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Z2 topological liquid of hard-core bosons on a kagome lattice at 1/3 filling
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We consider hard-core bosons on the kagome lattice in the presence of short-range repulsive interactions and
focus particularly on the filling factor 1/3. In the strongly interacting limit, the low-energy excitations can be
described by the quantum fully packed loop coverings on the triangular lattice. Using a combination of tensor
product state based methods and exact diagonalization techniques, we show that the system has an extended Z2

topological liquid phase as well as a latti ce nematic phase. The latter breaks lattice rotational symmetry. By
tuning appropriate parameters in the model, we study the quantum phase transition between the topological and
the symmetry broken phases. We construct the critical theory for this transition using a mapping to an Ising gauge
theory that predicts the transition to belong to the O(3) universality class.
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I. INTRODUCTION

Strong correlations in quantum many-body systems can
yield novel phases of matter at low temperatures. The most
prominent example is the fractional quantum Hall effect
(FQHE) [1] which is characterized by its fractionalized
excitations [2] and topological order [2–4] that manifests the
long-range quantum entanglement present in the underlying
many-body ground state. While the FQHE requires strong
magnetic fields, fractionalized states can occur more generally
in correlated systems that preserve time-reversal symmetry.
Following the seminal works by Anderson [5–7] we know that
a class of two and three dimensional frustrated spin systems
can realize paramagnetic ground states, dubbed quantum spin
liquids (QSL), that support deconfined fractionalized S = 1/2
(spinon) excitations [8] as well as various forms of topological
orders [3,4,9,10].

Over the past decades, there has been a very active search
for model systems stabilizing different types of topologically
ordered states [3,4,9,10]. A fertile ground to realize such
phases are frustrated systems in which the geometry of the
lattice and/or competing interactions prohibit a simultaneous
minimization of all the interparticle interactions [11,12]. This
can lead to the suppression of conventional (spontaneous
symmetry breaking) orders and favors more exotic ground
states. An associated question of much interest is about
quantum phase transitions between topologically ordered and
conventional symmetry breaking phases. In this regard, sys-
tems of hard-core bosons with mutual short-range repulsions
on various frustrated lattices have attracted much attention
because they present a set of rich phase diagrams [13–15].
A particularly interesting case is the kagome lattice where,
for suitable fillings, a variety of numerical and analytical
evidence now points to the existence of a topologically
ordered Z2 liquid phase over an extended parameter regime
[16,17]. The low-energy physics of such models in the strongly
correlated limit is generically described by quantum dimer
models (QDM) [18] on triangular lattices. This latter class
of Hamiltonians is known to harbor points in their parameter
space, the so called Rokhsar-Kivelson (RK) points [18–20],
where Z2 topological order is present and strong numerical
evidence for its stability exists [19]. The intimate connection,

on the other hand, between such hard-core boson models and
S = 1/2 models with XXZ anisotropy [15] also makes these
models relevant to research in quantum magnetism. With this
insight, perhaps it is not surprising that there are proposals that
the isotropic nearest-neighbor Heisenberg antiferromagnet can
potentially realize a Z2 topologically ordered ground state
[21,22].

In this paper, we explore the strong-coupling physics of
a hard-core boson model on a kagome lattice with short-
range repulsive interactions particularly for the filling factor
f = 1/3. We show that the effective low-energy theory is
given by a QDM Hamiltonian on a triangular lattice with
two dimers emanating from each site of the triangular lattice.
This effective theory is thus equivalent to a quantum fully
packed loop (FPL) model [23] on a triangular lattice. Such
kinds of models in the classical version have been extensively
studied on some of the bipartite lattices [23–28]. The quantum
FPL model on a square lattice has been studied by Shannon
et al. where they showed a correspondence to the XXZ model
on the checkerboard lattice in certain easy-axis limits [29].
Using a combination of numerical techniques (tensor product
states formalism and exact diagonalization on clusters), we
analyze this model on the triangular lattice. Our numerical
analysis strongly advocates for a rich phase diagram of the
quantum FPL on the triangular lattice consisting of an extended
Z2 topological liquid phase as well as a crystalline phase,
known as lattice nematic (LN) [30], that breaks the threefold
rotational symmetry of the lattice (but not the translation
symmetry). Taking clue from our numerical results, we then
construct a critical theory for a continuous phase transition
between the two phases. Unlike the usual theories of phase
transition, this critical theory is not written in terms of the
low-energy long-wavelength fluctuations of the LN order
parameter, but naturally in terms of “fractionalized” Ising
degrees of freedom sitting at the centers of the triangles of
the kagome lattice. Mapping the problem to the language of
Ising gauge theory [31], we can isolate these critical degrees
of freedom—the so called visons [32] (Ising magnetic flux
[33]), whose condensation then describes the transition from
the topological liquid to the LN. The order parameter is
bilinear in terms of the visons and hence the above transition
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consists of an example of quantum criticality beyond the
conventional Landau-Ginzburg-Wilson paradigm [34]. Our
calculation predicts that the critical theory belongs to the O(3)
universality class.

The remainder of the paper is organized as follows. We
first introduce the model Hamiltonian and derive the effective
model in Sec. II. We then present the numerical results and
conclude about the phase diagram in Sec. III. In Sec. IV we
derive an effective gauge theory description and discuss the
nature of the transition between the liquid and the LN phase.
We conclude with a brief summary in Sec. V.

II. MODEL HAMILTONIAN

We start by considering an extended Hubbard model of
hard-core bosons on the sites of a kagome lattice given by the
Hamiltonian

H = Ht + HV , (1)

where

Ht = −t
∑
〈i,j〉

(b†i bj + H.c.) (2)

describes the nearest-neighbor hopping, with amplitude t , for
the hard-core bosons that are created (annihilated) by b

†
i (bi)

on the sites of the kagome lattice and

HV = V1

∑
〈i,j〉

ninj + V2

∑
〈〈i,j〉〉

ninj + V3

∑
〈〈〈i,j〉〉〉

ninj − μ̃
∑

i

ni

(3)

denotes respectively the first (V1), second (V2), and third (V3)
neighbor repulsive interactions among the bosons (ni = b

†
i bi)

along with a chemical potential μ̃ that fixes the particle number.
Interesting physics emerges at rational fractional fillings p/q

(with p and q being mutually prime and p < q). We shall
restrict ourselves to the specific fractional fillings of bosons
which are 1/6, 1/3, and 1/2.

At integer filling 0 or 1 there are only trivial product states
possible (due to the hard-core constraint). At fractional filling
factors and the presence of longer-range interactions very rich
phase diagrams emerge. For example, at 1/3 filling and strong
nearest-neighbor repulsion (V1), a plaquette ordered state [15]
is formed, while for 1/2 filling a uniform superfluid persists
for all values of V/t . When turning on further neighbor inter-
actions given by V2 and V3, additional insulating lobes emerge
at different fractional fillings [35]. Many of these bosonic
insulators at fractional fillings can host interesting quantum
phases with or without spontaneously broken symmetry. In the
following, we focus on the strong-coupling phases occurring
in the 1/2, 1/3, and 1/6 lobes, with a particular focus on the
1/3 lobe, and show that topological as well as long-ranged
ordered phases can emerge.

To this end we look at the strong-coupling limit of the
above Hamiltonian. For t = 0 and V1 = V2 = V3 = 2V , the
interaction term can be written as

HV = V
∑
{�}

[(
n� − μ

4V

)2
− μ2

16V 2

]
, (4)

where μ = μ̃ + 2V is the effective chemical potential and
n� is the number of particles in each of the hexagons
of the kagome lattice. It is clear from Eq. (4) that for
μ = 4V,8V,12V , HV is minimized by having 1,2,3 bosons
per hexagon, respectively (or alternatively filling fraction
of f = 1/6,1/3, and 1/2, respectively). Clearly there are
many different configurations of bosons that satisfy the
above constraint; however, we note that since the hexagons
share sites, the configurations for different hexagons are not
completely independent.

An insight to the number of states spanning the ground
state sector of HV for the above commensurate fillings can
be obtained from the one-to-one correspondence between the
ground state configurations of the bosons and the hard-core
dimer coverings on the triangular lattice obtained by joining
the centers of the hexagons of the kagome lattice as shown
in Fig. 1(a). Thus each site of the kagome lattice lies on a
bond of the triangular lattice and the presence (absence) of
a boson on that site can then be identified uniquely with the
presence (absence) of a dimer on the corresponding bond of the
triangular lattice. This immediately shows that at 1/6 filling,
the number of ground state bosonic configurations allowed by
HV is equivalent to the number of hard-core dimer coverings
on the triangular lattice which is known to be extensive
(∼ 1.5N ) in the system size, N (an estimate [36] based on
Pauling’s approximation [37] gives ∼1.34N ). Similarly 1/2
filling can be cast into a 3-dimer (three nonoverlapping dimers

(a)

(b) (c)

FIG. 1. (Color online) (a) Mapping from the 1/3 filled bosonic
problem on kagome to FPL on the triangular lattice. Each particle on
the kagome lattice is mapped to a loop segment on the triangular
lattice that is obtained by connecting the centers of the kagome
hexagons. The strength of the 1st, 2nd, and 3rd repulsive interactions
are denoted as V1, V2, and V3, respectively. The limit of V1 = V2 =
V3 = 2V is the focus of this paper. Panel (b) demonstrates the
allowed lowest-order processes in t/V (see the text). (c) Shown is
the sublattice used for the gauge transformation that changes the sign
of g in Eq. (5) as described in the text. The sublattice is constructed
by the b and c sites of the shaded unit cells.
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emerging from each site) problem on the triangular lattice
[16] where the Pauling estimate suggests that the extensive
degeneracy of the ground state is ∼1.84N .

In the case of 1/3 filling, which is the specific interest of the
present paper, we obtain the equivalent fully packed loop (FPL)
model on the triangular lattice with two nonoverlapping dimers
emanating from each site and the dimers form nonintersecting
loops as shown in Fig. 1(a). Here the Pauling estimate shows
that the number of loop configurations scales with system size
as ∼1.7N . Thus, in all the above cases, for t = 0, as expected,
the ground state is macroscopically degenerate and has a finite
zero-temperature entropy. Throughout the rest of this work,
we shall exploit the above equivalence between the bosons and
the dimers and shall mostly use the language of the dimers,
translating back to the bosons whenever applicable.

A. Effective model in the strong-coupling limit

Small but nonzero hopping (t) induces quantum fluctuations
that (e.g., in the form of local ring exchange around small
plaquettes [38–41]) can lift the extensive ground state degen-
eracy by quenching the entropy of the classical model (t = 0)
either by spontaneously breaking one or more symmetries
of the system (quantum order by disorder [42,43]) or more
interestingly, by generating a long-ranged quantum entangled
state that does not break any symmetry of the Hamiltonian
(quantum disorder by disorder [44,45]) but can have nontrivial
“topological order.” In this work, we shall show examples of
both the routes taken by the bosons on the kagome lattice.

To derive the effective Hamiltonian in the strong-coupling
limit, we treat t/V as a small perturbation parameter to obtain
(to the leading order in t/V ) [16]

Heff = −g
∑

α

(
bα†

p b
α†
l bα

mbα
q + H.c

)
, (5)

where g = t2/V and p, q, l, and m are the corner sites of the
bow tie labeled by α referring to Fig. 1(b). The sum includes all
bow ties that are related by the C3 symmetry. The center of the
bow tie may or may not be occupied by a boson in the case of
1/3 and 1/2 filling. Furthermore the sign of g in Eq. (5) can be
altered by using a simple gauge transformation that multiplies
all configurations with the factor (−1)Nsub where Nsub is the
number of particles in the sublattice shown in Fig. 1(c).

B. Dimer representation of the effective Hamiltonian

We now recast Eq. (5) using the particle to dimer mapping
mentioned in the previous section. In terms of the dimers, the
effective Hamiltonian corresponds to the kinetic term of the
QDM [19]

Heff = −g
∑

α

(
+ H.c

)
, (6)

where the sum is over all rhombus-shaped plaquettes (α) on
the triangular lattice.

In addition to the kinetic term (above) the generic QDM
also includes a potential term [known as the Rokhsar-Kivelson
(RK) potential] [18], which energetically favors configurations
with plaquettes having parallel dimers. Such potential terms
are representative of higher-order (four-boson) terms that can

FIG. 2. (Color online) The triangular lattice is put on a torus
by setting periodic boundary conditions along two independent
directions given by the lattice vectors a1 and a2. A0 denotes the
intersection point (a link on the lattice) of the two noncontractible
loops on the torus. There are four topological sectors characterized
by the doublets (0,0), (0,1), (1,0), and (1,1) [19,46]. The local
Hamiltonian in Eq. (7) cannot mix configurations from different
topological sectors, hence block diagonal in the full configuration
basis.

be generated in the strong-coupling expansion in t/V of
the underlying boson model. However, here we simply use
this term as a free tuning parameter in the model. The full
Hamiltonian of the QDM is written as

HRK = −g
∑

α

(
+ H.c

)

+VRK

∑
α

(
+

)
,

(7)

where positive (negative) VRK denotes repulsive (attractive)
interaction between the parallel dimers in a given plaquette.

This generic form of the above Hamiltonian was first
proposed on a square lattice by Rokhsar and Kivelson [18]
(RK) in the context of high-temperature superconductivity.
At a special point when g = VRK, known as the RK point,
the spectrum contains a zero-energy ground state with the
wave function given by the equal-weight superposition of all
allowed dimer configurations. The RK point features a U (1)
resonating valence bond (RVB) liquid phase with algebraic
decay of dimer correlations.

However, on non-bipartite lattices, the scenario changes
drastically [19,46]. The RVB phase in this case fosters a gapped
Z2 dimer liquid in an extended parameter regime (including the
RK point) with exponentially decaying dimer correlations and
is characterized by a topological order in the form of fourfold
ground state degeneracy for a system on a torus (as described
in Fig. 2). The solid phases, on the other hand, spontaneously
break various lattice symmetries of the Hamiltonian and thus
have long-range dimer-dimer correlations.

In the context of the present work, as noted in the last
section, we mention that the low-energy effective Hamiltonian
in the strong-coupling limit generally assumes the RK form
irrespective of the filling fraction of the bosons (or the
equivalent dimer models: QDM, FPL, or the 3-dimer model
respectively for f = 1/6,1/3, and 1/2) considered, albeit with
important implications for the stability and nature of both the
liquid and the solid phases which are summarized in Fig. 3.
With this general formulation we now specialize to the physics
of the Mott lobe for 1/3 filling.
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FIG. 3. (Color online) The phase diagram of the dimer models
at different fractional fillings f . The important details about each of
them are given in the text. The filling fraction 1/6 corresponds to a
triangular lattice QDM [19,46] while the half-filled case maps to an
easy-axis kagome antiferromagnet or a 3-dimer model [16,17]. The
focus of the present paper is at f = 1/3.

III. NUMERICAL CALCULATIONS AT 1/3 FILLING

We use a combination of tensor product states (TPS)
formalism and exact diagonalization (ED) methods to obtain
the phase diagram (Fig. 3, middle line) of the FPL model
on the triangular lattice. Necessary details about implementing
the numerical methods for different clusters are furnished in
the following subsections facilitating a systematic analysis of
our model. We take the value of g to be 1 which is a convenient
choice for further numerical calculations.

A. Entanglement entropy at the RK point: the Z2 liquid

One of the most interesting features of the Hamiltonian
in Eq. (7) is the existence of the exactly solvable RK point
(g = VRK). We start by showing that at this point the ground
state of our model (FPL) indeed has a topological order.

In order to characterize the topological order, an instructive
quantity to look at is the entanglement entropy (S) for
a bipartition of the system into two parts A and B. The
entanglement entropy of the reduced density matrix ρA of
subsystem A is defined as S = −Tr[ρA log ρA] where ρA

is obtained from the full density matrix by tracing out all
the degrees of freedom in the rest (B). For a gapped and
topologically ordered gapped ground state, S satisfies the “area
law” which goes as

S(L) = αL − γ + O(L−1) + · · · , (8)

where α in the leading term is a nonuniversal coefficient and
L is the perimeter of the subsystem A. The subleading term γ ,
also known as the topological entanglement entropy [47–50],

FIG. 4. (Color online) The plot shows the finite-size dependence
of the topological entanglement entropy γ as a function of L, the
perimeter of the subsystem A. The green dashed line corresponds to
the saturated value of ln 2 in the thermodynamic limit. The lattice
is constructed on an infinite cylinder assuming periodic boundary
condition in one direction. The black dashed line indicates the
bipartition of the cylinder separating the subsystem A from the rest
B. The inset shows the linear growth of the entanglement entropy S

with L.

is however universal bearing the anyonic content of the state
that reflects the topological order. This is directly related to
the total quantum dimension (D) of the underlying topological
field theory as γ = log D. Since D = 2 for a gapped Z2 liquid
(described by the Z2 gauge theory), the quantity γ in Eq. (8)
saturates to log 2 in the thermodynamic limit, i.e., L → ∞.

The ground state at the RK point can be exactly repre-
sented by tensor networks using the framework of projected
entangled-pair states (PEPS) [51,52]. We use this construction
on a cylindrical triangular lattice (Fig. 4) to calculate S as
a function of L and obtain γ (Fig. 4) using Eq. (8). The
subsystem A is constructed by bipartitioning the semiperiodic
triangular lattice with the dashed line as shown in Fig. 4. The
circumference L of the cylinder enters Eq. (8) as the perimeter
of the subsystem and should be much larger than the maximum
correlation length associated with the state [53,54]. The inset
of Fig. 4 shows the expected linear growth of S with L that
is predicted by the leading term in Eq. (8). The topological
entanglement entropy (γ ) is extracted from the intersection
of the function S on the y axis when extrapolated backward
and plotted against different values of L. The tendency of γ

to saturate at the value of log 2 for large L indicates the fact
that the RK point for the FPL model on the triangular lattice
represents the ground state of a topologically orderedZ2 liquid
akin to the other dimer models at 1/6 and 1/2 fillings [55,56].
This is one of the main results of this work.

However, away from the RK point in the accessible
parameter space, the ground state is no longer exactly known.
We adopt ED techniques to infer that the topological liquid
is stable even away from the RK point over a finite window
(see Fig. 3) up till when the system undergoes a quantum
phase transition into the LN phase beyond a critical value of
VRK. In the following subsections, we present the ED results
containing the information about the low-lying spectrum of
the model and measurements of various correlation functions
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that reflect the salient features of the phase diagram depicted
in Fig. 3, middle line.

B. Dimer-dimer correlation and the LN order

At the RK point, the loops are strongly fluctuating and the
dimer-dimer correlations decay exponentially (as opposed to
the algebraic decay on the square lattice) like the one in the
QDM at 1/6 filling. This indicates the lack of long-range dimer
order, as expected, in the Z2 liquid phase. To check this, we
calculate the dimer-dimer correlation function

Cij (|ri − rj |) = 〈n(ri)n(rj )〉 − 〈n(ri)〉〈n(rj )〉, (9)

using ED on different clusters. Here n(ri) is the dimer
occupation number on ith link of the triangular lattice specified
by the position vector ri . Each cluster has an extension of Lx

along the unit vector a1 = (1,0) and Ly along the unit vector

a2 = ( 1
2 ,

√
3

2 ) (see Fig. 2).
Although the considered clusters are small, the numerical

results shown in Fig. 5(c) suggest that the correlator (as a
function of r ≡ |ri − rj |) is indeed exponential at the RK
point with the correlation length ξ ∼ one lattice spacing. This
is a known result for the case of the QDM on a triangular
lattice (or equivalently the 1/6 filling) [36]. As mentioned
earlier, at the RK point the model is exactly solvable and all

(a) (b)

(c)

FIG. 5. (Color online) (a) The real-space dimer-dimer correla-
tion Cij is plotted on a triangular lattice cluster at VRK = −3.0
which indicates the parallel loop pattern deep into the LN phase.
(b) Same is plotted for VRK = 1.0 showing the exponential decay of
the dimer-dimer correlation function in the liquid phase at the RK
point. The reference link, with respect to which correlations at all the
other links are measured, is denoted by R0. Red and blue links stand
for positive and negative correlation, respectively, while the width
measures the correlation strength. (c) Plotted is the same correlator
as a function of |ri − rj | at different RK potential. The red dashed
line represents an approximate exponential fit e−r/ξ for ξ ∼ 1.0.

the quantum correlations can be calculated classically (using
some classical numerical techniques [57]). The real-space
realization of the dimer correlation function at the RK point is
shown in Fig. 5(b) which points to an exponentially decaying
nature of the correlation function as expected. The red and
blue bonds correspond to the positive and negative correlation,
respectively, with the width of the bond being proportional to
the absolute value of the correlation function.

The exponential decay disappears as VRK is taken to large
negative values till we get into a phase with long-range dimer-
dimer correlations with C(r) 	 (−1)r 1

4 (up to an offset) deep
inside this phase signaling the onset of long-range dimer order.
To explore the nature of this long-range ordered phase we plot
the real-space dimer-dimer correlation function in Fig. 5(a).
The plot suggests that the ordered phase is characterized by
parallel alignments of loops on the triangular lattice which does
not break any translation symmetry but the threefold rotational
symmetry (corresponding to the threefold quasidegeneracy in
the ground state of the spectrum). Since the parallel loops do
not have an orientation along the direction of their alignment,
we refer to this as the LN phase.

C. The phase transition between the Z2 liquid and the LN

Having characterized the Z2 liquid phase (by nontrivial en-
tanglement entropy and short-range dimer-dimer correlations)
and the LN phase (by long-range dimer-dimer correlation), we
now focus on the quantum phase transition between the two
phases. First we study the excitation gap in the liquid with ED
and observe that the gap closes only at a finite distance from the
RK point (see Fig. 6). Thus the Z2 topological liquid persists
over the whole region from VRK = 1 to VRK ∼ −0.3 which
suggests that alone the kinetic term in Eq. (7) can potentially
stabilize the liquid phase even for VRK = 0. The continuous
vanishing of the gap near VRK = −0.3 gradually destroys
the liquid state driving the system into a charge-ordered LN

FIG. 6. (Color online) In the left panel, the gap (�) to the first
excited state tends to vanish at VRK ∼ −0.3 for different symmetric
and stripped clusters. The ground state always lies in the zero-flux
sector (0,0) for all of them. In the right panel, the derivative of the
gap is plotted as a function of VRK to locate the transition point at
VRK ∼ −0.3.
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FIG. 7. (Color online) The ground state susceptibility
−δ2Eg/δV

2
RK in the (0,0) sector indicates a continuous phase

transition between two phases for different clusters. The transition
point is close to VRK ∼ −0.3 as evident from the right panel of
Fig. 6.

phase as suggested from the behavior of the density-density
correlation function shown in Fig. 5(c).

A generic way to locate the critical point within ED is
to look at the response function of the system as a function
of the parameters that define the Hamiltonian in Eq. (7). In
our case, an equivalent quantity can be framed using the
second derivative of the ground state energy with respect to
the RK potential: −δ2Eg/δV

2
RK. This is plotted in Fig. 7 where

the single peak in the response is visible approximately at
VRK ∼ −0.3. This shows that a single transition separates
the topological liquid and the LN. While it is impossible
to rule out the possibilities of a first-order transition from
our finite-cluster results, the smooth and gradual increase of
the response along with the absence of shoulders suggests
that the transition between the liquid and the LN may be
continuous or weakly first order (the system sizes considered
here do not allow for a definite statement). The full energy
spectrum of each of the clusters (not shown) suggests that at
large negative VRK, the ground state becomes nearly threefold
degenerate (the quasidegeneracy is attributed to finite-size
effect) where the three states are formed by superposition
of the three loop patterns allowed by the C3 symmetry. We
conclude on our numerical results from ED by noting that as
the system gradually enters the ordered phase crossing the
transition point, a set of three states in the bottom of the
spectrum starts separating from the rest. Deep inside the LN
phase, these three states become nearly degenerate (up to the
finite-size effects) with a finite excitation gap which is much
higher in magnitude than the liquid gap and scales linearly with
VRK. This quasidegeneracy is exact in the thermodynamic limit
where the C3 symmetry is spontaneously broken.

Having established the two phases and the possibility of
a continuous phase transition between them, we now explore
the critical theory for the predicted critical point (at VRK ∼
−0.3). We note that such a continuous transition would be
very interesting in the sense that it describes the destruction of
a topologically ordered phase.

IV. CONTINUOUS TRANSITION BETWEEN THE Z2

LIQUID AND LN

To construct a theory for the continuous phase transition
between the Z2 liquid and the LN phases, we now introduce
an alternative spin representation of the hard-core boson model
(or the equivalent dimer model).

A. Spin representation and the gauge theory

To obtain such a description, we first identify a spin-1/2
degree of freedom on each site of the kagome lattice by virtue
of the well known mappings: b

†
i = σ+

i , bi = σ−
i , and ni =

(σ z
i + 1)/2 where an up (down) spin represents the presence

(absence) of a boson at the lattice site. Equation (4), then,
becomes

HV = V
∑
{�}

(
1

2
σ z

� + h

)2

− μ2N�/16V, (10)

where N� is the total number of kagome hexagons and
h = 3 − 6f . The sum of all spin moments in a given hexagon
is denoted by Sz

� ≡ 1
2σ z

� where σ z

� = ∑
i∈� σ z

i . Clearly
in the spin description, different fillings of bosons (f )
correspond to different integer values of h which essentially
plays the role of an external magnetic field. Lowest-energy
configurations of the spin system specified by Eq. (10) satisfy
the constraint that sum of the moments in every hexagon is
exactly opposite to h which depends on the filling factor f .
Thus for f = 1/6,1/3,1/2, h = 2,1,0 and hence the potential
term is satisfied if the total magnetization per hexagon at these
fillings is Sz

� = −2, − 1,0, respectively, corresponding to
having one, two, or three up spins (which means the presence
of one, two, or three bosons as expected) per hexagon.

B. Effective spin model

In terms of the spins, the effective Hamiltonian (in Eq. [5])
representing the dynamics within the degenerate ground state
manifold of HV is given by

Heff =
∑

α

P̂α

[
−g

∏
α

σ x + VRK

]
. (11)

Each term in Eq. (11) involves a product of four spins that
form a bow tie, as shown in Fig. 10(a). The projector which
selects out the flippable bow ties is expressed as [16]

P̂α =
∑
ξ±1

∏
a∈α

(
1

2
+ ξ (−1)aσ z

a

)
, (12)

and we have also added the potential term in Eq. (11) to recover
the RK Hamiltonian given in Eq. (7).

When the first term in Eq. (11) dominates, the system
prefers to align all the spins in the σx direction and hence
the boson number per site fluctuates. This is indeed the salient
feature of a Z2 liquid phase (see below). On the other hand
when the second term dominates, the system prefers to choose
a pattern to order in the σ z direction and we have a long-range
order in the boson density which turns out to be the LN phase
that we discussed before. The actual magnitude of the coupling
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constants for which the transition between the two phases takes
place depends on the details of the microscopic model.

C. Ising gauge theory, visons, and vison correlator

Each spin sitting at the site of the kagome lattice is a
part of two hexagonal plaquettes. We can define the Ising
variables εh = ±1 for each such hexagonal plaquette. Clearly
the Hamiltonian in Eq. (11) is invariant under the Z2 gauge
transformation [16]

σx
i → εhσ

x
i εh′ , (13)

where h and h′ denote the two hexagons of which the site i is a
part of. Such an Ising gauge structure, generated by the gauge
transformations Gh = exp[iπSz

�], is an emergent property
of the low-energy subspace [16] of the original microscopic
bosonic Hamiltonian (in Eq. [1]) in the strong-coupling limit
(V � t). Indeed the above Hamiltonian represents an Ising
gauge theory where the plaquette term F = (σx

1 σx
2 σx

5 ) and
F� = (σx

5 σx
3 σx

4 ), shown in Fig. 10(a), measures the Ising
magnetic flux through each triangle of the kagome lattice.

The operator σ z
i creates two such magnetic fluxes on the

two triangles of the kagome lattice of which it is a part. Such
Ising flux excitations have been dubbed as visons [32]. One
can create a single vison excitation [16] by applying a product
of σ z operators along any path C starting from any site of a
given triangle of the kagome lattice to infinity:

vz
I =

I→∞∏
C

σ z
i , (14)

where i is a kagome lattice site encountered on the path
C which runs from the corresponding triangular kagome
plaquette I , where the vison resides, to spatial ∞. Since the
path operators commute with each other, it is straightforward
to show that the two-vison wave function is symmetric under
the exchange of the visons, or in other words, the visons are
bosons themselves. With reference to the dimer covering, the
above operator is nothing but the number of dimer variables
encountered along the path. This immediately implies that the
vison-vison correlator is given by [58,59]

〈
vz

I v
z
J

〉 =
〈

I→J∏
C

σ z
i

〉
≡ vIJ (15)

(where the path C runs from I to J ), which translates to〈
vz

I v
z
J

〉 = 〈(−1)NIJ 〉, (16)

where the operator NIJ counts the total number of dimers
encountered on the path C from I to J in any given dimer
configuration. It is easy to verify that the explicit expressions
of the vison operators in terms of the spins given in Eq. (18)
are independent of the contour C up to an overall sign that can
be fixed by measuring the correlator with respect to a fixed
reference dimer configuration.

In the Z2 liquid phase, where F = F� = +1, the vison
excitations have a finite gap and the ground state does not
contain free visons. On the other hand, the phase characterized
by 〈σ z〉 �= 0, which we shall show is the LN phase, is a vison
condensate. Thus we expect that the transition between the Z2

liquid and the LN is described by the closing of the vison

FIG. 8. (Color online) The two-vison correlator vIJ is plotted as
a function of |rI − rJ | at different values of VRK for a symmetric
cluster of L = 4. The red dashed line represents an exponential decay:
e−|rI −rJ |/ξ for ξ ∼ 0.7.

gap leading to the vison condensation. Hence, the ground
state expectation value of the vison correlator should also
decay exponentially in the liquid phase with a length scale
proportional to the inverse of the vison gap while it should
have asymptotically reached a constant value in the LN phase.

In Fig. 8 we show the two-vison correlation function at
different values of VRK. The data at VRK = 1.0 fits well with the
exponential curve e−|rI −rJ |/ξ for ξ ∼ 0.7. As VRK is decreased
further, the system gradually enters the ordered phase and the
two-vison correlator becomes asymptotically constant. This
behavior is expected, as we shall show below. Note that in
Fig. 8, close to VRK = −0.3 the value of vIJ changes by an
order of magnitude much in a similar way that the density-
density correlation does in Fig. 5.

D. Lattice description for the visons

Our numerical results indicate that the phase transition
between the Z2 liquid and the LN phase, driven by the
condensation of vison excitations, is possibly continuous. We
shall now derive an effective critical theory for such a con-
tinuous transition. This would then compliment our numerical
understanding of the phase diagram of the microscopic model.

In the spirit of the universality of continuous phase
transitions, to this end, we perform a series of mappings to
isolate the vison degrees of freedom which we use to describe
the critical theory for the transition. The effective Hamiltonian
in Eq. (11) can be obtained from

H̃eff = − geff

∑
α

(F (α)
 + F (α)

� ) + Veff

∑
�

(
Sz

� + h
)2

+ ueff

∑
α

Pα (17)

in the limit of geff/Veff,ueff/Veff → 0 (geff,Veff > 0), where
the leading term is obtained in the second-order perturbation
theory with g ∼ g2

eff/Veff and ueff ∼ VRK. We immediately
note that the last two terms in Eq. (17) commute with each
other as expected and hence, in the regime |ueff| � geff (and
Veff being the largest energy scale), the above model is rendered
classical and the ueff term chooses an appropriate order that is
consistent with the filling (i.e., allowed by Veff). For ueff < 0,
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FIG. 9. (Color online) The medial honeycomb lattice is shown
along with the original kagome lattice. Removal of the blue-colored
boson creates two spinon excitations sitting at the centers of the
adjacent shaded hexagons (the “defect hexagons”) which violate the
constraint of having two bosons. By virtue of the single-particle
hopping term, these two defects can separate farther apart; however
their creation is energetically suppressed in the strong-coupling limit.

this favors the order as depicted in Fig. 10(c). On the other
hand, when |ueff| � geff , this order is expected to melt due
to the quantum fluctuations in the spins. In particular, a
state which allows flipping of spins in closed loops while
maintaining the filling constraint becomes favorable. This is
indeed consistent with the picture of the Z2 liquid of the
microscopic model which is exact at the RK point.

To arrive at the critical theory describing the vison conden-
sation, we exploit the gauge structure, described in the last
subsection, of the effective theory to isolate the vison degrees
of freedom. At this point, we introduce the honeycomb lattice
which is the medial lattice of the kagome lattice as shown in
the leftmost panel in Fig. 9. On the sites of this medial lattice,
we define the Ising variables vz = ±1 and on its links we
define the Ising gauge fields ρz = ±1. The mapping from the
σ to the v and ρ variables is defined as follows,

vx
J =

∏


σx
a σ x

b σ x
c ; σ z

a = vz
I ρ

z
IJ vz

J . (18)

Clearly, with the insight of Eq. (14), in the above mapping the
vz

I s are nothing but the visons (with conjugate momenta given
by vx

I ). Since they carry Ising magnetic charge, they couple
to the dual Ising gauge potential ρz

IJ and transform under a
projective representation (that forms a projective symmetry
group) of the symmetries of the underlying spin Hamiltonian.
We note that the product of the dual gauge fields around the
hexagonal plaquette is given by∏

�
ρz

IJ =
∏
�

σ z
a = ±1, (19)

where the first product is over each honeycomb hexagon and
the second one is on each kagome hexagon.

Though not directly relevant to this work, we would like to
point out that the presence of the dual magnetic flux is nothing
but the Ising electric charges (spinons):∏

�
ρz

IJ =
∏
�

σ z
a = −1, (20)

which sit at the center of the hexagonal plaquettes. In terms
of the original bosons, these represent hexagons where the
constraint of having two bosons is violated (see Fig. 9).
Evidently, such “defect hexagons” are created in pairs and
are energetically very costly in the strong-coupling limit. It is
clear from the above equation that the visons see the spinons as

a source of π flux and hence the dual gauge potential naturally
captures the mutual semionic statistics between the visons and
the spinons [16]. Now note that at 1/3 filling, we have two
bosons per hexagon. Hence, we must have∏

�
ρz

IJ =
∏
�

σ z
a = 1. (21)

This just means that there are no spinons at low energies
because they are too costly. Hence, on circling the plaquettes
of the medial honeycomb lattice, the “flux” seen by the vz

spins is zero. This type of Ising gauge theory (IGT) is called
even IGT as opposed to the odd IGT that arises in the case
of 1/6 or 1/2 filling when the vz spins sees a π flux in each
honeycomb plaquette.

With the mapping in Eq. (18) the Hamiltonian in Eq. (17)
becomes (we put ueff = 0 for the moment)

Hdual = −geff

∑
I

vx
I + Veff

∑
�

⎛
⎝1

2

∑
〈I,J 〉∈�

vz
I ρ

z
IJ vz

J + h

⎞
⎠

2

,

(22)

expanding which we get

Hdual =−geff

∑
I

vx
I + hVeff

∑
〈I,J 〉

vz
I ρ

z
IJ vz

J

+ Veff

2

⎡
⎣∑

〈〈II ′〉〉
vz

I ρ
z
II ′v

z
I ′ +

∑
I,J,I ′,J ′∈�

vz
I ρ

z
IJ vz

J vz
I ′ρ

z
I ′J ′v

z
J ′

⎤
⎦

(23)

up to a constant. Until now we have ignored the potential term
in the RK Hamiltonian. This term, in the spin language, has
the form

VRK

∑
α

Oα, (24)

where α refers to all bow ties and has the typical form, for the
bow tie in Fig. 10(a), of

Oα = 1

8

[ − σ z
1 σ z

2 − σ z
3 σ z

4 − σ z
1 σ z

4 − σ z
2 σ z

3 + σ z
1 σ z

3 + σ z
2 σ z

4

− σ z
1 σ z

2 σ z
3 σ z

4

]
. (25)

This, under the mapping to the vI variables, augments the
second neighbor as well as the four-spin terms along with
providing the interactions between four spins, two each on
adjacent hexagons. As remarked earlier, the vz fields transform
under a projective symmetry group (PSG) and in general
a third-neighbor Ising term for the vz

I fields would also be
allowed by the PSG of an even IGT. These term would arise,
for instance, on integrating out the four spin interactions which
would also renormalize the nearest and the second neighbor
interactions. In addition, a Maxwell term for the ρz

IJ fields of
the form

∏
� ρz

IJ is also allowed and these terms renormalize
the energy of the spinons, but due to the constraint in Eq. (19),
such terms are trivial and hence left out. Now, because of the
constraints in Eq. (19) (i.e., no spinons), it is possible to choose
a gauge where

ρz
IJ = +1, ∀I,J. (26)
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(a) (c) (d)

(b)

FIG. 10. (Color online) (a) A flippable bow tie. (b) The first
Brillouin zone of the honeycomb lattice showing M points. (c) Loop
ordering at M1 point. A loop segment is placed on the link of the
triangular lattice whenever it crosses a honeycomb bond joining
antiparallel spins which represent the vison degrees of freedom. (d)
The yellow region qualitatively shows the allowed ranges of t1 and t2
for which the minima of J (k) lie in the vicinity of the M points within
an energy window of 10−3. The vertical phase boundary indicates the
case when the minima are exactly on the M points corresponding to
the LN phase for VRK � 0.

Hence the general form of the model is given by

Hdual = J1

∑
n.n

vz
I v

z
J + J2

∑
n.n.n

vz
I v

z
J + J3

∑
n.n.n.n

vz
I v

z
J − �

∑
J

vx
I .

(27)

Thus, the minimal gauge theory for the FPL model is dual to the
ferromagnetic transverse field Ising model on the honeycomb
lattice with first, second, and third neighbor Ising interactions.

In the large-� limit we can neglect the J terms and the v

spins are polarized in the x direction with the finite vison gap
∼ 2�. The underlying σ z spins are thus fluctuating allowing
for the boson number per site to fluctuate. This paramagnetic
phase is nothing but the Z2 liquid in the dual description.

On increasing the Ising couplings (J1,2,3), the visons gain
dispersion and if the minima of the dispersion touches zero,
they can condense leading to 〈vz

I 〉 �= 0. The nature of the
ordering depends on the relative signs and magnitude of
the Ising couplings and the phase diagram in the limit of
large J1,2,3/� is shown in Fig. 10(d). Setting J2/J1 = t1
and J3/J1 = t2 and �/J1 = �̃ with J1 = 1, in Eq. (27), the
soft vison modes [60,61] can be obtained from the Fourier
transform of the Ising terms. This is given by

Hdual =
∑

k

J (k)�†
k�k, (28)

where J (k) is the Fourier transform of the adjacency matrix of
the Ising terms in Eq. (27):

J (k) =
(

2t1δ γ + t2η

γ ∗ + t2η
∗ 2t1δ

)
(29)

and �k = (vx
1k vx

2k)T and �
†
k = (vx

1−k vx
2−k). The momentum

dependence of the parameters goes as

δ = cos k1 + cos k2 + cos (k1 + k2),

γ = 1 + eik1 + e−ik2 , (30)

η = 2 cos (k1 + k2) + ei(k1−k2),

where ki = �k · �si with �s1 = (
√

3/2, − 3/2) and �s2 =
(
√

3/2,3/2) being the basis vectors of the honeycomb lattice
shown in Fig. 10(c). For an extended range of positive t1
and t2, as highlighted by the yellow region in Fig. 10(d),
the minima of the energy dispersion J (k) occur at the three
inequivalent M points—M1, M2, and M3 in the Brillouin
zone [see Fig. 10(b)], whose coordinates are (π/

√
3, − π/3),

(π/
√

3,π/3), and (0,2π/3), respectively. This extended region
of the phase diagram, where the ordering occurs at the M

points of the Brillouin zone of the medial honeycomb lattice,
yields to a vz

I ordering pattern which is shown in Fig. 10(c).
Translating back [using Eq. (18) and ni = (1 + σ z

i )/2], this
gives rise to the ordering pattern for VRK � 0. There are three
such patterns (for the three M points) which corresponds to
the three LN phases related by the C3 symmetry as obtained
from our previous numerical calculations.

While it is not possible to calculate the values of the Ising
couplings in terms of the couplings of the underlying RK
Hamiltonian in Eq. (7), we observe that the effective model
allows phases that are observed in the microscopic model
together with the possibilities of a direct continuous quantum
phase transition from the Z2 liquid to the LN phase. Since
the symmetries of the actual QDM and the effective gauge
theories are identical, we expect that the transition, which is
attributed to the condensation of the visons, in each model
belongs to the same universality class. We now attempt to find
the structure of the critical theory which can predict the nature
of this transition.

E. Critical theory for the transition

Approaching the transition point from the liquid side (� >

J in Eq. [27]), we can write down the critical theory in terms
of the vison modes that go soft at the transition. These soft
modes can be written as [62]

�(�r) =
3∑

j=1

ψj (�r)vj e
i �Mj ·�r , (31)

where ψj are the amplitudes of the three soft modes occurring
at the three M points of the Brillouin zone. To construct the
Landau-Ginzburg action in terms of the soft modes we need
to figure out the transformation of ψj (j = 1,2,3) among
themselves under various symmetries of the Hamiltonian.
These are (1) T1: lattice translation along �s1, (2) T2: lattice
translation along �s2, (3) I: bond inversion or parity, (4) C6:
rotation of π/3 about the center of a plaquette, and (5) global
Z2 symmetry under which vx → −vx . On a point of specific
coordinates {x,y}, the actions of the above symmetries are the
following:

T1 : {x,y; a,b} → {x + 1,y; a,b},
T2 : {x,y; a,b} → {x,y + 1; a,b},
I : {x,y; a,b} → {−x, − y; b,a}, (32)

C6 :

{{x,y; a} → {x − y + 1,x; b},
{x,y; b} → {x − y,x; a}.

The transformation matrices of the three critical modes
corresponding to different lattice symmetry operations and
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the global Z2 are as follows:

RT1 =
⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦;RT2 =

⎡
⎣1 0 0

0 −1 0
0 0 −1

⎤
⎦;

RI =
⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦; RC6 =

⎡
⎣0 0 −1

1 0 0
0 1 0

⎤
⎦; (33)

RZ2 =
⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦.

These five matrices generate a 24-element finite subgroup
of O(3) which is isomorphic to C2 ⊗ A4 [63]. Respect-
ing all the above projective symmetry transformations, the
most general Landau-Ginzburg (LG) functional in (2 + 1)-
dimensional Euclidian space-time assumes the following
form,

S =
∫

d2rdτL, (34)

where the Lagrangian density (up to 6th order) is given by

L =∇ �ψ · ∇ �ψ + ∂τ
�ψ · ∂τ

�ψ + r �ψ · �ψ + ũ( �ψ · �ψ)2

+ ṽ( �ψ · �ψ)3 + a(ψ4
1 + ψ4

2 + �ψ4
3 ) + b(ψ1ψ2ψ3)2

(35)

with ψ = (ψ1,ψ2,ψ3)T . If a = b = 0, Eq. (35) represents the
usual soft spin O(3) action (or the N = 3 linear σ model). The
a term introduces cubic anisotropy in the system.

Evidently, for a < 0, the ordering occurs at one of the
soft modes preferentially; i.e., the functional is minimized
when one of the components (among ψ1, ψ2, and ψ3)
takes a finite value while other two remain zero. Three
such possibilities give rise to three symmetry-oriented loop
orderings. For example, the order at M1, which corresponds
to ψ1 �= 0 and ψ2 = ψ3 = 0, can be read from the structure
of the full eigenvector v1 = (1,1)T of J (k) in Eq. (29) set to
the momentum M1 = (π/

√
3, − π/3). The resultant vz-spin

configuration is shown in Fig. 10(c) and the loop covering
of the dimers can be obtained using Eq. (18) which is
equivalent to replacing the antiferromagnetic bonds of the
honeycomb lattice by a loop segment on the underlying
triangular lattice. This gives back the loop ordering which
does not break any translation symmetry (because M1 and
−M1 are identical and related by the momentum space lattice
vectors) but spontaneously breaks the rotational symmetry.
Similarly the ordering at other M points are related to
the present one by the spontaneously broken C3 symmetry.
This way the critical theory captures the ordering patterns
obtained in the numerical calculations of the microscopic
model.

For b = 0, leading order ε = 4 − d expansion suggests
that the cubic anisotropy is irrelevant and the critical point
is of O(3) Wilson-Fisher type [64–66] (however, higher order
expansion suggests that it may belong to the cubic critical point
with critical exponents very close to the O(3) class [67]). The

6th-order anisotropy term (denoted by b �= 0) is also irrelevant
at such a point along with the O(3) invariant 6th-order term,
ṽ in Eq. [35]. These considerations suggest that the phase
transition between the Z2 liquid and the LN phase, as seen in
the microscopic model, may belong to the O(3) universality
class and the anisotropy terms are dangerously irrelevant at
this critical point.

It is important to note that the critical theory is not written
in terms of the order parameter of the LN phase, as the
conventional theory of phase transition would suggest [68,69].
Instead, it is naturally written in terms of vison fields and
the order parameter is bilinear in terms of such vison fields.
Hence we should expect large anomalous dimensions in the
scaling dimension of the LN order parameter [70,71]. Such
large anomalous dimensions are characteristics of these types
of unconventional phase transitions.

V. SUMMARY AND OUTLOOK

In summary, we have studied the strong-coupling limit
of the extended Hubbard model for hard-core bosons with
short-range repulsive interactions. Focusing on the particular
fractional filling of 1/3, we show that the low-energy physics of
the bosonic model is described by a quantum FPL model on the
triangular lattice. Using a combination of different numerical
techniques we analyze the ground state phase diagram of this
quantum FPL model. Our numerical calculations conclusively
establish the presence of a topologically ordered Z2 liquid
phase over an extended parameter regime of the effective
low-energy Hamiltonian. On tuning appropriate parameters
of the effective model, we find indication for a continuous
phase transition from the topological phase to a phase that
breaks the C3 rotational symmetry of the triangular lattice.
Using a mapping to an Ising gauge theory and PSG-based
arguments, we construct the effective field theory for a generic
continuous transition between the two phases, which we argue,
belongs to the O(3) universality class. We then show that
such a transition is naturally related to the condensation of
the (bosonic) magnetic charges of the Ising gauge theory, the
so called visons. Hence, contrary to the conventional theory
of continuous transition [69], the present critical theory is
written in terms of the soft vison modes and not the LN
order parameter which is a bilinear in terms of the vison
fields.

The present calculations show that the model of strongly
interacting hard-core bosons can harbor rich and interesting
phase diagrams including conventionally as well as topo-
logically ordered states at different fractional fillings. It is
interesting to note that considering the interacting particles to
be fermions would induce a nontrivial statistics in the dimer
problem. Interestingly, such kind of fermionic dimer models
can arise in the context of describing the metallic state of
the hole-doped cuprates at low hole densities [72]. Whether
a stable liquid phase can still be realized in such fermionic
models requires more understanding regarding the underlying
gauge theory and constitutes an interesting direction for further
studies in future.

Note added. Recently we learned that a preprint by Plat
et al. [73] considers the same model using different numerical
techniques. While the general conclusions about the topology
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of the phase diagram and the nature of the phases agree,
there are considerable quantitative differences regarding where
exactly the transition between the nematic and the Z2 phase
occurs.

ACKNOWLEDGMENT

K.R.C. thanks Sujit Das for critically reviewing the
manuscript and S.B. thanks Roderich Moessner for helpful
discussions.

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.
48, 1559 (1982).

[2] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[3] X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990).
[4] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[5] P. Anderson, Mater. Res. Bull. 8, 153 (1973).
[6] P. Fazekas and P. Anderson, Philos. Mag. 30, 423 (1974).
[7] P. W. Anderson, Science 235, 1196 (1987).
[8] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[9] X.-G. Wen, Phys. Rev. B 44, 2664 (1991).

[10] X.-G. Wen, Quantum Field Theory of Many-Body Systems: From
the Origin of Sound to an Origin of Light and Electrons, Vol. 1
(Oxford University Press, New York, USA, 2004).

[11] G. Wannier, Phys. Rev. 79, 357 (1950).
[12] H. T. Diep, Frustrated Spin Systems (World Scientific,

Singapore, 2004).
[13] D. Heidarian and K. Damle, Phys. Rev. Lett. 95, 127206 (2005).
[14] S. V. Isakov, Y. B. Kim, and A. Paramekanti, Phys. Rev. Lett.

97, 207204 (2006).
[15] S. V. Isakov, S. Wessel, R. G. Melko, K. Sengupta, and Y. B.

Kim, Phys. Rev. Lett. 97, 147202 (2006).
[16] L. Balents, M. P. A. Fisher, and S. M. Girvin, Phys. Rev. B 65,

224412 (2002).
[17] D. N. Sheng and L. Balents, Phys. Rev. Lett. 94, 146805 (2005).
[18] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376

(1988).
[19] R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).
[20] R. Moessner, S. Sondhi, and P. Chandra, Phys. Rev. B 64, 144416

(2001).
[21] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[22] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Phys. Rev.
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