.8

(9109.6 Å) (9108.4 Å) (9097.0 Å) (9087.9 Å) (9083.0 Å) (9068.4 Å)

E ‖ c polarization in both 4H- and 6H-SiC, while the rest of
the lines do not exhibit preferable polarization. Note that in
6H-SiC the Nb0 and Nb1 lines almost merge, but still can be
distinguished owing to the peak shift observed with different
polarizations [cf. Fig. 2(b)]. No additional lines appear at
higher temperatures in either polytype, the only notable effect
being broadening and quenching of the lines so that the whole
emission vanishes around 190 K.

The photon energies and wavelengths of the Nb-related
transitions in 4H and 6H SiC are summarized in Table I
together with their polarization. The structure of the spectrum
in these two polytypes is very similar, indicating similar
microscopic structure of the defect. In discussing our model
below we will see that the structure of the Nb-related spectrum
stems from the structure of the valence band, which is similar
in the hexagonal 4H and 6H SiC polytypes and it is sufficient to
investigate in detail one of them. On the other hand, although
there exist both experimental [21] and theoretical [22] studies
on the valence-band structure of 15R SiC, the rhombohedral
15R polytype is substantially less explored than the hexagonal
polytypes. Therefore, in the rest of this paper we shall consider
in detail only the 4H-SiC polytype.

IV. MODEL OF Nb-BOUND EXCITON

According to the model outlined in Ref. [18], the PL lines
due to Nb in the ASV h-h configuration are actually arising
from recombination of an exciton bound to the defect. The
main idea—a bound exciton consisting of a tightly bound elec-
tron and Coulombically bound hole—is corroborated here by a
semiquantitative estimate of the exciton recombination energy
obtained within a simple physical picture using previously
calculated energies [16] of the Nb defect in different charge
states. Results of new first-principles calculations treating
the exciton bound at the niobium center in 4H-SiC are also
presented and shown to be in good agreement with both
the semiquantitative estimates made in the next section and
the experimental data. The selection rules for the optical
transitions are also discussed.

A. Mechanism of binding an exciton to the neutral Nb◦ center

According to the calculation of Ref. [16], the Nb center
in ASV configuration can exist in neutral, positively charged
and negatively charged states, all with energy levels within the
energy band gap of 4H-SiC. First-principles calculations using
the method described in [16] yield the following positions of
these levels in the energy band gap of 4H-SiC (all energies are
relative to the valence-band edge). The positively charged state

has an energy level E+
Nb about 0.2 eV, the neutral state has two

energy levels at E′0
Nb ∼ 0.4 eV and E′′0

Nb ∼ 0.6 eV associated
with the Jahn-Teller splitting of the one-electron e level [16],
and the negatively charged state has a level E−

Nb ∼ 0.9 eV, as
depicted in Fig. 3(a).

We assume that without any photoexcitation the Nb center
is in the neutral charge state, in agreement with the ESR
results [17,23]. On the other hand, if an electron or hole is
captured to form one of the charged states, this charged center

FIG. 3. (Color online) Schematic presentation of the energy lev-
els discussed in text. (a) Energy levels of Nb in different charge states.
The splitting of the neutral charge state is due to Jahn-Teller distortion
of the defect. The down- (up-) arrows represent the processes
discussed in text which contribute to (decrease) the recombination
energy emitted as a photon. (b) Suggested structure of the ground and
excited states of Nb in the ASV configuration. The selection rules
for optical transitions are also depicted; the overstricken transitions
are allowed by group theory but require spin flip, making them much
less probable. The inset illustrates schematically the bonding in the
neutral charge state of Nb in the ASV configuration.
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becomes a Coulomb center capable of capturing a particle of
the opposite charge, a hole for Nb− or an electron for Nb+,
respectively. Thus we obtain two possible neutral systems,
which can be viewed as an exciton bound to the neutral Nb0

center. Using the calculated energy levels given above, it is
possible to estimate roughly the binding energies of an exciton
with a strongly bound hole and a weakly bound electron in
the Coulomb field of Nb+ [denoted for brevity (Nb+,e) in
Fig. 3(a)], and vice versa, an exciton with a strongly bound
electron (forming Nb−) and weakly bound hole [denoted
(Nb−,h) in Fig. 3(a)]. Considering the weakly bound particle
as free at the extremum of the corresponding (conduction or
valence) energy band we use simple energy consideration in
order to estimate the energy stored in the bound exciton which
can be released as a photon. For example, in the case of a
weakly bound electron to Nb+, the energy released during the
recombination of the center into the Nb0 state is a sum of the
energies (EC − E+

Nb) and (E+
Nb − E′0

Nb), where EC ≈ 3.2 eV
is the theoretically calculated energy of the band gap. [The
corresponding energy quantities are illustrated by two vertical
arrows for the case (Nb+,e) in Fig. 3(a).] In this way we
obtain that the binding energy of an exciton with strongly
bound hole and weakly bound electron is of the order of
2.8 eV, whereas in the case of (Nb−,h) the bound-exciton
energy is ∼1.4 eV. The latter estimate is obtained by adding
the energy E−

Nb released by a free hole recombining with
Nb− and the energy (E−

Nb − E′0
Nb) which is further released

in order to obtain Nb0 in the ground state, as illustrated in
Fig. 3(a). These rough estimates demonstrate that the case
of a hole weakly bound to Nb− is by far the energetically
favorable one and, in addition, the theoretical estimate of
the exciton recombination energy of ∼1.4 eV is very close
to the experimentally observed one (∼1.38 eV). Thus, it is
reasonable to consider the experimental results in the frame of
a model of recombination of a bound exciton with a strongly
bound electron and an effective-mass-like hole weakly bound
in the Coulomb field of the negatively charged defect referred
to hitherto as (Nb−,h).

The mechanism of binding an exciton to Nb can be
considered also from another point of view, as is done in
Ref. [18] and outlined briefly here. The five valence electrons
of the Nb atom are used to saturate five of the six dangling
bonds of the divacancy (three from the silicon vacancy, and
three from the carbon vacancy; cf. Fig. 1 of Ref. [16] and the
inset in Fig. 3). Capturing one more electron (i.e., the electron
from the exciton) into the remaining dangling bond of the
carbon vacancy will complete the bonding of the Nb atom and
form the negatively charged Nb− center. Saturated bonds can
be regarded as an analog of a filled shell in an atom; hence
the captured electron remains strongly localized at defect. The
situation is similar to the well-known mechanism of binding
excitons to isoelectronic defects, when one of the particles
in the exciton experiences short-range attractive potential at
the defect and the remaining particle is bound in the resulting
Coulomb field of the charged defect. In the case of Nb in the
ASV configuration the reason for strong binding of the electron
is quite apparent, namely, saturation of the only remaining dan-
gling bond. In order to cope with the selection rules, we treat
the weakly bound hole as effective masslike (nearly free) and
consider the structure of the valence band near its extremum.

B. Selection rules for the optical transitions

The symmetry of the possible exciton states will be
treated considering separately the symmetries of the negatively
charged defect and the weakly bound (effective-mass-like)
hole. Due to the same crystallographic group (C4

6v) and similar
band structure the analysis presented below is equally valid
for 4H and 6H SiC. When an extra (12th) electron is captured
to Nb thus completing the bonding the reason for Jahn-Teller
splitting vanishes and the Nb− center relaxes to C3v symmetry
(recall that the symmetry of Nb0 in its Jahn-Teller distorted
configuration is C1h) [16]. Group-theoretical consideration
shows that the ground state of Nb− is a fully symmetric
singlet transforming as the �1 irreducible representation of
C3v , commonly denoted also as 1

A1. The ground state of an
effective-mass-like hole bound in the Coulomb field of Nb−
will exhibit three closely spaced components corresponding
to threefold splitting of the uppermost valence band (due to
crystal-field and spin-orbit splitting) [24]. For a free hole the
proper symmetry would be C6v , and the uppermost valence
band transforms as the �9 representation of the double group
C̄6v (the bar above the group symbol will denote hereafter
the corresponding double group). The next valence band split
off by spin-orbit interaction transforms as �7, and finally, the
third one split off by the crystal field, as �7 [24], using the
notations of Ref. [25]. The threefold valence-band splitting is
inherited by the weakly bound hole, and when the symmetry is
lowered to C̄3v the above representations are compatible with
the following representations of C̄3v : �7(C̄6v) → �4(C̄3v),
and �9(C̄6v) → �5 + �6 = �56(C̄3v). [In the last relation we
use the notation �56 for the direct sum of the representations
�5 + �6, which are degenerate by time reversal (Kramers)
degeneracy.] The resulting symmetry of the bound-exciton
states is described by representations which are a direct product
of the representation for Nb− (fully symmetric, �1, or A1) and
one of the representations for the hole (�4 or �56), i.e., just
the same as that of the hole alone. At this point we do not
know which of the three possible hole (and therefore exciton)
states is lowest in energy (one of the two �4 states or the �56

state), but later we will see that the actual order is �4, �56,
and �4 in order of ascending energies, with the former two
states split by spin-orbit interaction, as depicted schematically
in Fig. 3(b). (Thus, the ordering of the two lowest-energy
states is reversed compared to the ordering in the valence
band.) Assuming that these three states are close enough in
order to be populated already at rather low temperatures,
transitions involving either of them as initial state in the exciton
recombination are expected.

The final state of the transition is just the neutral niobium
center Nb0, which will be treated for the moment as possessing
C3v symmetry with an e orbital occupied by three electrons (or,
alternatively, one hole) [16]. The orbital angular momentum
associated with an e state will couple to the spin of the hole,
which results in spin-orbit splitting into �4 and �56 states
(analogous to the spin-orbit splitting for a weakly bound hole
just considered). However, we will show that the splitting
for a tightly bound hole can be assumed much smaller than
that for a free (or weakly bound) hole and it may well be
unresolvable in our experiments, i.e., within the line width
of the observed PL lines, so that the ground state behaves as
a single level. Assuming the level scheme discussed above
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and presented in Fig. 3(b), it is straightforward to deduce the
selection rules for optical transitions within C3v between the
excited- and ground-state manifolds. The allowed transitions
and their polarizations are depicted by the vertical arrows in
Fig. 3(b). In comparing the selection rules to the lower-energy
three lines in the spectrum (cf. the polarization of Nb0, Nb1,
and Nb2 in Fig. 2) we notice that the transition �56 → �56

associated with Nb1 polarized parallel to the c axis (E ‖ c)
is strong, but the transition between �4 and �56 states which
are allowed in E ⊥ c polarization are either very weak, or not
observed at all, because these transitions require spin flip.

Thus, assuming negligible spin-orbit splitting of the ground
state within C3v symmetry, three transitions corresponding
to the three closely spaced hole (and exciton) initial states
are expected and the selection rules for the spin-flip-free
transitions dictate that �4 → �4 is polarized both parallel and
perpendicular to the c axis (E ‖ c and E ⊥ c), whereas the
�56 → �56 transition is allowed only with E ‖ c polarization.
The former corresponds to the polarization of Nb0 and Nb2

and the latter to that of Nb1. Consequently, the energy-level
scheme and selection rules suggested in Fig. 3(b) are in very
good agreement with the experimental data presented so far.
The possible origin of the remaining Nb3, Nb4, and Nb5 lines
will be discussed later.

C. Results from first-principles calculations for
the Nb-bound exciton

The energy levels associated with Nb0, Nb+, and Nb−
have been studied from first principles earlier [16]. These
results are used in Fig. 3(a). The method employed in [16]
is based on the HSE06 range-separated functional, which
is capable of describing accurately both the host material
(i.e., reproducing correctly the band gap and bulk properties),
as well as excitation energies using constrained occupation
technique [26]. Nevertheless, our recent study on the accuracy
of the HSE06 functional on systems containing strongly
correlated states (e.g., due to transition metal impurities), and
noncorrelated semiconductor host states revealed that HSE06
may fail to accurately describe simultaneously both states
in some cases [27]. Since our purpose is estimation of the
energy of the excited state of Nb in the ASV h-h configuration
from first principles, the accuracy of the HSE06 functional is
examined carefully in the present work. The first-principles
calculations were carried out on a large, 576-atom supercell
with one Nb atom in the ASV h-h configuration. In the
calculations plane wave basis set with cutoff of 420 eV and
projector-augmented-wave (PAW) potentials [28] was used
as implemented in the Vienna Ab initio Simulation Package
(VASP) code [29]. The spin-orbit splitting is not considered,
therefore the valence-band edge at the � point of the perfect
crystal (without any defect) consists of a doubly degenerate
state and a nondegenerate state at lower-energy split off by
the crystal field of 4H-SiC. In a perfect supercell (without Nb
defect) the crystal-field splitting is calculated to be ∼45 meV.

The check of the applicability of the HSE06 functional
to the case of Nb will be outlined shortly here. In the case
of the exact functional the relation between the Kohn-Sham
(KS) eigenvalues and the total energy differences fulfills the
so-called generalized Koopmans’ condition [30,31], i.e., the

KS eigenvalues are unchanged upon the occupation of the
corresponding orbital and the increment of the total energy is
equal to the KS eigenvalue. We tested the fulfillment of this
condition in a similar way as in our previous work [27]. In
order to avoid the effect of the geometry relaxation on the
eigenvalues and total energies we have fixed the geometry to
that in the negatively charged state Nb−, i.e., C3v , where the
double-degenerate e state is fully occupied. To obtain all the
quantities needed for the examination we performed calcula-
tions for the neutral and negatively charged states on the fixed
geometry. In the latter state the defect electrostatically interacts
with itself and with the neutralizing “jellium” background that
shifts the total and KS energies. Due to the application of large
supercell (576 atoms), this effect is reduced, but still of the
order of 0.1 eV. This remaining energy shift can be removed
from the total energy by the charge correction scheme of
Freysoldt et al. [32]. For the KS energies there is no such
thoroughly tested method; therefore, in order to avoid the
uncertainty of the ε

−,occ
KS in the negatively charged state we

used ε
0,unocc
KS in the examination of the condition of exactness;

ε
0,unocc
KS ≈ (E− + �E−

cc) − E0, (1)

where E0 and E− are the total energies in neutral and negative
charge state, respectively, �E−

cc is the charge correction, ε−,occ
KS

is the energy of the highest occupied KS orbital in the negative
charge state (Nb−), and ε

0,unocc
KS is the energy of the lowest

unoccupied KS orbital in the neutral charge state (Nb0). The
above equality is satisfied within a margin of 0.02 eV, therefore
we conclude that the excitation energies can be calculated
within the HSE06 method with reasonable accuracy.

As already discussed in Sec. IV A, the energy of the exciton
bound to Nb can be estimated by considering the weakly
bound hole as virtually free, i.e., residing at the top of
the valence band. Using first-principles calculation, however,
makes possible estimation of the exciton binding energy when
the hole is in each of the bands related to the valence-band
top, the uppermost (double-degenerate) band, or the higher-
in-energy crystal-field split-off band. The energy difference
between these two configurations will give us an estimate for
the crystal-field splitting of the hole involved in the Nb-bound
exciton, from first principles.

The calculated excitation energies are 1.4204 eV when
the hole is at the highest double-degenerate valence-band
edge, and 1.4458 eV when the hole is at the nondegenerate
valence-band edge. Thus, the calculation predicts a reduction
of the crystal-field splitting from ∼45 meV (in perfect crystal)
to ∼25 meV in the states of the Nb-bound exciton. This value
is probably not very accurate being smaller than the accuracy
of the calculation (∼0.1 eV), but the trend of significant
quenching of the crystal-field splitting for the weakly bound
hole is in good agreement with the experimental data and
justifies the assignment made earlier for the triplet Nb0 − Nb2

to spin-orbit and crystal-field splitting of the excited state. The
calculated energy stored in the exciton (∼1.4 eV) and released
as a photon observed in PL is also in very good agreement
with both the experimental value (1.3825 eV) and the rough
energy estimates made in Sec. IV A.

075207-6



OPTICAL PROPERTIES AND ZEEMAN SPECTROSCOPY OF . . . PHYSICAL REVIEW B 92, 075207 (2015)

D. Lifetime of the Nb-related emission

Time-resolved measurements at 2 K yield a lifetime of
180 μs for the Nb0 line in 4H-SiC. At higher temperatures
the contributions from the individual components cannot be
resolved, but the total lifetime of the Nb-related emission
decreases to about 120 μs at 140 K. These relatively long
lifetimes of the optical transitions indicate the absence of a
concurrent nonradiative recombination channel (e.g., Auger
recombination), in agreement with the proposed model. In-
deed, an Auger process would require that the energy stored in
the exciton (∼1.4 eV) is transferred to another electron within
the Nb center exciting it into the conduction band. Considering
the energy diagram in Fig. 3(a), however, it is clear that such
process would require more energy than that stored in the
exciton, hence Auger recombination can be ruled out as a
possible recombination mechanism.

E. Origin of the three high-energy lines Nb3 − Nb5

Let us consider now in more detail the configurations of
the ground and the excited states in connection with the ap-
pearance of the three high-energy lines (Nb3, Nb4, and Nb5) at
higher temperatures. The ground state (Nb0) has C1h symmetry
[16], whereas the excited state (Nb− plus weakly bound hole)
is properly described by C3v . The PLE results suggest that
transitions from the ground state of C1h symmetry to the
excited state of C3v symmetry (and vice versa in PL at higher
temperatures) are possible, which at first glance is a violation of
the Franck-Condon principle, because the “relaxed” position
of the Nb atom changes during the transition.

In this section we provide a tentative qualitative explanation
for the appearance of the three high-energy lines in PL and
PLE. The results obtained from first principles suggest that
the change in the Nb configuration is extremely small. When
the charge state changes from Nb−(C3v) to Nb0(C1h), the
calculation yields that the relaxed position in C1h is only
∼0.02 Å away from the C3v symmetry axis, accompanied by
larger (but still very small) relaxation of ∼0.06 Å along the C3v

axis towards the three nearest carbon atoms due to weakening
of one bond to one of the three nearest silicon atoms. While
the average “relaxed” position of Nb0 is in C1h symmetry, it
may be speculated that the configuration resumes dynamically
C3v symmetry due to zero-point vibrations, in analogy with
the dynamic Jahn-Teller effect, if we admit that the change
in the configuration of Nb between the two charge states is
of the order of the zero-point vibration amplitudes for Nb0.
Thus, one can assume finite probability for finding Nb0 in the
C3v symmetry inherent to the excited state (i.e., to Nb−) and
direct excitation in accord with the Franck-Condon principle
becomes possible. This provides reasonable explanation for
the observation of the Nb2 line in the PLE spectrum. On
the other hand, the existence of Nb0 (the ground state) in
C1h symmetry provides us with a reason to expect an excited
state associated with this configuration, i.e., when the hole is
bound to Nb− in C1h symmetry. This state of C1h symmetry
for the bound exciton is not the lowest energy state; the latter
is achieved after relaxation to C3v symmetry. In addition, if
this state exists it will exhibit the threefold splitting stemming
from the valence-band splitting, in analogy with the previously
considered C3v configuration. Both symmetries for the bound

exciton can again be considered as connected owing to the
zero-point vibrations of the system. It should be noted,
however, that due to the stronger binding to the ligands the
average zero-point vibration amplitude for Nb− is expected
to be smaller than that for Nb0, which might explain why
elevated temperature is needed to activate the observation of
the higher-energy triplet in PL. We note here that we conducted
calculations from first principles, when the excited state was
“forced” initially from the C1h configuration inherent to the
ground state, and the system was left to relax to a state of
minimum energy, which might be the sought C1h state. Due
to limited accuracy, however, this calculation could neither
confirm nor disprove the existence of this state.

Thus, our tentative explanation of the appearance of the
three higher-energy lines is based on the assumption that the
bound exciton has an excited state of C1h symmetry, which
exhibits thermalization (becomes populated) with increasing
temperatures. This notion is in agreement with the PLE results,
for direct excitation from the ground state of C1h symmetry
of Nb0 into this state is possible at any low temperature. This
notion is consistent also with the very long (compared to other
centers) lifetimes of the optical transitions. Furthermore, in
view of the small deviation from C3v symmetry we expect
the optical properties of the high-energy lines (Nb3 − Nb5) in
terms of polarization and Zeeman splitting to be similar to the
properties of the low-energy triplet (Nb0 − Nb2) because the
descent to C1h symmetry can be viewed as small perturbation
which does not affect strongly the selection rules considered
in C3v symmetry. Indeed, the middle line in the high-energy
triplet Nb4 exhibits E‖c polarization in both 4H and 6H SiC,
similar to its analog Nb1 line in the low-energy triplet. The
remaining two lines (Nb3 and Nb5, whenever observable)
do not show preferable polarization in analogy with the
corresponding Nb0 and Nb2 lines (cf. Fig. 2). Finally, the
Zeeman splitting of the Nb3 and Nb5 lines which can be
observed for magnetic field parallel to the c axis shows
essentially the same pattern as that for the Nb0 and Nb2 lines, as
will be demonstrated in Sec. V. Thus, the notion of an excited
state of the exciton of C1h symmetry associated with the Jahn-
Teller distortion of Nb0 is in agreement with all experimental
observations, but its existence remains arguable until proved
or dismissed using more accurate calculation methods.

V. ZEEMAN EFFECT: MODELS AND EXPERIMENT

A. Experimental results

Since the behavior of the excited-state manifold under
magnetic field is of interest, the Zeeman spectra were recorded
not only at 2 K but also at somewhat elevated temperatures
(5–30 K) allowing the observation of the lower-energy triplet
Nb0 − Nb2. The high-energy triplet Nb3 − Nb5 remains too
weak and temperature-associated line broadening prevents
detailed study of the Zeeman effect on all the three lines;
however, it was possible to record the Nb3 (and, to some
extent, the Nb5) line behavior for a magnetic field parallel
to the c axis (B ‖ c). An applied magnetic field reduces the
symmetry of a defect in different ways depending on the
orientation of the field with respect to the crystallographic axes
(c axis). Considering the Nb-bound exciton of C3v symmetry,
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FIG. 4. Zeeman splitting of the Nb-related lines recorded with
two different polarizations in magnetic field B ‖ c up to 5 T. Parts (a)
and (b) of the figure refer to right- and left-hand circular polarizations,
respectively. Note the scale changes in the high-energy region of the
spectra. (Data is adapted with permission from Ref. [18].)

magnetic field B ‖ c reduces the symmetry to C3, whereas the
highest possible symmetry in a magnetic field perpendicular
to the crystal c axis (B ⊥ c) is C1h. If simply a state with
spin equal to 1/2 is considered (without regard for spin-orbit
interaction), one intuitively expects that magnetic field B will
split it into two states with energies ±μB

2 with respect to the
zero-field energy. Also, if a hole state is considered, the state
corresponding to spin (or total angular momentum) +1/2 lies
lower in energy. However, we have to deal with excited and
ground states involved in the PL transition which are subject to
spin-orbit interaction, in accord with our model of a Nb-bound
exciton. Therefore, in the next section we will consider in
detail two phenomenological models which will be used in the
interpretation of the experimental data.

The spectra of Nb-doped 4H-SiC at 30 K in magnetic field
B ‖ c up to 5 T are shown in Fig. 4. Note that due to the Faraday
configuration imposed by our experimental geometry the Nb1

line is not detected, because it is polarized parallel to the c axis

FIG. 5. (Color online) Illustration of the Zeeman splitting of the
Nb-related lines in magnetic field B ⊥ c up to 10 T at three different
temperatures as denoted in each panel. Different temperatures are
used in order to distinguish high- from low-temperature lines in the
spectra. The zero-field positions of the lines are denoted in each panel.
(Some data is adapted with permission from Ref. [18].)

and, consequently, propagates in the basal plane. The spectra in
magnetic field B ⊥ c up to 10 T for three different temperatures
are shown in Fig. 5. We notice that although in this case the
light was collected through the edge of the sample enabling
detection of polarization E ‖ c, the Nb1 line is observed weakly
only in the spectra recorded at 15 K. We attribute this weak
intensity to the fact that the light is collected via fiber, so that
light propagating in a spatial angle (with E ⊥ c) is collected
more efficiently than light propagating in a plane (with E ‖ c
polarization). In addition, the distance between the fiber and
the sample is uncontrollable in practice, due to shrinking of
the sample holder at low temperature. Larger distance of the
fiber from the edge of the sample will diminish the intensity
ratio between the E ‖ c and E ⊥ c polarizations.
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B. Phenomenological models describing the Zeeman splitting

The interpretation of the experimental data, especially for
the case B ⊥ c (Fig. 5), requires consideration of the spin
Hamiltonian of the excited and ground states. As will be
seen, this consideration will allow us to explain the nonlinear
splitting of the PL lines observed with magnetic field B ⊥ c. In
addition, we will obtain justification for the much simpler and
rather intuitive picture observed for the case B ‖ c, resembling
the splitting of states with spin 1/2 already mentioned in
Sec. V A. We will also address the selection rules in magnetic
field.

In building the phenomenological Hamiltonian describing
the ground and excited states of the Nb center we have to
account for the spin-orbit coupling pertinent to the hole.
On one hand, we can treat the orbital angular momentum l

and spin s of the hole separately and describe the spin-orbit
coupling introducing appropriate operators in the Hamiltonian
(weak to intermediate spin-orbit coupling); this model will be
referred to further on as the ls model. On the other hand, we
may consider another phenomenological model where l and s

are already coupled into total angular momentum j = l + s,
which behaves as a single quantity in external magnetic field
(strong spin-orbit coupling); this model will be referred to
as the j model. In the following we shall work out both
models and compare their predictions with the experimental
data. It should be noticed in advance, however, that there is
no reason to expect that the same (j or ls) model provides
a good description of both the excited and the ground states.
This will be stipulated further during the comparison with the
experimental data.

Let us consider now the ls model. Disregarding at first the
spin of the free (or weakly bound) hole, we notice that its wave
function (the orbital part) behaves as one of the components
of a p-like state (in the common s,p,d,f, . . . notation familiar
from the hydrogen atom). In Td (or spherical) symmetry a p-
like state is triply degenerate, i.e., the three components px , py ,
and pz have the same energy. Consequently, we may represent
these three wave functions corresponding to orbital angular
momentum l = 1 with the combinations |l,ml〉, where ml =
0, ± 1 is the orbital angular momentum quantum number. In
uniaxial symmetry (C6v for a free hole, or C3v for the weakly
bound one) with the z axis along the symmetry c axis, the px

and py components are still degenerate, but the energy of the pz

counterpart will be different due to the crystal-field splitting.
The corresponding wave functions within the |l,ml〉 notation
can be denoted as |1,+1〉, |1,−1〉 for the degenerate px,py

components, and |1,0〉 for the pz component. The notation
can be simplified by omitting the index l = 1, thus the three
functions above can be denoted simply as |ml〉, i.e., |1〉, |−1〉,
and |0〉. This results in the following Hamiltonian with account
for crystal-field splitting (but without account for spin):

Ĥ0 = |0〉〈0| + εcf (|1〉〈1| + |−1〉〈−1|), (2)

where εcf < 0 is the energy associated with the crystal field. Its
value is negative, because we describe a p-like hole, for which
the double-degenerate state (without account for spin-orbit
coupling) lies lower in energy than the nondegenerate |0〉 state.
The wave function |0〉 transforms as the fully symmetric �1

representation of C3v , whereas the two functions |1〉 and |−1〉
form the basis for the two-dimensional �3 (denoted sometimes
E) representation of C3v .

Account for spin doubles the degeneracy of the three
considered states. The wave functions can be denoted now with
|ml,ms〉, where ms = ±1/2 is the spin quantum number. Also,
the spin-orbit interaction becomes active, which is accounted
for by the spin-orbit Hamiltonian

ĤSO = λ‖ l̂zŝz + λ⊥(l̂+ŝ− + l̂−ŝ+). (3)

Here, λ‖ and λ⊥ are phenomenological constants with
dimension of energy determining the strength of the spin-orbit
interaction along and perpendicular to the crystal axis (c
axis), both negative because we describe a hole; l̂± = l̂x ± il̂y ,
ŝ± = ŝx ± iŝy , and l̂x ,l̂y ,l̂z(ŝx ,ŝy,ŝz) are the components of the
orbital angular momentum (spin) operator, respectively. The
symmetry of the wave functions |ml,ms〉 is the following. Each
of the two pairs {|0,1/2〉,|0,−1/2〉} and {|−1,−1/2〉,|1,1/2〉}
forms a basis for the two-dimensional �4 representation of
C̄3v , whereas the two remaining functions |−1,−1/2〉 and
|1,1/2〉 correspond to the �56 representation. The Hamiltonian
in absence of magnetic field then becomes Ĥ0 + ĤSO .

Finally, we add the Zeeman Hamiltonian ĤZ , which in
our case of p-like hole in magnetic field B with components
Bx,By,Bz takes the form

ĤZ = −μ(l̂ + 2ŝ)B = −μ(l̂z + 2ŝz)B‖ − 1
2μ[(l̂+ + 2ŝ+)B− + (l̂− + 2ŝ−)B+], (4)

where B± = Bx ± iBy , B‖ = Bz, µ is the Bohr magneton, and the overall minus sign in the Hamiltonian is due to the fact that we
describe a hole. In the following we use also the notation B⊥ = B+, hence B− = B∗

⊥ (the asterisk superscript denotes complex
conjugation).

We now expand the total Hamiltonian Ĥ = Ĥ0 + ĤSO + ĤZ in the basis of the six wave functions |1〉 = |0,1/2〉, |2〉 =
|0,−1/2〉, |3〉 = |−1,1/2〉, |4〉 = |1,−1/2〉, |5〉 = |−1,−1/2〉, and |6〉 = |1,1/2〉 and obtain the general form of the Hamiltonian
matrix (in general magnetic field)

H = EI +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μB‖ −μB∗
⊥ −μB∗

⊥√
2

λ⊥√
2

0 −μB⊥√
2

−μB⊥ μB‖ λ⊥√
2

−μB⊥√
2

−μB∗
⊥√
2

0

−μB⊥√
2

λ⊥√
2

εcf − λ‖
2 0 −μB∗

⊥ 0
λ⊥√

2
−μB∗

⊥√
2

0 εcf − λ‖
2 0 −μB⊥

0 −μB⊥√
2

−μB⊥ 0 εcf + λ‖
2 + 2μB‖ 0

−μB∗
⊥√
2

0 0 −μB∗
⊥ 0 εcf + λ‖

2 − 2μB‖

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)
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Here I is the unit matrix and E is simply a constant energy
shift (of the order of the energies of the PL transitions) applied
to the eigenenergies of Eq. (5) in order to reproduce the shift
of the excited states from the ground state at zero magnetic
field. The average energy of the ground state at zero field will
be chosen as reference (zero) energy.

We see from Eq. (5), e.g., by considering the form of the
matrix at zero magnetic field (B = 0) that λ⊥ is responsible
for mixing of the two doublets of �4 symmetry, whereas
λ‖ is responsible for the splitting of the �56 state from the
nearest in energy �4 state. Furthermore, at zero magnetic field
all eigenvalues are doubly degenerate and can be presented
analytically:

ε1,3 = 1

2

(
εcf − λ‖

2

)⎡
⎣1 ∓

√
1 + 2

(
λ⊥

εcf − λ‖/2

)2
⎤
⎦, (6a)

ε2 = εcf + λ‖
2

. (6b)

The “−” sign in Eq. (6a) refers to ε1, the “+” sign to ε3,
and ε1 < ε2 < ε3 (recall that λ‖ < 0). The differences between
the states should be compared to the zero-field splitting of
the observed PL lines, i.e., ε3 − ε1 = 1.8 meV, and ε2 − ε1 =
0.65 meV (cf. Table I). This yields the equations√(

εcf − λ‖
2

)2

+ 2λ2
⊥ = 1.8 meV and

(7)
1

2
εcf + 3

4
λ‖ = −0.25 meV.

The first equation in (7) shows that consistency with the ex-
perimental data requires |λ⊥| < 1.8/

√
2 meV ≈ 1.273 meV.

The value of |λ⊥| is also bound from below, |λ⊥| > 1.23 meV
(approximately), in order to ensure the ordering ε1 < ε2 <

ε3, which is in agreement with the experimental data (the
middle line in the low-energy PL triplet has E ‖ c polarization
stemming from �56 → �56 transition). Once λ⊥ is chosen,
the values for εcf and λ‖, which ensure the same splitting
as the experimental one, are determined by solving Eqs. (7).
We will see later that the choice of larger (by absolute
value) λ⊥ leads to similar splitting of the two �4 states in
magnetic field B ‖ c, which is consistent with the experimental
data. Using, for instance, λ⊥ = −1.270 meV (close to the
maximum absolute value), we obtain λ‖ ≈ −0.190 meV and
εcf ≈ −0.214 meV from Eqs. (7). The choice of the energy
shift E = 1383.46 meV in Eq. (5) puts the lowest-energy
PL transition at the same energy as the experimental one
(∼1382.5 meV in 4H SiC; cf. Table I). The corresponding de-
pendence of the excited states on the magnetic field is depicted
in Figs. 6(b) and 6(d) for B ‖ c and B ⊥ c, respectively.

The ground state of Nb0, represented by a hole in e state
in C3v symmetry effective after the exciton recombination
and before relaxation to C1h symmetry, could be treated in
a similar way within the ls model. Although no relation to
the valence-band states is expected because the hole is tightly
bound in this state, a state of e symmetry (�3 in C3v) can still
be roughly approximated as stemming from degenerated px

and py orbitals of a p-like state, with the corresponding pz

orbital being remote in energy and, therefore, not participating

FIG. 6. (Color online) Splitting of the energy levels in magnetic
field B ‖ c [panels (a) and (b)] and B ⊥ c [panels (c) and (d)]
calculated using the j model [panels (a) and (c)] and the ls model
[panels (b) and (d)] for the excited states, and the j model for the
ground state with small arbitrary splitting of 0.1 meV. Note that all
transitions denoted with arrows in part (a) occur at energy shifts very
close to ±μB‖ from the zero-field line position (exactly ±μB‖ if
the ground-state zero-field splitting is zero). For the case B ⊥ c, only
transitions used in Fig. 7 are denoted and enumerated to comply with
the discussion in text.

in the resulting Hamiltonian. The Hamiltonian built according
to this concept would resemble the lower right 4 × 4 minor of
the matrix in Eq. (5), but of course with different values for
the parameters εcf and λ‖. However, the set of basis functions
would now involve only four functions: the pair |−1,1/2〉,
|1,−1/2〉 transforming as �4, and the pair |−1,−1/2〉, |1,1/2〉
transforming as �56. Neglecting the second �4 state will
neglect also the coupling of the two �4 states (equivalent
to λ⊥ = 0), and it will be shown shortly that we have to
resort to the j model in the description of the ground state.
It should be noted here, that the considered model of a tightly
bound hole for the ground state is consistent with the large
spin-orbit splitting usually associated with transition metals.
Indeed, although the treatment of hole states as p like would
only be a rough approximation for the ground state, the
ls model shows that a large splitting of one of the p-like
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components (transforming as �4) can be achieved on account
of a large value of either εcf , or λ⊥ alone, as seen for instance
from Eqs. (6). For example, for εcf  |λ⊥|, we obtain from
Eqs. (6) that ε1 ≈ 0 and ε2,3 ≈ εcf ± λ‖

2 , so that essentially the
splitting between the �56 and the higher-in-energy �4 states is
determined by λ‖ and may be negligibly small. The small value
of λ‖ cannot be justified from the model, but is inferred from
the experimental data showing that the ground state behaves
as a single state. Consequently, its splitting (if any) is below
the visible linewidth of the PL lines (∼0.3 meV). Thus, when
considering the j model we will set the splitting for the ground
state of the hole with e symmetry in C3v to 0.1 meV, quite arbi-
trarily, merely with the purpose to illustrate the effect of a small
splitting on the energy-level dependencies in magnetic field.

Let us now outline briefly the j model, which allows
us to examine a scenario when the spin and orbital angular
momentum are already coupled (strongly) into a total angular
momentum j . This case can be examined on the grounds
of standard perturbation theory. We consider first the excited
state. The possible values of j are 1/2 (l and s—antiparallel)
and 3/2 (l and s—parallel). Using the notation |j,mj 〉,
where mj is the projection of j , the six wave functions

involved in the description of the excited state may be denoted
as |1〉 = |1/2,1/2〉, |2〉 = |1/2,−1/2〉, |3〉 = |3/2,−1/2〉,
|4〉 = |3/2,1/2〉, |5〉 = |3/2,−3/2〉, and |6〉 = |3/2,3/2〉. As
in the ls model, each of the first two pairs (i.e., {|1〉,|2〉}
and {|3〉,|4〉} with mj = ±1/2 forms the basis for the �4

representation, whereas the last pair transforms as the �56

representation. The six wave functions are now assumed
to be eigenfunctions of the phenomenological zero-field
Hamiltonian Ĥ ′

0 with the spin-orbit interaction and crystal-
field splitting already included, which is considered as the
known unperturbed Hamiltonian. Thus, we already know the
zero-field splitting between the eigenenergies corresponding
to the three pairs {|1〉,|2〉}, {|3〉,|4〉}, and {|6〉,|6〉} from the
experimental energy positions of the PL lines, assuming
negligible splitting in the ground state. The perturbation in
magnetic field is given by the Zeeman Hamiltonian Ĥ ′

Z , which
now (within the j model) reads

Ĥ ′
Z = −μĵB = −μĵzB‖ − 1

2μ[ĵ+B− + ĵ−B+]. (8)

The Hamiltonian matrix H ′ corresponding to the Hamilto-
nian in magnetic field Ĥ ′ = Ĥ ′

0 + Ĥ ′
Z reads

H ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1 − μB‖
2 −μB∗

⊥
2 0 0 0 0

−μB⊥
2 E1 + μB‖

2 0 0 0 0

0 0 E2 + μB‖
2 −μB⊥ −

√
3μB∗

⊥
2 0

0 0 −μB∗
⊥ E2 − μB‖

2 0 −
√

3μB⊥
2

0 0 −
√

3μB⊥
2 0 E3 + 3μB‖

2 0

0 0 0 −
√

3μB∗
⊥

2 0 E3 − 3μB‖
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Note that within the j model there are no adjustable
parameters. The three energy shifts corresponding to the three
PL lines observed at zero field are E1 = 1384.3 meV, E2 =
1382.5 meV, and E3 = 1383.15 meV, in order to comply with
the experimentally observed zero-field splitting. Arguments
analogical to those supplied in the consideration of the ground
state within the ls model suggest that the ground state can be
described by a Hamiltonian resembling the lower right-hand
4 × 4 minor of the Hamiltonian matrix of Eq. (9), but with
different values of the zero-field energies E0

2 = −0.05 meV
and E0

3 = 0.05 meV. The superscript “0” denotes the energies
of the ground state, and the average value of the energy
of the ground state at zero field is chosen as zero-energy
reference, (E0

2 + E0
3)/2 = 0, as noted earlier. Similar to the

discussion within the ls model, only four wave functions are
involved in the description of the ground state, namely, |3〉0 =
|3/2,−1/2〉, |4〉0 = |3/2,1/2〉, |5〉0 = |3/2,−3/2〉, and |6〉0 =
|3/2,3/2〉, using as before the notation |j,mj 〉. It should be
recognized that the j model is free from the problem with
neglect of the interaction between the two �4 states, which
was discussed when investigating the possibility to build the
ground-state Hamiltonian using the ls model. This is due
to the fact that the spin-orbit interaction is already built into
the j model on a phenomenological basis. Note the arbitrary
splitting of 0.1 meV between the two components of the
ground state at zero field, which was discussed earlier and

is introduced simply with the purpose of illustrating the effect
of small splitting on the energy-level dependencies in magnetic
field. Explicitly, the Hamiltonian matrix describing the ground
state reads

H 0 =

⎛
⎜⎜⎜⎜⎝

E0
2 + μB‖

2 −μB⊥ −
√

3μB∗
⊥

2 0

−μB∗
⊥ E0

2 − μB‖
2 0 −

√
3μB⊥

2

−
√

3μB⊥
2 0 E0

3 + 3μB‖
2 0

0 −
√

3μB∗
⊥

2 0 E0
3 − 3μB‖

2

⎞
⎟⎟⎟⎟⎠.

(10)
The resulting energy dependencies of the excited states on

magnetic fields B ‖ c and B ⊥ c are plotted in Figs. 6(a) and
6(c), respectively. The ground-state dependence on magnetic
field is that from the j model in all four panels of Fig. 6.
Note that while the splitting of the levels of the excited state
predicted by the ls model and the j model look qualitatively
similar in Fig. 6, quantitatively they are very different.
However, before further consideration of these models and
comparison with the experiment we will address briefly the
selection rules for the two cases B ‖ c and B ⊥ c.

C. Selection rules in magnetic field

In magnetic field B ‖ c the symmetry descends from C3v to
C3. The �4 and �56 representations of C̄3v are compatible with
the following representations of C̄3 : �4(C̄3v) → �4 + �5(C̄3),
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and �56(C̄3v) → �6 + �6(C̄3). The dipole operator for light
polarized perpendicular to the c axis (E ⊥ c) transforms as
either �2 or �3 representation of C̄3, corresponding to left
or right circular polarization (LCP or RCP), respectively.
Consequently, transitions from �4(C̄3) to �5(C̄3) are allowed
with emission of photons with LCP, whereas �5(C̄3) to �4(C̄3)
transitions produce photons with RCP. We notice that the above
compatibility relations mean that double-degenerate states of
the hole of spin +1/2 (transforming as �4 of C̄3v) split into
two states in B ‖ c: the state with lower energy has spin +1/2
and transforms as �4(C̄3), while its counterpart with spin −1/2
transforms as �5(C̄3). The �56(C̄3v) states also split into two
states, both transforming as �6(C̄3). The selection rules for
dipole transitions then require spin flip in C̄3 symmetry, as
long as photon polarization E ⊥ c is considered, with either
LCP or RCP. Transitions between the �6(C̄3) components
into which the original �56(C̄3v) states split in magnetic field
B ‖ c are also allowed, but with E ‖ c polarization, which
is not observed in our experimental geometry for B ‖ c. In
principle, transition between the �6(C̄3) levels of the excited
state and �4(C̄3) or �5(C̄3) sublevels of the ground state
and vice versa are also allowed with either RCP or LCP
polarization; however, such transitions are not observed in
our experiment, probably because they stem from the Nb1

line polarized E ‖ c without magnetic field. Its components
in magnetic field B ‖ c up to 5 T may remain too weak (or
remain obscured within the strong �5 ↔ �4 transitions) and
are not discerned in the E ⊥ c polarization inherent to Faraday
geometry. We notice that in general, while our models based on
consideration of p-like hole provide quite good description of
the observed Zeeman splitting of the lines, they do not provide
the expected understanding for the polarization of all the lines
(observed only for the case B ‖ c in this work), possibly due to
neglect of mixing of any other but p-like states in our model
Hamiltonians, as well as neglect of geometrical factors which
might influence the measurement.

In what concerns the case B ⊥ c, due to the low symmetry
(C1) all transitions are allowed from a group-theoretical point
of view. However, the group theory does not allow us to
deduce the oscillator strength of the possible transitions;
neither can we rely on our simple models for this purpose.
Therefore, comparison between the models and the experiment
in this case will be carried out on a semiqualitative basis by
considering the behavior of the photon energy vs magnetic field
dependence of those transitions which we believe dominate the
experimentally observed spectra.

D. Comparison with experiment

Let us start with quantitative comparison of the two models.
In the case B ‖ c, the Hamiltonian within the j model remains
diagonal also for B �= 0 [B‖ �= 0, B⊥ = 0; cf. Eqs. (9) and
(10)], hence it is easy to see that all states with mj = 1

2 split

as ±μB‖
2 , whereas the states with mj = 3

2 split as ± 3μB‖
2 (valid

for both the ground and excited states). This picture is in
agreement with our previous intuitive consideration of spin-
1/2 splitting and leads to splitting of the PL lines in the case
B ‖ c by amount ≈ 2μB‖, which will be seen to agree with the
experimental data. On the other hand, for the same situation

(B ‖ c) the ls model predicts for the excited state that the
�56 state splits as ±2μB‖, whereas the splitting of the two
mixing �4 states is strongly dependent on the relation between
λ‖ and λ⊥. If we were to deal with the situation |λ⊥| � |λ‖|
(or the extreme λ⊥ = 0), we would obtain that the �4 state
intermediate in energy does not split at all in magnetic field
B ‖ c, whereas the other �4 state (highest in energy) splits as
±μB‖, a situation which disagrees with the experimental data.
On the contrary, admitting |λ⊥|  |λ‖| [as in Figs. 6(b) and
6(d)] we obtain that now both �4 states split by an amount close
to ±μB‖

2 , similar to the situation in the j model. Thus, strong
mixing of the �4 states (induced by large value of |λ⊥| 
|λ‖|) leads to similar behavior of the �4 states in the j and
ls models in magnetic field B ‖ c. This stipulates the choice
of λ⊥ = −1.270 meV (close to the maximum value for |λ⊥|)
made earlier for the plot shown in Fig. 6.

Let us compare the prediction of the two models for
the excited state (j model for the ground state) with the
experimental data. Considering first the case B ‖ c we notice
from Figs. 6(a) and 6(b) that both models predict nearly linear
dependence of the energy levels on the magnetic field, and
in both models the �4 levels split by an amount close to
±μB‖

2 . However, whereas this splitting is exactly ±μB‖
2 in the

j model, there is small asymmetry in the splitting of the two
�4 components of the excited state within the ls model: the
lower-in-energy �4 state splits slightly less than ±μB‖

2 , while
the uppermost one splits slightly more, as seen in Fig. 6(b).
Since within the Faraday geometry for the case B ‖ c we
anticipate mainly transitions involving �4 and �5 states (within
C̄3), the above-mentioned asymmetry will result in slightly
different splitting between the Nb0 and Nb2 lines. However,
within the experimental error the splitting with magnetic field
B ‖ c for these two lines is the same. This is illustrated in
Fig. 7(a), where the lines represent the calculated transition
energies using the j model for the transitions denoted by
arrows in Fig. 6(a). Therefore, the j model provides almost
exact description of the experimental data for B ‖ c, although
the ls model (with λ⊥ = −1.270 meV) is also in reasonable
agreement with it. The j model predicts splitting of both PL
lines by 2μB‖ exactly, to be compared with ∼1.9μB‖ observed
experimentally (cf. Fig. 4), but this slight discrepancy may be
attributed to slight (uncontrolled) misorientation between the
c axis and the direction of the magnetic field. All allowed
transitions are denoted with arrows in Fig. 6(a) and occur
symmetrically shifted at energies ±μB‖ with respect to the
corresponding zero-field line positions.

As seen from Fig. 4, we observe contributions from
both circular polarizations in all lines. Note however, that
the low-energy component of the Nb0 and Nb3 lines is
dominated by RCP, but for Nb2 the low-energy component
has predominantly the opposite LCP. The exact determination
of the peak positions for the Nb5 line from the spectra is
hindered due to its weakness and overlap with the stronger
Nb3 line, but its behavior is clearly analogous to that of
Nb2: the low-energy component is dominated by LCP and the
high-energy one by RCP. Thus, the polarization and behavior
in magnetic field B ‖ c is analogous, on one hand, for the pair
of lines Nb0 and Nb3, and, on the other hand, for the pair Nb2

and Nb5. This analogy can be complemented with the same
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FIG. 7. (Color online) Comparison of all experimental data with
the phenomenological models for the cases (a) B ‖ c and (b) B ‖ c.
(Most of the spectra are shown in Figs. 4 and 5.) The symbols in the
panels represent the experimental line positions. The full lines are
the theoretically calculated line positions using the j model for the
ground and excited states. The dashed lines in part (a) are obtained
by shifting the full lines from Nb0 to Nb3, demonstrating the same
splitting of these lines. The dotted lines in part (b) represent transitions
denoted 5′ and 6′ in Fig. 6(d), which are calculated using the ls model
for the excited state and the j model for the ground state, and are given
for comparison. Note that three different symbols are used to denote
the data from the spectra measured at the three different temperatures
in the case B ⊥ c, and the enumeration of the theoretical lines follows
the enumeration of the transitions in Fig. 6.

polarization (E ‖ c) of the middle lines in the triplets, Nb1

and Nb4, in absence of magnetic field. Thus, the high-energy
triplet has similar optical properties to the low-energy one,
which corroborates our concept that the high-energy triplet
also stems from the valence-band threefold splitting inherited
by the weakly bound hole in the Nb-bound exciton, but
when the center is in C1h symmetry, as already discussed in
Sec. IV E.

The reason for the opposite polarization (LCP vs RCP) of,
e.g., the low- or high-energy components of Nb0 and Nb2 are
not fully understood at present. This model predicts that all
low-energy branches will have LCP, while the high-energy
ones will have RCP. Thus, the model is in agreement with the
dominant polarization for Nb0 (and Nb3) only; the opposite
behavior of Nb2 and Nb5 is not understood at present.

Let us consider now the case B ⊥ c. The splitting of
the ground state (j model) remains approximately linear.
However, the magnetic field B ⊥ c induces strong mixing
between the substates of the excited state (with the exception of

the highest-energy doublet in the j model) leading to nonlinear
dependence of the energies of the interacting states on the
magnetic field. Also, in this case due to low symmetry basically
all transitions are allowed, but our simple models do not allow
calculation of the transition probabilities. Careful comparison
of the predictions of the two models with the experimental data
allows us to conclude that the j model provides overall better
description of the experiment. In Fig. 7(b) we have summarized
the experimental line positions at different temperatures
(symbols) and plotted the transition-energy dependencies
calculated using the j model for those transitions which are
probably dominating the PL spectra. These transitions are also
depicted by arrows in Fig. 6(c). The choice of the depicted
transitions is consistent with the temperature dependence of
the PL spectra shown in Fig. 5. Thus, for example, at the lowest
temperature (T = 2 K) only one PL line is observed, which
stems from transition involving the lowest in energy branch of
the excited state. Comparison of the slope of the experimental
field dependence of the line position with the four possible
slopes corresponding to transitions from this branch to the
four branches of the ground state indicates that one of them
has dominating transition probability [denoted 1 in Fig. 6(c)],
because this is the only transition that reproduces very well
the slope observed experimentally. We note that no good
agreement with the experimental data for this transition can be
achieved if the ls model is used for the excited state, due to the
different slope of the lowermost curve in the excited state [cf.
Figs. 6(c) and 6(d)]. Similarly, at slightly higher temperature
(T = 5 K) transitions involving higher excited states can be
observed experimentally, mainly involving the two branches
of the lowest in energy �4 state and the lower branch of the
highest-in-energy �4 state of the excited state [denoted by 2
and 3 in Fig. 6(c)]. As already noticed, the components of the
Nb1 line polarized ‖c remain very weak in this experimental
geometry, which we attributed in Sec. V A to its different
polarization (‖ c) and the fact that the luminescence is detected
using a fiber. Thus, one component of the Nb1 line becomes
visible [albeit weakly; denoted as 4 in Fig. 6(c)] only at
T = 15 K. At this temperature (15 K) transition also from the
higher branch of the high-energy �4 state can be discerned,
too [denoted 6 in Fig. 6(c)]. The agreement between the
experimental data and the calculated PL line positions within
the j model presented in Fig. 7 is quite reasonable. We notice,
however, that the j model does not describe the nonlinearity
in the field dependence of the highest-energy PL lines, which
can be seen in Fig. 7(b) for B ⊥ c. This is due to the fact that
in the frame of the j model the highest-in-energy �4 state of
the excited state does not mix with the rest of the states. With
the choice of λ⊥ = −1.270 meV the ls model reproduces
better the nonlinearity of the higher-energy dependencies [the
corresponding transitions are denoted 5′ and 6′ in Fig. 6(d)];
these transitions are displayed with dotted lines in Fig. 7(b)
(enumerated 5′ and 6′) for comparison with the prediction of
the j model displayed with full lines. It is worth noting that
the observed nonlinearity of the highest-energy lines can be
described better within the ls model if all transitions to the
ground-state manifold are considered (not shown). However,
we have refrained from fitting the parameters for this purpose
in view of the simplicity of the model. To conclude, the j and
ls models together provide quite reasonable description of the
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Zeeman data, in accord with the concept of the Nb-bound
exciton presented in Sec. III.

VI. CONCLUSIONS

The presented model of a bound exciton with strongly
bound electron and weakly bound (effective-mass-like) hole
provides a quite detailed explanation of the experimental
data presented. The experimentally observed energy of the
Nb-bound exciton in 4H-SiC is in very good agreement with
the theoretical results obtained from first principles, which
demonstrate also the trend of quenching of the crystal-field
splitting of the weakly bound hole, in agreement with the
experimental observation. The gross features of the Zeeman
spectra can be understood on the basis of a simplified model
using phenomenological Hamiltonian in order to describe

the splitting of the components of the ground and excited
states in the PL transition. Finally, we note that our model
implies that Nb in the ASV h − h configuration acts as a deep
acceptor.
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[16] V. Ivády, A. Gällström, N. T. Son, E. Janzén, and A. Gali, Phys.
Rev. Lett. 107, 195501 (2011).

[17] N. T. Son, X. T. Trinh, A. Gällström, S. Leone, O. Kordina, E.
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