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We conduct a detailed investigation of the polaron self-interaction (pSI) error in standard approximations to
the exchange-correlation (XC) functional within density-functional theory (DFT). The pSI leads to delocalization
error in the polaron wave function and energy, as calculated from the Kohn-Sham (KS) potential in the native
charge state of the polaron. This constitutes the origin of the systematic failure of DFT to describe the polaron
formation in band insulators. It is shown that the delocalization error in these systems is, however, largely absent
in the KS potential of the closed-shell neutral charge state. This leads to a modification of the DFT total-energy
functional that corrects the pSI in the XC functional. The resulting pSIC-DFT method constitutes an accurate
parameter-free ab initio methodology for calculating polaron properties in insulators at a computational cost
that is orders of magnitude smaller than hybrid XC functionals. Unlike approaches that rely on parametrized
localized potentials such as DFT+U, the pSIC-DFT method properly captures both site and bond-centered
polaron configurations. This is demonstrated by studying formation and migration of self-trapped holes in
alkali halides (bond-centered) as well as self-trapped electrons in an elpasolite compound (site-centered). The
pSIC-DFT approach consistently reproduces the results obtained by hybrid XC functionals parametrized by
DFT+G( W, calculations. Finally, we generalize the pSIC approach to hybrid functionals, and show that in stark
contrast to conventional hybrid calculations of polaron energies, the pSIC-hybrid method is insensitive to the
parametrization of the hybrid XC functional. On this basis, we further rationalize the success of the pSIC-DFT

approach.
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I. INTRODUCTION

Polarons form in many wide-band gap materials as a
result of charge carrier localization due to strong electron-
phonon coupling. Their formation and transport are crucial
to understanding important quantum-mechanical processes
occurring in electrochemical devices such as batteries [1]
and scintillation detectors [2]. Conventional approximations
to the exchange and correlation (XC) potential within density-
functional theory (DFT), such as the local density approxima-
tion (LDA), and generalized gradient approximations (GGA)
[3], fail qualitatively to describe polaron formation. Hybrid
functionals, which combine exact exchange (EX) [4,5] with
LDA/GGA to correct for the band gaps of insulators, are ca-
pable of predicting polaron formation but are computationally
orders of magnitude more expensive than DFT.

For small polarons localized at specific atomic sites, which
is the case in many oxides [6-9], an orbital-dependent local
potential in the spirit of the DFT4-U approach [10] can be
added to localize the excess charge and stabilize the polaron.
While this enables one to significantly reduce the compu-
tational cost for calculating polaron energies, the approach
is not viable if the polaronic state involves multiple atomic
sites and/or large atomic displacements. This is unfortunately
a very common occurrence, e.g., in halides, where polaron
formation proceeds via dimerization (bond-centered polarons,
so-called Vi centers [11]) or in the case of polaron migration.
Furthermore, both hybrid-DFT and local potential methods
depend on adjustable parameters. The fraction of EX or the
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strength of the local potential are usually determined a priori
for a reference configuration and then kept fixed throughout
configurational changes. In summary, numerous complications
have limited the systematic investigation of polarons and their
transport from first principles.

The present work builds on two ideas: (i) the LDA/GGA
failure to predict polaron formation is mainly due to the
self-interaction (SI) of the localizing carrier [6,12,13] and
(ii) while LDA and GGA severely underestimate the band gaps
of insulators, they accurately predict band edge variations,
induced by configurational changes [14,15]. Based on these
considerations, we propose a simple modification to the DFT
total-energy functional, the polaron self-interaction correction
(pSIC), that accounts for the spurious polaron SI without
explicit addition of EX, and without an implicit limitation
to site-centered local potentials. The resulting pSIC-DFT
functional is parameter-free and can be used for ab initio
molecular-dynamics simulations of hole as well as electron
polarons in arbitrary band insulators with an accuracy that
is on par with the best hybrid-DFT parametrizations, at a
computational cost comparable with standard DFT. Its strength
and versatility is demonstrated by studying the formation and
migration of hole polarons in the alkali halide family of com-
pounds, and electron polarons in Cs;LiYClg (CLYC), which
is an elpasolite compound that has received much attention in
recent years due to its potential as a scintillator material.

It is important to point out that the polaron self-interaction
correction can be applied to any XC functional. Naturally,
when applied to hybrid functionals, the pSIC method does not
decrease the computational cost. However, also in these cases,
pSIC leads to a systematic improvement and significantly
reduces the sensitivity of the results to hybrid parametrization.

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.92.075202

BABAK SADIGH, PAUL ERHART, AND DANIEL ABERG

This lends further credibility to the pSIC method as a general
formalism applicable to polarons in crystalline and disordered
insulators as well as molecular systems, whenever the removal
or addition of an electron from/to a frontier orbital (highest
occupied or lowest unoccupied quasiparticle state) drives a
structural change.

This paper is organized as follows. The pSIC method
is derived in Sec. II. Section III presents a comprehensive
investigation of the accuracy of the pSIC method in compar-
ison with the hybrid technique. In particular, formation and
migration of hole polarons in alkali halides, and formation of
electron polarons in CLYC are studied. Section IV summarizes
and discusses the findings of the present work. Finally,
computational details are given in Appendix.

II. THE PSIC METHOD

In this section, we motivate and develop the pSIC method
by revisiting the failure of standard DFT functionals for
hole self-trapping in the alkali halide compound Nal [3].
It is an ionic compound in the rocksalt crystal structure
with an equilibrium lattice constant of 6.48 A [16]. The
crystal consists of two interpenetrating fcc sublattices, each
consisting of either Na or I ions only. The ionic bonding in
Nal leads to an insulating ground-state electronic structure
with a band gap of 5.9 eV [17-19]. The valence band
is dominated by hybridized iodine p orbitals, while the
conduction band consists mainly of sodium s orbitals. When
a hole is introduced in the valence band, it mediates covalent
bonding between nearest neighbor iodine ions leading to
dimerization; this implies hole localization and thus the
formation of a polaron [11]. In the following section, the
pathway to polaron formation in Nal is studied from various
angles using DFT as well as hybrid XC functionals.

A. Basic considerations

When a hole is introduced in the valence band of Nal,
it induces a substantial lattice distortion, causing a pair of
nearest-neighbor I~ ions to move along (110) toward each
other. Their separation is reduced from 4.5 A in the perfect
crystal to about 3.3 A, effectively leading to the formation
of an anion dimer I; (a Vg center). The dimerization is
accompanied by displacements of the surrounding atoms that
help to accommodate the lattice strain. Figure 1 shows the
energy along a particular pathway to self-trapping calculated
from (i) DFT based on the PBE XC functional [20], (ii) the
PBEO hybrid-EX functional with 0.25 fraction of EX [4], and
(iii) an optimized hybrid-EX functional in which the fraction
of EX (0.31) has been chosen to reproduce the band gap
of Nal calculated with PBE4+GW,. Further computational
details are listed in the Appendix. Figure 1 clearly shows that
when a hole charge is present in the system, the PBE XC
functional predicts the undistorted lattice to be the lowest
energy configuration. According to PBE, the hole in the
valence shell is thus a homogeneously distributed delocalized
carrier. On the other hand, Fig. 1 also demonstrates that hybrid
functionals, which include some fraction of EX, allow the
system to lower its energy via a lattice distortion that couples to
the hole charge and triggers its localization. Hybrid functionals
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FIG. 1. (Color online) Energy as a function of the two iodine ions
that form the core of the Vi center in Nal. The “optimized hybrid”
has an EX fraction of 0.31. In agreement with the hybrid functionals,
pSIC-DFT yields a stable polaron configuration. Uncorrected DFT
qualitatively fails to reproduce self-trapping.

are thus capable of stabilizing hole polarons in Nal. From
Fig. 1, it is also evident that the polaron binding energy
sensitively depends on the choice of the EX fraction in the
hybrid functional.

It is important to mention here that in the absence of charge
excitations, DFT predicts accurate ground-state (GS) energies
as well as phonon spectra for Nal. Furthermore, Fig. 2 (left
panel) shows that in the neutral charge state, PBE and Gy W,
quasiparticle (QP) energies for a supercell containing atomic
displacements of a Vk-center, are in good agreement with
each other apart from a rigid relative shift of the valence
and the conduction bands, the so-called scissor shift that
compensates for the absence of derivative discontinuity in
the PBE functional. A more detailed comparison between the
QP spectra from PBE, optimized hybrid, and GoWj is given
in Fig. 3. The close agreement of the QP energies implies
that for the neutral charge state, the PBE-KS potential is a
good approximation to the optimized effective potential (OEP)
obtained from the exact XC functional.! As a result, for this
charge state, PBE accurately predicts both the GS energy of the
Vi center, as well as the QP energy of the hole state relative
to the valence band maximum (VBM). In contrast, Fig. 2
(right panel) shows that in the charged state, the unoccupied
hole level virtually overlaps with the VBM, which implies a
delocalized hole character. This explains why PBE predicts no
binding for the Vi center in Fig. 1.

Before embarking on a formal discussion, it is beneficial
to inspect the failure of DFT for the charged Vk center in
Nal from the perspective of the SI error of the localized hole.
This is illustrated in the center panel of Fig. 2, where the
deviation of the DFT energy from linearity as a function of the
fractional hole charge in the system is shown for (i) the perfect
crystal and (ii) the dimerized Vk-center configuration. It is

'Note that the eigenvalues of the exact OEP are not equivalent
to the derivative of the energy functional with respect to the
electron occupations. The difference makes up the so-called derivative
discontinuity, see Ref. [26].
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FIG. 2. (Color online) The center panel shows the variation of the total energy of the perfect lattice (dotted red line) and the Vi center (solid
blue line) configurations with fractional hole charge. The SI can be corrected by removing the curvature of the solid blue line as illustrated
by the dashed green line. The offset between the uncorrected (solid blue) and SI corrected in the limit A = +1 then corresponds to the term
[prr[A = +1] in Eq. (1). The left and right panels show side-by-side views of quasiparticle energies calculated within DFT and G,W, for
neutral and charged, respectively, 64-atom supercells of Nal containing a Vi center.

apparent that the delocalized hole carrier in the perfect crystal
(with negligible SI) exhibits very little deviation from linearity
while significant nonlinearity is observed in the energetics
of the localized polaron in the Vg-center configuration. In
accord with recent literature [6-9,12,13,21-23], we ascribe
this nonlinearity to the DFT SI error for the localized polaron.
Note that the solid blue line in Fig. 2 (center panel) curves in
such a way as to raise the energy of the charged polaronic
configuration relative to that of the ideal lattice, and thus
prevents binding. The effect of the SI error on the stability
of polarons within DFT has also been discussed in Ref. [12].

B. The pSIC-DFT total energy functional

We now formalize the above discussion with the goal to
derive a robust method for structural relaxations as well as
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FIG. 3. (Color online) Energy levels for the Vg -center configu-
ration calculated using DFT, optimized hybrid, and G, W, (based on
PBEDO calculations) for Nal. Red and blue lines represent occupied
and unoccupied levels, respectively. The polaronic level is shown by
orange lines and open circles.

ab initio molecular dynamics simulations of polarons in
general insulating systems with a computational efficiency
comparable to LDA/GGA, which does not rely on a priori
knowledge or guesswork. Consider an extended many-electron
system in a periodic supercell containing N, ions, at a
reference electronic configuration, say, the neutral ground
state. In the following, we denote the number of electrons in
this reference charge state by N,. Let Eppr(N, £ A; R) denote
the DFT energy of this system as a function of the fraction A of
excess electrons/holes. The ion positions are specified by the
3N ,-dimensional vector R, where N, is the number of ions in
the system. We break down the contributions to the energy at
arbitrary A as follows:

Eper[N, = A; R] = Epgr[Ne; R1 £ A - 15 [R]

+ Mprr[£A; R], (1)
where u,]j)[FT is the electron chemical potential, defined as
. 0Epgr
Hprr[R] = lim R, ©)

and INppr quantifies the deviation of Eppr from linearity and
thus can be used as a measure of the polaron SI. Figure 2
(center panel) shows that the Vi -center configuration becomes
stabilized for A =1 if the term IIppr (the polaron SI) is
eliminated from the above equation.

At first sight, this seems to counter the well-known fact that
the electron chemical potentials MSFT’ calculated within DFT,
are inaccurate predictors of the highest occupied (HOMO) and
lowest unoccupied molecular (LUMO) levels in molecules
and of band gaps in solids. The curvatures of LDA/GGA
functionals resulting from their SI are, however, such that
they correct the values of the differential quantities u5; for
the HOMO/LUMO levels in small molecules. This constitutes
the basis for the so-called delta-SCF method, which has been
quite successful in molecular applications. It is, however,
a precarious practice to correct for the lack of derivative
discontinuity in LDA/GGA XC functionals [24,25] by their
SI error. In particular, IIppr[£A; R] can have a spurious

075202-3



BABAK SADIGH, PAUL ERHART, AND DANIEL ABERG

dependence on the ionic configuration R and thus lead to
wrong structural predictions. This can most dramatically be
demonstrated in insulating solids such as Nal, where the
perfect crystal structure has negligible SI while Ilpgr is
quite substantial for the self-trapped polaron. The strong
configuration dependence of Ilppr leads to the failure to
predict polaron formation in these systems. A systematic
correction should rather correct /ngT by adding the contribu-
tion from the derivative discontinuity of the exact exchange-
correlation functional, which is missing in LDA/GGA. Hence
we propose the following polaron SI-corrected (pSIC) total
energy functional for a system with an added electron/hole:

EgiclR] = Eper[Ne; R+ pier[R1 + ASC[R], (3)

where Aic is the missing contribution of the derivative
discontinuity of the exchange-correlation functional to the
chemical potentials [26]. It can be formally expressed as

exact

oN

AxcIR1 = lim [Ne = 15 R] — 62O [Nes RI, (4)

where ¢OFP and ¢xa<-OEP denote the lowest unoccupied
and the highest occupied eigenvalues of the exact OEP
potential in the reference charge state, respectively. Note that
for the ESESIC functional in Eq. (3) to be accurate, it is required
that

Eppr[Ne; Rl & Eexaoi[Ne; R] + constant (5
pprr[R] ~ e§°OFP[N,: R] + constant. (6)

The above is guaranteed, if for the reference charge state, the
KS potential obtained from approximate XC functionals used
in practice closely resembles the exact OEP. We have shown
in Sec. II A that this is indeed the case for the closed-shell
neutral charge state of Nal. In fact, it is reasonable to argue
that for defect-free band insulators in the closed-shell neutral
charge state, common approximate XC functionals are likely
to produce reasonably accurate KS potentials.

The derivative discontinuity A, can be calculated accu-
rately via many-body perturbation theory, e.g., in the GW
approximation [27]. In this formalism, Aic corresponds to
the so-called scissor shifts, which constitute the difference be-
tween the electron addition/removal energies calculated using
DFT+Gy W, and their respective DFT values. Furthermore, it
has been shown by Baldereschi, Gygi, and Fiorentini [14,28]
that A§C is dominated by the long-range components of the
static Coulomb-hole plus screened exchange (COHSEX) con-
tributions. Therefore A% varies weakly with localized lattice
distortions such as those typically associated with polarons,
so long as the DFT produces accurate KS potentials for the
ionic configurations of interest. Hence we can simplify Eq. (3)
significantly by neglecting the dependence of Aic on R. Next,
we observe that with regard to defects in general and polarons
in particular, one is interested in energy differences. For
example, for polarons in insulators, all energies are calculated
relative to the undistorted crystal, in which the excess charge is
delocalized. The detailed expressions for calculating polaron
binding energies can be found in Sec. A2 of Appendix.
Since we are only interested in energy differences, it is
possible to move the zero of energy in such a way as to
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remove the contribution from the derivative discontinuity in
the total-energy functional (3). We thus arrive at the expression

AEgcprr Rl = AEper[Ne: Rl & Aupi[R]. (7)

The notation AE and Apu is used above to highlight the fact
that we are only interested in relative energies.

C. Generalization to pSIC-hybrid functionals

While Ref. [14] justifies the assumption of R-independence
of Aic, it also suggests that the explicit R dependence of A?(:c
is to large extent determined by the static COHSEX approx-
imation, and thus little is gained by employing full dynamic
screening within the GW approximation. A reasonable way
to incorporate contributions from static screening of exchange
in the total-energy functional is through the hybrid technique.
Of course the fraction of EX in the hybrid functional, or in
other words the magnitude of static screening, needs to be
determined a priori.

Equation (7) describes a general formalism for correcting
polaron self-interaction in any XC functional. Up to now,
our discussion has been primarily concerned with calculations
based on semilocal XC functionals such as PBE, but everything
said still holds if one were to correct a hybrid-XC functional
for polaron self-interaction. Bear in mind that for orbital-
dependent functionals, such as hybrid-XC functionals, the
chemical potentials /’Lt:::yb’ correspond to the eigenvalues of a
generalized KS Hamiltonian with a nonlocal self-consistent
potential. Hence the XC derivative discontinuity Aic, is
already incorporated in the chemical potentials [21], provided
the hybrid functional is correctly parametrized.

For a class of hybrid functionals, where PBE is combined
with a fraction 0 < o < 1, of EX, Equation (7) takes the form

AEX bl R:0] = AEns[Ne Riatl £ At [Ria). (8)

The energy of a polaron in configuration R relative to
the undistorted crystal Ry, can be estimated in two ways:
either through the conventional approach using the functional
AEpyg[N, £ 1; R; o], or through the pSIC approach using the
functional AEpiSIC_hyb[R;a]. The terminology conventional
versus pSIC approach will be used throughout the remainder
of this paper. The detailed expressions can be found in Sec. A 2
of Appendix.

The difference between the conventional and the hybrid
approach is illustrated in Fig. 4. It shows polaron energies
as a function of the hybrid mixing parameter ¢, for two
alkali halide compounds Nal and NaF, calculated using the
conventional and the pSIC methods. Note that the polaron
energies vary significantly with «, when calculated using the
conventional energy functional AEpny,[+£1; R;a,,], whereas
they depend very weakly on o, when calculated using the pSIC
functional AE;ZSIC_hyb[R;a]. The insensitivity of the pSIC-
hybrid functional to parametrization is the main advantage
of the pSIC method. It allows for accurate predictions of
polaron energies with « set to zero, i.e., pSIC-DFT. In this
way the computational cost of the calculations can be reduced
significantly compared to hybrid functionals, and brought to
be on par with simple DFT calculations with a minor impact
on accuracy.
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FIG. 4. (Color online) Variation of the calculated polaron for-
mation energies of Nal and NaF with the mixing parameter of the
hybrid XC functional. Note that for the conventional hybrid-XC
functionals the polaron formation energy is strongly dependent on
the mixing parameter. This situation is alleviated almost entirely by
using the pSIC-DFT/pSIC-hybrid approach. The deviation between
conventional hybrid and pSIC-hybrid is smallest for the optimized
hybrids, i.e., a,,, as suggested by Eq. (9).

Figure 4 shows that for a certain mixing parameter c,, the
conventional and the pSIC methods are equivalent. This can
be formally expressed as follows:

AE el R an] = AEnp[N, £ L R ] (9)

This implies that at «,,, the total energy as a function of
fractional hole-polaron charge has negligible curvature and
the hybrid XC is thus polaron self-interaction free [9]; in this
sense, o, can be considered the optimal mixing parameter. We
will see in Sec. 111 that for the materials studied in this work,
the choice of « that reproduces the DFT+GyW; band gaps,
nearly coincides with «,,.

D. Numerical implementation of energy and forces

We now discuss the numerical implementation of the pSIC
energy functional. Equations (7) and (8) comprise two terms,
namely, (i) the total energy in the reference charge state and
(ii) the chemical potential in the reference charge state. By
invoking Koopman’s theorem, the latter quantities can be
calculated from the eigenvalue spectrum of the KS Hamil-
tonian in the case of DFT calculations, and the generalized KS
Hamiltonian with a nonlocal self-consistent potential in the
case of hybrid calculations. In particular, for electron polarons,
w™ correponds to the conduction band minimum (CBM) and
for hole polarons, u~ corresponds to the VBM.

Structural relaxations and molecular dynamics simulations
require the calculation of atomic forces. Equations (7) and (8)
are, however, not directly suitable for the evaluation of atomic
forces via the Hellman-Feynman theorem, since i is not
a variational quantity. Explicit calculations of wave function
derivatives with respect to ionic coordinates can be avoided
by deducing u%FT via replacing Eq. (2) by a finite difference
formula such as

1
Hprr = 55 (4Eprr[N, % 28] — Eper[Ne] — Eprr[Ne + 8]),
(10)
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where § < 1 and the dependence on R has been omitted for
brevity. This relation, which is correct to the third order in
8, in conjunction with Eq. (7) allows for the atomic forces
to be calculated from a linear combination of three separate
Hellmann-Feynman forces as follows:

IE* 1\JE
_pSIC ¥ — ﬂ[]\]e]
IR 25) OR
1/ 9E IE
— (422 N, 4281 — 2PN, 467 ).
26\ R 3
11)

The accuracy of this expression can be established by com-
paring the chemical potential calculated via Eq. (10) to the
one obtained from the eigenvalue spectrum. The numerical
stability of the atomic forces from Eq. (11) mainly depends on
the size of the finite-difference increment §. We have found that
a value of § = 0.025 is sufficient to obtain accurate energies
and converge forces to below 1 meV/A.

We have implemented the pSIC method in the Vienna
ab initio simulation package. At each ionic step, the wave
functions of three electronic configurations are converged
independently, representing the electronic states N,, N, + 6,
and N, + 2§ for electron polarons, and N,, N, — 3, and
N, — 2§ for hole polarons. The energies and forces are
collected from all replicas and combined according to Egs. (10)
and (11). It is apparent that in this parallel implementation, a
pSIC-DFT calculation requires three times as much wall time
as a standard DFT calculation.

III. RESULTS

A. Vg-center formation in alkali halides

Let us start this section by recapitulating the pSIC-DFT
results for the Vg center in Nal. It is apparent from Fig. 1, that
in contrast to conventional PBE calculations, the new pSIC-
PBE functional predicts a stable Vg -center configuration, the
geometry and energetics of which are in excellent agreement
with the optimized hybrid functional. The bond length of the
I, dimer that forms the core of the Vi center is calculated

to be 3.38 A (3.23 A) when using the pSIC-PBE (optimized
hybrid) scheme, while the energy gain due to self-trapping is
found to be 0.267 eV (0.345 eV).

In the following, we further evaluate the accuracy of the
pSIC-PBE method by an extensive study of its predictions for
the Vi centers in alkali halides. These compounds constitute
a diverse class of wide-gap insulators with band gaps ranging
from 5 to 14 eV and lattice constants from 4.0 to 7.3 10\, see
Table II. We compare the results of pSIC-PBE calculations
with conventional hybrid-XC calculations using two distinct
parametrizations: (i) the PBEO functional [4], which uses a
fraction of 0.25 of EX, and (ii) a set of optimized hybrid
functionals, which have been parametrized to reproduce
PBE+G(W, calculations. For these compounds, the fraction
of EX used in the optimized hybrid calculations vary from
0.25 in Lil to 0.41 in NaF. Further details regarding the Go W,
calculations are provided in Sec. A 3 of Appendix.

The results of pSIC-PBE and hybrid calculations are
compiled in Fig. 5, which shows (a) the halogen-halogen
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FIG. 5. (Color online) Comparison of (a) halogen-halogen sepa-
ration at the core of the Vi -center and (b) Vi -center binding energies
between pSIC-PBE and hybrid-DFT calculations.

separation at the core of the Vi-center and (b) the Vi-
center binding energies. With regards to the halogen dimer
separations, it is evident that the pSIC-PBE method yields
excellent agreement with hybrid calculations with a typical
deviation of less than 0.15 A (<5%).

Figure 5(b) shows that the polaron binding energies
calculated within pSIC-PBE agree well with the results from
optimized hybrid calculations. Overall, pSIC-PBE yields po-
laron binding energies that are 10% to 20% smaller than those
from optimized hybrids. On the other hand, for most materials
considered here, especially those with larger band gaps, the
PBEO functional, in the conventional mode of calculation,
predicts Vi -center binding energies that are much smaller
than either pSIC-PBE or optimized hybrid calculations. This
is consistent with a systematic underestimation of the band
gaps of these wide-gap materials by PBEQ, see Table II. As
already discussed, further reducing the fraction of EX from
0.2510 0, i.e., PBE, leads to an even larger underestimation of
band gaps and, more dramatically, the failure to predict hole
localization and polaron formation in all alkali halides.

In summary, the potential energy landscapes of polarons,
calculated within conventional hybrid schemes are highly
dependent on the particular parametrization of the hybrid XC
functional employed, i.e., the fraction of EX included in the
calculations. The pronounced dependence of polaron binding
energies on the hybrid parametrization is further illustrated for
Nal and NaF in Fig. 4, highlighting a major disadvantage of
the conventional approach.

In contrast, the pSIC functional is quite insensitive to
the fraction of EX chosen for the hybrid calculations. To
illustrate this, we have performed pSIC-hybrid calculations
of the polaron binding energies using Eq. (8). For each
compound, calculations were carried out in the relaxed ionic
configuration obtained from a conventional optimized hybrid
calculation, using positively charged supercells. The results are
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compiled in Fig. 5(b), where for every compound, pSIC-hybrid
calculations are shown side by side with conventional hybrid
results. Figure 5(b) shows nearly perfect agreement between
the pSIC and the conventional approaches for the optimized
hybrid parametrization. This suggests that for the compounds
in this study, the hybrid parametrizations chosen to reproduce
PBE-G( W, band gaps, yield nearly polaron-self-interaction-
free XC functionals, for which Eq. (9) suggests equality of
the pSIC and the conventional approaches. However, a far
more important conclusion can be reached when recollecting
that the pSIC-DFT calculations of the polaron energies shown
in Fig. 5(b), are already within 10%—-20% of the optimized
pSIC-hybrid estimates: while the polaron binding energies
are highly sensitive to hybrid parametrization within the
conventional approach, this variation is an order of magnitude
smaller in the pSIC approach. This is clearly illustrated for
Nal and NaF in Fig. 4, where the polaron binding energies
as calculated within the pSIC and the conventional hybrid
approaches are shown in the same graph. Note that again the
two curves cross at «,,, see Eq. (9), which is the optimized
fraction of EX in the hybrid functional.

Finally, it is in order to discuss the sources of error in the
pSIC-hybrid functional Eq. (8), which lead to the variation of
AE;‘ESIC_hyb[R,oz] with the parameter «. For this purpose, we
focus on NaF, for which pSIC-PBE has the largest discrepancy
with optimized hybrid, of any of the compounds considered
in this paper. For NaF, pSIC-PBE predicts a polaron binding
energy of 0.92 eV versus 1.19 eV for optimized hybrid in the
conventional approach, and 1.24 eV for optimized hybrid in
the pSIC approach.

The relatively large error (in excess of 20%) of the polaron
binding energy in NaF, when calculated within pSIC-PBE can
be related to the individual error of each term in Eq. (8).
For the case of hole polarons in NaF, Eq. (8) consists
of two contributions: (i) neutral ground state energy, and
(i) the energy of the VBM. Both quantities are calculated as the
difference between the polaron configuration and the perfect
lattice. The first term is calculated within PBE (optimized
hybrid) to be —2.99 (—3.06), while the second term is 3.85
(4.30). The relative ground-state energies differ by less than
3% between PBE and optimized hybrid, while the error in
the relative VBM levels from PBE is no more than 10%. The
relatively large error in excess of 20%, in the final polaron
binding energy is caused by the opposite signs of the two
contributions.

B. Vi-center migration in Nal

Thanks to its computational efficiency, the pSIC-DFT
method provides an unprecedented potential for studying
polaron dynamics. To demonstrate this aspect, we also bench-
mark calculated polaron migration barriers with measured
diffusivities in Nal. By symmetry, the migration of an I;
dimer to a nearest-neighbor site in the rocksalt lattice can
involve rotations through 60°, 90°, 120°, or 180°, the last one
corresponding to a pure translation. The polaron diffusivity in
alkali halides can be accurately measured in laser pump-probe
experiments [29]. To this end, Vg centers are created and
aligned along a particular direction (“polarized”) using a pump
laser. Subsequently, the gradual loss of polarization over time
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TABLE I. Activation barriers for Vg-center migration in Nal in
units of eV from calculation and experiment [29].

Rotation angle Optimized hybrid pSIC-PBE Experiment
60° 0.23 0.20 0.2

90° 0.28 0.24 >60°
120° 0.23 0.20 0.2
180° 0.22 0.19

is followed using a probe laser, from which rotational barriers
can be inferred.

Experiments cannot distinguish between 60° and 120°
rotations and are insensitive to migration via translation. In Nal
at 50 K, one observes almost exclusively 60°/120° rotations
[29], indicative of the fact that their activation barriers are
noticeably smaller than for 90° rotations. It was similarly
shown that 60° /120° rotations dominate in RbI [30,31]. Table I
shows activation barriers calculated within the pSIC-PBE and
optimized hybrid approaches using the climbing image nudged
elastic band method [32]. Both methods agree very well with
each other and with experimental data.

C. Electron polarons in CLYC

Lastly, we demonstrate the accuracy of the pSIC method for
electron polarons. For this purpose, we consider Cs;LiYClg
(CLYC), which is one of the most thoroughly investigated
compounds in the elpasolite family due to its potential as a
neutron detector. Electron polarons have been found in this
system both experimentally [33] and theoretically [34] using
PBEO calculations. Its crystal structure (double-perovskite)
has cubic symmetry with ten atoms in the primitive cell.
Here, electron polaron calculations were performed using
80-atom supercells with a 2x2x2 k-point sampling. The
calculated band gap within PBEO is 7.1 eV, in close agreement
with experiment (7.5 eV) [35]. Hence PBEO and optimized
hybrid yield nearly identical results for this compound. By
comparison, DFT-PBE yields a much smaller band gap of
5.0 eV. We find in accord with Ref. [34] that the electron
polaron localizes on a Y site and the polaron level has strong
d character as shown in Fig. 6. Both pSIC-PBE and PBEO

FIG. 6. (Color online) Illustration of the electron polaron in
CLYC as obtained from pSIC calculations. The arrows indicate the
relaxation pattern. The yellow isosurface is centered at an yttrium
atom.
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FIG. 7. (Color online) Energy levels for the ideal and polaronic
configuration calculated using (a) DFT and (b) PBEO for CLYC. Red
and blue lines represent occupied and unoccupied levels, respectively.
The polaronic level is shown by orange lines and open circles.

predict a stretching of Y-Cl bonds by about 0.1 A. The binding
energy of the electron polaron is 0.25 eV (0.32 eV) according
to pSIC-PBE (PBEO). The PBEO value for the polaron binding
energy includes a significant contribution from image charge
corrections of about 0.1 eV due to the small size of the
supercells (80 atoms) that was computationally affordable at
this time. (Note that the hitherto most recent calculation for the
electron polaron in this system was performed in a 40-atom
supercell [34]). In fact, performing pSIC-PBEQ calculation of
the polaron energy in the ionic confguration obtained from
the conventional PBEO approach, yields a polaron binding
energy of about 0.28 eV, in very good agreement with the
pSIC-PBE result. This demonstrates that pSIC is also capable
of predicting electron polaron geometries and binding energies
in close agreement with hybrid calculations.

In order to illustrate that this agreement is not fortuitous,
we show in Fig. 7 the quasiparticle spectra of CLYC calculated
within DFT, as well as PBEO for the ideal and polaron
configurations in their charge-neutral states. Note that the
scissor shift is independent of configuration and that the
calculated position of the localized electron level relative to
the conduction-band minimum within DFT agrees well with
PBEO.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced a self-interaction cor-
rection technique, the so-called pSIC method, that corrects
the DFT failure to predict stable polarons in insulators. The
pSIC-DFT method is parameter-free and easy to implement in
existing electronic structure codes. We have validated the new
methodology by benchmarking pSIC-PBE results to hybrid-
DFT functionals for both electron and hole polaron formation
and transport in a number of materials. Thereby, we have
shown that (i) polaron trapping energies depend sensitively
on the parametrization of the hybrid functionals, (ii) the
parameter-free pSIC-PBE method exhibits similar accuracy
to hybrid functionals that are laboriously parametrized to fit
GW band gaps on a case by case basis, and (iii) is an order
of magnitude faster. This presents a breakthrough in modeling
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the structure and dynamics of polarons in insulators from first
principles.

From a fundamental physics perspective, the pSIC method
emerges as a result of the decoupling of the two main
problematic features of DFT for band insulators: (i) severe
underestimation of band gaps, and (ii) absence of localized
polarons. The counterintuitive aspect of such a decoupling is
that it is well-known that polaron stability is greatly enhanced
for large-gap systems. Hence significant correlation between
the band gap of an insulator and its polaron binding energy
should be expected. Based on this, it is then logical to argue
that the lack of stable polarons in insulators within the DFT
must stem from its band gap error. In fact, the two errors are
unrelated as shown by the following arguments: (i) for the
exact XC functional, the electron addition/removal energies
can be extracted from differential quantities, i.e., chemical
potentials, (ii) for most band insulators, there is a charge state,
usually the closed-shell neutral charge state, for which DFT
can predict accurate ground-state energies as well as valence
and conduction band structures, and (iii) while LDA and
GGA severely underestimate the band gaps of insulators, they
accurately predict band edge variations with configurational
changes. Noting that polaron binding does sensitively depend
on the variation of the ground-state energy and band edges with
configuration rather than the absolute value of the scissor shift,
it follows that polaron binding is independent of the absolute
value of the band gap error.

In order to rationalize the success of the pSIC approach, we
have applied it to correct for the pSI in hybrid XC functionals.
In this process, we have shown that in band insulators,
hybrid functionals tuned to reproduce the DFT+G( W, band
gaps are practically polaron self-interaction error free, and
thus constitute the optimal parametrization. Our key finding,
however, is that calculations of polaron energies within the
conventional approach, i.e., using charged supercells, are very
sensitive to the fraction o of EX included in the hybrid
functional. On the other hand, the pSIC-hybrid method is
almost insensitive to ¢, and little compromise on accuracy will
result from drastically simplifying the calculations by setting
o = 0. On this basis, the parameter-free pSIC-PBE method
emerges.

The pSIC formalism can be applied to more general systems
than has been presented in this paper. For the sake of clarity, we
have intentionally limited the present scope to intrinsic polaron
self-trapping in crystalline insulators. We have shown that in
these systems, the neutral charge state is described accurately
within PBE (or more generally DFT). Hence this reference
state has been used to calculate the energy of charge excitations
in the presence of lattice distortions using Eq. (9). More
generally, the pSIC formalism can be applied to both defects
in insulating solids, as well as molecular systems whenever
structural rearrangements are driven by addition/removal of
electron or holes in frontier orbitals. The pSIC method allows
any supercell calculation containing N, electrons, whether
periodic or not, to be performed in any of the three charge
states N,, N, + 1, or N, — 1. We have demonstrated in this
paper that in the case of perfect crystalline insulators, there is
large variability with charge state with respect to the quality
of the KS potentials produced from PBE. By choosing to
perform the calculations in the charge state with the highest
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quality KS potential, the pSIC method enables dramatic
enhancements of the accuracy of DFT XC functionals, for
prediction of potential energy landscapes of polarons in these
systems.

The subject of defects in insulators and semiconductors is
vast and complex, and of huge interest to many applications.
Recently, the effect of GW corrections on the formation
energies of charged defects in semiconductors was examined
[36,37]. In these works, structural relaxations were performed
using standard DFT, only to keep the computational costs
down to a manageable level. It will be the subject of future
to establish, if the pSIC method can also be used to obtain
accurate defect configurations and energies at a reasonable
computational cost.
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APPENDIX: COMPUTATIONAL DETAILS

1. Total-energy calculations

Calculations were carried out using the projector aug-
mented wave method [38] as implemented in the Vienna
ab initio simulation package [39], using the supplied standard
plane wave energy cutoffs. Three classes of XC functionals
are juxtaposed in this work: (i) PBE, (ii) hybrid-DFT, and
(iii) pSIC-DFT. The two latter functionals also build upon the
PBE XC functional [20]. For the alkali halides, we employed
216-atom supercells and the Brillouin zone was sampled using
the I point only. For the CLYC system, we employed 80-atom
supercells with a 2x2x2 k-point sampling.

2. Polaron binding energies

Polaron formation (or binding) energies are computed in
the pSIC formalism simply as

AEf[Rpoil = EngiclRpoll — Epgicl Rigeall,

where E;:sm is defined in Eq. (3).

Conventional hybrid calculations determine polaron bind-
ing energies through energy differences between charged and
neutral supercells (see Refs. [9,40]) according to

(AD

AE; = Epprol£1, Rpoi] — Epprol0, Rigea] £ 655, (A2)

which requires image charge corrections to be applied. This
causes further uncertainties as there is no exact correction
procedure [41]. Note that in contrast the pSIC method relies
on the (electron) chemical potentials in the neutral reference
state for obtaining polaron energies, and thus is not subject
to image charge corrections. In the case of the present hybrid
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calculations, the spurious image charge interaction is taken into
account via the modified Makov-Payne correction of Lany and
Zunger [40,42],

2 M
AEcor = 257> (A3)
32¢L
where M is the Madelung constant and L is the lattice constant
of the supercell. The dielectric constant used in Eq. (A3) is
given by

& = €0 T Eions (A4)

where the first and second terms denote the electronic and
ionic contribution, respectively. We approximately include
local field effects in e, for the hybrid functionals by directly
applying the difference between DFT dielectric constants with
and without local field effects. Computational input parameters
and calculated properties such as lattice constants, band gaps,
and dielectric constants are listed in Table II. We finally
note that Eq. (A2) is equivalent to the relaxation energy
AEpg[N, £ 1; R; o] in the infinite dilution limit [9].

3. GyW, calculations

Quasiparticle GoW, energies [27] were calculated for
the alkali halides in the rocksalt crystal structure on top
of PBE using I'-centered 6x6x6 Monkhorst-Pack grids as
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TABLE II. Lattice constants, band gaps, and dielectric constants
for the alkali halides and CLYC. The dielectric constants for the latter
are slightly anisotropic and has been averaged over the three principal
axes.

Band gap (eV)
a(A) PBE PBE0 GoW,  agx €
LiF 4065 884 1185 1324 037  10.55
LiCl 5.090  6.46 8.57 9.08 031 991
LiBr 5452 507 6.97 730 029 1445
Lil 5984 432 5.95 598 025  19.43
NaF 4537  6.64 960 11.60  0.41 425
NaCl 5578  5.22 7.33 842  0.38 5.66
NaBr 5916 4.4 6.15 694 035 5.89
Nal 6.407  3.72 5.39 580  0.31 7.07
CLYC 10485  4.89 7.12 - 0.25 9.85

implemented in the Vienna ab initio simulation package [39].
We included 192 bands to converge the dielectric function used
in the screened interaction W, together with a frequency grid
with 48 points.

Quasiparticle GyWj calculations were also performed for
the self-trapped hole polaron in Nal. They employed a 64-atom
supercell and calculated Gy W) corrections on top of the PBEO
hybrid functional using 1080 bands for the dielectric function
together with 24 points in the frequency grid.
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