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We theoretically investigate the electronic properties of the interface between quantum spin Hall (QSH)
and quantum anomalous Hall (QAH) insulators. A robust chiral gapless state, which substantially differs from
edge states of QSH or QAH insulators, is predicted at the QSH/QAH interface using an effective Hamiltonian
model. We systematically reveal distinctive properties of interface states between QSH and single-valley QAH,
multivalley high-Chern-number QAH and valley-polarized QAH insulators based on tight-binding models using
the interface Green’s function method. As an example, first-principles calculations are conducted for the interface
states between fully and semihydrogenated bismuth (111) thin films, verifying the existence of interface states in
realistic material systems. Due to the physically protected junction structure, the interface state is expected to be
more stable and insensitive than topological boundary states against edge defects and chemical decoration. Hence
our results of the interface states provide a promising route towards enhancing the performance and stability of
low-dissipation electronics in real environment.
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I. INTRODUCTION

Topological states (TSs) are new phases of quantum
matter that are characterized by an insulating bulk but highly
conducting (topologically protected) gapless boundary states
[1–3]. In two dimensions, the quantum spin Hall (QSH)
state has time-reversal (TR) symmetry protected gapless
helical edge states on the boundary, where two states with
opposite spin polarizations counterpropagate at a given edge
[2,3]. While the quantum anomalous Hall (QAH) state has a
topological protected chiral edge state where electric current
flows unidirectionally along the edge of the sample without
dissipation [1,4,5], similar to the well-known quantum Hall
state [6]. Since the electron backscattering is expected to be
prohibited, the edge channels of the QSH and QAH insulators
conduct without dissipation. This property is robust against
disorder scattering and other perturbation effects, and thus has
promising potential applications in low-power-consumption
electronic and spintronic devices.

It was recently demonstrated that gapless states also exist
at the interface of two topological insulators depending on
their helicity, spin chirality, or mirror symmetry [7–11].
However, a systematic investigation of the interface between
QSH and QAH states (QSH/QAH), which is scientifically
interesting for a better understanding of the basic properties of
topological interface states in relation to boundary conditions,
is still lacking. On the other hand, the QSH/QAH interface
is achievable in various topological materials, because QAH
states can be realized from QSH insulators by breaking the
TR symmetry via introducing the ferromagnetism. So far,
various methods have been proposed to realize ferromagnetism
in QSH insulators, which can, in principle, be classified
into three groups. One group is to induce ferromagnetism
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in QSH insulators through magnetic doping [12–16]. For
instance, the QAH effect has been experimentally observed
in Cr-doped (Bi,Sb)2Te3 around 30 mK recently[16]. Due to
unavoidable inhomogeneous doping or controllable δ-doping
(modulation-doping) [17,18], quantum dots and domains of
QAH insulators could be embedded into QSH insulators and
vice versa. Another group is to drive the transition from QSH to
QAH state by chemical decoration, for example, by depositing
3d or 5d transition-metal atoms on graphene [19–21] and
silicene [22], or controlling the surface functionalization of
stanene, germanene, and bismuth thin film with hydrogen
or halide atoms [23–25]. By patterning surface passivation
using a lithographic technique, which is feasible now in
partially hydrogenated graphene nanostructures [26–28], one
can control and even design the QSH/QAH interface in stanene
and bismuth thin films. In addition, ferromagnetism in QSH
insulators can also be induced due to the proximity coupling to
magnetic insulators [29], e.g., by depositing graphene on the
(111) surface of BiFeO 3 [30]. By etching the substrate just
like that in integrated circuit fabrication before transferring
QSH insulators onto it, one can also build an interface with
different shapes. For the evaluation of the overall performance
of TS-based electronic devices, it is highly important to explore
the QSH/QAH interface.

Although the presence of topological edge states is guaran-
teed by the topological nature of the bulk electronic structure,
the detailed behavior of edge states can be significantly
affected by the boundary conditions. The native edges of
topological materials suffer from the simultaneous presence of
both trivial and nontrivial edge modes due to the local dangling
bond states [31,32]. The roughness and unavoidable defects at
edges also have a strong influence on the properties of edge
states. Moreover, it has been reported that a small amount of
chemical adsorption of gas molecules or spontaneous edge
reconstruction can significantly modify the dispersion, Fermi
velocity, spatial location of the Dirac point, spin texture,
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and the Dirac cone anisotropy [33–36], which are important
parameters of TS-based electronic devices. In contrast, the
interface states sandwiched between two bulk materials are
physically protected against those effects [37], which may be
important in enhancing the stableness and insensitiveness of
topological electronics.

In this work, we focus on the electronic states of the
QSH/QAH interface. We show that there exists a robust chiral
gapless state at the QSH/QAH interface, which is essentially
different from both the chiral edge states of QAH insulators
and the TR symmetry protected helical edge states of QSH
insulators. The physical origin of the QSH/QAH interface
states and their unique properties is demonstrated by theo-
retical analysis. Furthermore, we systematically investigate
the interfaces between QSH and several kinds of QAH states,
such as single-valley QAH, multivalley high-Chern-number
QAH, and valley-polarized QAH states, using tight-binding
models and first-principles calculations. We also illustrate
the evolution of edge states when QSH and QAH insulators
are brought close to each other so that their edges touch
each other forming an interface. As the interface states are
buried between bulk materials, we expect the interface state to
be more stable and insensitive against various perturbations.
Hence our studies of QSH/QAH interface states are not only
of fundamental interest for basic science but also of crucial
importance for controlling the performance and stability of
topological electronics in real environment.

The paper is organized as follows. In Sec. II, we derive the
general behavior of the QSH/QAH interface states. In Sec. III,
we introduce the tight-binding models that will be used for
illustrative calculations. We then show the materials system for
first-principles calculations and the details of computational
methods, as well as the interface Green’s function approach
used in modeling the interface between two semi-infinite
systems. The numerical results are presented and discussed
in Sec. IV, and we end with a summary in Sec. V.

II. THEORETICAL MODEL ANALYSIS

The simplest Hamiltonian of QSH insulator was first
proposed by Bernevig, Hughes, and Zhang (BHZ) to describe
the effective theory of the QSH effect and topological phase
transition in HgTe/CdTe quantum wells [3]. The general form
of the effective Hamiltonian is given by [3]

HBHZ =
(

h(k) 0
0 h∗(−k)

)
, (1)

where k = (kx,ky), h(k) = ε(k) + M(k)σz + A(kxσx + kyσy)
and σx,y,z are the Pauli matrices. ε(k) and M(k) are expanded
as ε(k) = C − D(k2

x + k2
y) and M(k) = M − B(k2

x + k2
y). A,

B, C, and D are parameters that depend on the material
composition and structure. In particular, if M and B have
the same sign (i.e., MB > 0), the system is topologically
nontrivial, and a pair of helical edge states exist at the
boundary between the QSH insulator and ordinary insulator
or vacuum, where the counterpropagating edge states carry
opposite spins. While the QAH insulator can be described by
the BHZ Hamiltonian HBHZ with an additional Zeeman-type

of coupling

HG = diag(GE,GH ,−GE,−GH ), (2)

where GE and GH describe the spin splitting of electron
and hole bands, respectively, which are generically different
[12,23]. This Zeeman-type term, which can be realized by
exchange coupling with magnetic impurities, breaks the TR
symmetry of the system. Liu et al. firstly proposed this
Hamiltonian to predict the single-valley (around the � point)
QAH state with Chern number C = 1 in Hg 1−yMny Te/CdTe
quantum wells [12]. The chiral edge state, which characterizes
the QAH phase, is determined by the conditions [12]

(2M + GE − GH )(2M − GE + GH ) < 0, (3)

(2M + GE + GH )(2M − GE − GH ) > 0. (4)

We consider an interface at y = 0 between a QSH insulator
(y < 0) and a QAH insulator (y > 0) [Fig. 1(b)]. The interface
breaks the translational symmetry in the y direction, while the
bulk periodicity parallel to the interface is preserved, then kx

is still a good quantum number. Note that the Hamiltonians
are block-diagonal, so we study the upper and lower blocks
separately. For simplicity, the overall energy shift term C in
ε(k) is ignored. The upper block, h(k), of the Hamiltonian
for the left (HL) and right (HR) parts of the interface can be
rewritten as follows:

HL =
(

M − B+
(
k2
x − ∂2

y

)
A(kx − ∂y)

A(kx + ∂y) −M + B−
(
k2
x − ∂2

y

)) (5)

and

HR =
(

S + M ′ − B+
(
k2
x − ∂2

y

)
A(kx − ∂y)

A(kx + ∂y) S − M ′ + B−
(
k2
x − ∂2

y

))

(6)

with B± = B ± D, S = (GE + GH )/2, and M ′ = M +
(GE − GH )/2. According to previous investigation of edge
states [38], we adopt the trial function � = (

φ1

φ2

)
eλy for y < 0

region and get the secular equation with four roots ±λ1,2,

λ2
1,2 = k2

x + F ±
√

F 2 − θ2, (7)

where F (M,E) = A2−B−(M−E)−B+(M+E)
2B−B+

and θ (M,E) =√
M2−E2

B−B+
. In order to have a bound state solution near the

junction, we take the Dirichlet boundary condition in which
the wave function must vanish at y = ±∞. Hence we chose
the following basis for the y < 0 region:

�1,2 =
(

A(kx − λ1,2)

E − M + B+
(
k2
x − λ2

1,2

)
)

eλ1,2y, (8)

where Re(λ1,2) > 0. Similarly, for y > 0, we choose

�1,2 =
(

A(kx + λ′
1,2)

E − S − M ′ + B+
(
k2
x − λ′

1,2
2)

)
e−λ′

1,2y, (9)

with λ′2
1,2 = k2

x + F ′ ±
√

F ′2 − θ ′ and Re(λ′
1,2) > 0, where

F ′ = F (M ′,E − S),θ ′ = θ (M ′,E − S).
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FIG. 1. (Color online) Schematics of the evolution of edge states in momentum space (a) and real space (b) when putting the QSH and
QAH insulators together to form an interface. Red and blue colors represent different spin polarizations.

Assuming the solution of the interface state has a general
form:

ψ =
{
C1�1 + C2�2, y < 0
C ′

1�1 + C ′
2�2, y > 0 . (10)

The wave function and its derivative should be continuous at
y = 0,

ψ |y=0+ = ψ |y=0− , ∂yψ |y=0+ = ∂yψ |y=0− . (11)

Therefore the characteristic equation at kx = 0 gives

(
√

F + θ + √
F ′ + θ ′)2[(M ′ + S − E)θ + (M − E)θ ′]

+ BS − D(M ′ − M)

B−B+
[(M ′ + S − E)θ − (M − E)θ ′]

= 0. (12)

After some tedious calculations (for detailed derivations, see
Appendix A), we find that when MM ′ < 0, Eq. (12) has
a solution, i.e., a bound state near the junction exists. And
there is no solution if MM ′ > 0. Similarly, we find that the
existence condition of an interface state for the lower block is
MM ′′ < 0 with M ′′ = M − (GE − GH )/2. In order to ensure
that the system is always insulating, here we assume that S

satisfies Eq. (4).
Combining the above conditions, we arrive that for the

QSH/QAH interface, either MM ′ < 0, MM ′′ > 0 or MM ′ >

0, MM ′′ < 0 is valid according to Eq. (3), hence there must
be a gapless interface state as shown in Fig. 1(a). However,
we must make it clear that this interface state does not simply
inherit from the chiral edge state of the QAH insulator since
it has opposite spin polarization. This is not straightforward.
To elucidate the issue, let us understand the physics from
the edge state picture [Fig. 1(b)]. If GE < 0 and GH > 0,

a spin-down gapless state exists at the edge of the QAH
insulator. The backscattering is forbidden for the edge states
of QAH and QSH insulators, because there is no state to
be backscattered into. When the QAH and QSH insulators
approach each other gradually, the spin-down edge state of the
QAH insulator is destroyed due to the coupling to one of the
helical edge states of the QSH insulator. The backscattering
for the spin-down channel is allowed, hence gapless states
of this channel are gapped, and eventually disappear, leaving
only the spin-up edge state bound to the interface. Because the
remaining interface state originates from the QSH insulator,
it is topologically protected by TR symmetry, and is hence
robust against structural disorder.

In more realistic QAH insulators, such as a multivalley
QAH state with a high Chern number [39] and a valley-
polarized QAH state [40,41], the number of chiral edge states
is higher and the edge state becomes valley-contrasting spin
polarized. Hence the detailed behavior of interface states
would be much more complicated. However, as long as the
edge states of QSH and QAH insulators couple to each
other at the interface and the whole heterostructure remains
insulating, the difference in topology of bulk band structures
guarantees the existence of interface states. Therefore it is
expected that the QSH/QAH interface states always exist and
show some unique features different from the edge states of
QSH or QAH insulators. Several typical examples will be pre-
sented in the following to illustrate the behaviors of interface
states between QSH and various kinds of QAH insulators.

III. NUMERICAL CALCULATION

Although the above effective low-energy model analysis
already gives a basic picture of the physical mechanism of
the interface state, to obtain more quantitative understandings,
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we preform realistic electronic structure calculations based
on tight-binding (TB) models as well as a density-functional
theory description of materials. In particular, we use a BHZ-
type TB model to study the interface between a QSH and a
single-valley QAH state with Chern number C = 1, and the
generalized Kane-Mele model to study the interface between
a QSH insulator and a multivalley QAH insulator with a high
Chern number (C = 2) or a valley-polarized QAH insulator.
These TB models are described in Sec. III A. We then compute
the behavior of the interface in hydrogenated bismuth (111)
thin films using first-principles calculations. The details of our
computational approach are presented in Sec. III B. In order
to investigate the interface between two semi-infinite systems,
we adopt the interface Green’s function methods which will
be described in Sec. III C.

A. Tight-binding models

We first introduce a simplified TB model that captures all
the essential symmetries and topology of the BHZ model.
All the interesting low-energy physics occurs near the � point,
and the unimportant behavior of band structures at high-energy
can be ignored. Therefore we consider a four-band square
lattice model which gives the Hamiltonian of the form of
Eq. (1), with the matrix elements given by

h(k) = ε(k) + M(k)σz + A(sin kxσx − sin kyσx),

ε(k) = C − 2D(2 − cos kx − cos ky), (13)

M(k) = M − 2B(2 − cos kx − cos ky).

Obviously, the lattice Hamiltonian can reduce to the BHZ one
in Eq. (1) near the � point, thus this BHZ-type TB model
can represent both QSH and a single-valley QAH state with
C = 1 if the additional Zeeman-type term HG in Eq. (2) is
added. Actually, in order to investigate the topological phase
transition (TPT) from a QSH to a QAH state, we add αHG into
this model, and increase the factor α from 0 to 1 gradually.
We adopt the values of parameters in Eq. (13) from Ref. [23]
to simulate the interface between half-side and fully surface
passivated stanene by halide atoms, which were predicted to
be QAH and QSH insulators, respectively [23,42]. Note that
other QSH/QAH interfaces, for example, an interface between
HgTe/CdTe and Hg 1−yMny Te/CdTe quantum wells [3,12] can
also be described by this model using different parameters.

The Kane-Mele model [2] for the QSH effect is a honey-
comb lattice model with the TR invariant spin-orbit coupling
(SOC). The low-energy bands form two valleys near the K

and K ′ points at opposite corners of the hexagonal Brillouin
zone. By adding extra terms such as an exchange field, several
kinds of QAH states can be realized from the QSH state in this
model. The generalized Kane-Mele model takes the form

H = −t
∑
〈ij〉μ

c
†
iμcjμ + iλSO

∑
〈〈ij〉〉μν

ζij c
†
iμσ z

μνcjν

− iλIR

∑
〈〈ij〉〉μν

ξic
†
iμ(σ × d̂ij )zμνcjν

+ iλER

∑
〈ij〉μν

c
†
iμ(σ × d̂ij )zμνcjν

+ λv

∑
i

ξic
†
iμciμ + M

∑
iμν

c
†
iμσ z

μνciν, (14)

where c
†
iα(ciμ) is a creation (annihilation) operator for an

electron with spin μ on site i. The first term represents
the nearest-neighbor hopping with amplitude t . The second
term describes the mirror symmetric SOC, which involves
the next-nearest-neighbor hopping. ζij = (2/

√
3)(d̂1 × d̂2),

where d̂1 and d̂2 are unit vectors along the two bonds that
connect the next-nearest-neighbor sites. The single (double)
brackets label the nearest (next-nearest) neighbor pairs. μ and
ν denote spin indices and σ are the spin Pauli matrices. The
third and fourth terms are the intrinsic and extrinsic Rashba
SOC terms, respectively. d̂ij represents the unit vector from site
i to j , and ξi = ±1 for A and B sublattice. The last two terms
correspond to a staggered sublattice potential and a uniform
exchange field, which violate the twofold in-plane rotation and
TR symmetries, respectively.

This Hamiltonian has been used to investigate possible
topological phases, such as the QSH state [2], the multivalley
QAH state with a high Chern number [39], and valley-
polarized QAH states [40,41], in graphene and silicene. When
the exchange field is absent (i.e., M = 0), the TR symmetry
is preserved in this model. After including the SOC effect, a
bulk band gap opens to host a TR symmetry-protected QSH
state. In the QSH phase, a pair of dissipationless helical edge
states with opposite spins exist, connecting the conduction
and valance bands at different valleys [2]. Then, if we turn
on the exchange field to break the TR symmetry of the
system, a multivalley QAH phase with a high Chern number
can be realized, where each valley provides a Chern number
CK = CK ′ = 1 and the total Chern number C = CK + CK ′ = 2
[39]. By further tuning the extrinsic Rashba SOC, the system is
driven into the so-called valley-polarized QAH state [40,41],
characterized by nonzero Chern number C and valley Chern
number Cv ≡ CK − CK ′ . In this phase, two valleys contribute
to different Chern numbers, i.e., CK = 1 and CK ′ = −2. The
imbalance of Chern number from different valleys gives rise
to the valley-polarized QAH state with C = −1 and Cv = 3,
which possesses the properties of both the QAH effect and
the quantum valley Hall effect [40,41]. Hence by varying the
relative strength of the parameters in Eq. (14), we can study
the interfaces between QSH and different kinds of QAH states.

B. Material systems and computational methods

We take a single bilayer of hydrogenated Bi(111) film as
an illustrative example to demonstrate the existence of gapless
QSH/QAH interface states. A single Bi (111) bilayer forms a
slightly buckled hexagonal lattice with two atoms per unit cell.
According to previous studies [24,25], the full hydrogenated Bi
(111) bilayer [denoted as H-Bi(111)] is a QSH insulator with
bulk band gap as large as ∼1.0 eV. When the hydrogen atoms
are removed from one side of H-Bi(111) while kept on the other
side [semihydrogenated Bi (111) film, labeled by sH-Bi(111)],
the system becomes a valley-polarized QAH insulator with
a gap of ∼0.35 eV [24,25]. In the valley-polarized QAH
state, the valley-resolved Chern numbers contributed from
K and K ′ valleys are different, i.e., CK = 1,CK ′ = 0, and
the corresponding total Chern and valley Chern numbers are
C = Cv = 1. Hence the QSH/QAH interface can be achieved
in the single Bi (111) bilayer by controlling the surface
hydrogenation. For graphene, a precise control over the surface
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hydrogenation is already feasible now, benefitting from recent
experimental progress [26–28].

In order to investigate the H-Bi(111)/sH-Bi(111) interface,
we carry out first-principles calculations based on density
functional theory (DFT) as implemented in the Vienna
ab initio simulation package [43] with the pro-
jector augmented-wave method. Perdew-Burke-Ernzerhof
parametrization of the generalized gradient approximation is
used for the exchange-correlation potential [44]. The plane-
wave energy cutoff is set to 250 eV, and the Brillouin zone
is sampled by a �-centered 12 × 12 × 1 k-point mesh. The
layer structures of H-Bi(111) and sH-Bi(111) are modeled
with a vacuum region more than 10-Å thick to eliminate
the spurious interaction between neighboring layers. After
obtaining the self-consistent ground states of bulk H-Bi(111)
and sH-Bi(111), we construct Wannier representations for
these two material systems using the WANNIER90 package
[45] and generate ab initio TB Hamiltonians from the DFT
calculation [46]. It should be noted that the ab initio TB models
are realistic in the sense that the Wannier interpolated band
structures precisely reproduce the results of first-principles
calculations [47]. Based on the effective TB Hamiltonian, we
further calculate the interface state using the interface Green’s
function method as we will explain in Sec. III C.

C. Interface Green’s function method

The Green’s function method is a powerful approach to
explore the electronic structure of a perfect crystal with
translational symmetry, and can be used also in cases where the
periodicity of the system is destroyed, e.g., as for surface/edge-
terminated solids and interfaces. The surface Green’s function,
which is widely used in determining the topological-protected
gapless boundary states of TSs [48,49], can be determined
via highly efficient iterative methods [50] at a greatly reduced
computational cost. In order to study the interface between
two different materials, as in the system depicted in Fig. 2, we
make use of the surface Green’s function matching (SGFM)
theory [51–53] to get the interface Green’s function, from
which all useful properties of the interface can be obtained.
In the following, we will briefly introduce the surface Green’s
function method and the SGFM theory.

As is well known, any solid with a surface can be broken
down into a semi-infinite stack of principal layers, such
that only the nearest-neighbor interaction between adjacent
principal layers exists. A principal layer may contain one or

123... 0 0 1 2 3 ...

Material A Material B

Principal LayerI

FIG. 2. (Color online) Schematic illustration of a system con-
sisting of two semi-infinite materials. “I” denotes the interface
region for which we need to calculate the Green’s function GI .
Each semi-infinite system can be split into principal layers with
Hamiltonian submatrices labeled according to the distance to the
interface.

more atomic layers, depending on the geometry and on the
range of interactions included in the model, and the crystal
can be reproduced by translations of the principal layers. If
the bulk periodicity parallel to the surface is preserved by
all the atomic planes right up to the surface, then k‖ is still
a good quantum number. For each k‖, the surface problem
can be reduced to a one-dimensional chain in the direction
perpendicular to the surface.

Within the principal layer approximation, the surface
Green’s function with fixed k‖ can be written as

g(ε,k‖) = (ε − H00 − H01T )−1, (15)

where ε = E + iη with η arbitrarily small. Hnm are the matrix
elements of the Hamiltonian between the layer orbitals, and
the transfer matrix T is given by

T = (ε − H00 − H01T )−1H
†
01, (16)

which can be computed self-consistently via an efficient
iterative scheme proposed by López Sancho et al. [50]. It
should be noted that in Eq. (16), we have made the simplifying
but not essential assumption of an ideal surface, i.e., H00 =
H11 = . . . and H01 = H12 = . . .. In practice, we can also easily
take various surface effects into account by simply modifying
H00 and H01 in Eq. (15).

For an interface system consisting of two semi-infinite
materials (see Fig. 2), let us discuss its electronic structure
with the formulation of the matching problem in terms of
the SGFM analysis. The interface Green’s function GI can
be calculated from the bulk Green’s function of two isolated
semi-infinite materials GA and GB , and the coupling between
them across the interface, HAB and HBA. Following the works
by Garcı́a-Moliner et al. [51–53], we first introduce some
projector operators that map the subspaces of different parts
of the system. In particular, we define P as the projector of the
space of the actual existing orbitals forming the system which
is spanned by P = PA + PB . Within P there is an interface
region with projector � consisting of two parts �A + �B . The
bulk Hamiltonian HA,B and Green’s functions GA,B are only
meaningful in the corresponding parts of P and �.

Based on these projector operators, the interface Green’s
function GI is given by [51–53]

G−1
I = [�Aε�A − �AHAPAGA(�AGA�A)−1�A]

+ [�Bε�B − �BHBPBGB(�BGB�B)−1�B]

+ (�AHI�B + �BHI�A). (17)

As the surface projection of any bulk Green’s function GA,B

gives the surface Green’s function gA,B , the above equation
actually gives the surface Green’s function matching formula
for the interface region,

GI (ε,k‖) =
(

g−1
A −HAB

−HBA g−1
B

)−1

=
(

ε − HA
00 − (

HA
01

)†
T̄ A −HAB

−HBA ε − HB
00 − HB

01T
B

)−1

.

(18)

Once the interface Green’s function is known, the charge
local density of states (LDOS) and spin LDOS [54] are given
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straightforwardly with the expression

Nn(E,k‖) = − 1

π
Im[TrGn(E + iη,k‖)] (19)

and

Sn(E,k‖) = − 1

π
Im[TrGn(E + iη,k‖)�σ ], (20)

respectively, where �σ are three spin operators in the local
orbital basis and n is the principal layer index.

IV. RESULTS AND DISCUSSIONS

In this section, we present the interface states between QSH
and several kinds of QAH insulators. For the single-valley
QAH phase with C = 1 in Sec. IV A, the electronic structure
as well as the evolution of edge states with respect to the
strength of the exchange field and the interface coupling are
investigated. While these ones for a multivalley QAH state with
a high Chern number and a valley-polarized QAH state are
discussed in Secs. IV B and IV C, using the generalized Kane-
Mele model. We also preform first-principles calculations for
known material systems in Sec. IV D.

A. Singe valley QAH state with C = 1

Firstly, we consider the interface between QSH and single-
valley QAH states using the BHZ-type TB model that has been
introduced in Sec. III A. With TB model parameters obtained
by fitting the ab initio band structures [23], we can investigate
the interface between half- and fully halogenated stanenes,
which are QAH and QSH insulators, respectively [23,42].

We start from a junction system of two identical QSH
insulators and consider the effect of a topological phase
transition from a QSH to a QAH state on one side of the
interface by increasing the amplitude of Zeeman-type term αB

in the right side and then αA in the left side [Fig. 3(a)]. The
LDOS of the interface region is shown in Fig. 3, from which we

can clearly see the evolution of interface electronic structures.
When αA = αB = 0.0, the whole system is in the QSH phase
with a band gap. By increasing αB , the bulk gap decreases
gradually and closes at αB ≈ 0.5 where a TPT happens as
shown in Figs. 3(b)–3(d). Further increasing αB , the bulk
gap reopens leaving a gapless state connecting the conduction
bands with valence bands. This is because the Zeeman-type
term (i.e., the exchange field) drives the right semi-infinite
system into the QAH phase, while the left one is still in
the QSH phase. As a QSH insulator cannot be adiabatically
connected to a QAH insulator without a gap closure due to
the difference in topology, there must be a gapless state at the
interface between them. However, if we keep αB = 1.0 and
increase αA from 0.0 to 1.0, the bulk band gap closes and
reopens again, signaling another TPT [Figs. 3(f)–3(j)]. The
whole system finally enters the QAH phase and the gapless
interface state vanishes. Our result is in agreement with the
analysis in Sec. II, unambiguously identifying the existence of
a conducting interface state between QSH and QAH insulators.

Experimentally, the above process can be realized in func-
tionalized stanene. Since the full and half-side halogenated
stanene were found by previous studies [23,42] to be a QSH
and a QAH insulator, respectively, one can tune the strength
of the exchange field by gradually removing the halide atoms
from one side of the halogenated stanene while keeping the
other side halogenated. Then, the interface and corresponding
gapless state between QSH and QAH phases would appear
in this system, which might be probably observed by angle-
resolved photoelectron spectroscopy or other measurements.

It is known that the topological edge states of QAH and
QSH insulators are exponentially localized on the boundary,
which is important for its practical applications. In order to
characterize the localization of the interface state, we calculate
the LDOS of several principal layers near the interface
in the same energy and k-space range. As shown in Fig. 4,
the gapless states within the bulk gap are localized in the
interface region and decay rapidly away from the interface.

(a) (c) (d) (e)

104

102

100

10- 2

10- 4

QSH

QAH(f) (g) (h) (j)(i)

(b)
104

102

100

10- 2

10- 4

FIG. 3. (Color online) (a) The schematic of the calculated system. (b)-(j) LDOS of the interface between semi-infinite QSH and single-valley
QAH insulators vs the strength of Zeeman term αA and αB .
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n=1

facef
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FIG. 4. Layer-resolved LDOS of the QSH/QAH interface state as a function of the principal layers index.

In particular, the signature of interface states almost vanishes
within seven principal layers, similar to the edge states of
QAH and QSH phases in this TB model. Although the edge
and the interface states are of nearly equal decay length,
edge reconstruction or decoration can significantly change
the decaying behaviors of edge states and hence affect the
amplitude for interedge tunneling and the performance of TS-
based electronic devices [33,34]. On the contrary, the junction
structure of the interface system provides a physical protection
against those perturbations for the localized interface state,
which may be of practical use in designing TS-based electronic
devices with high performance and stability.

To better understand the evolution from edge states of QAH
and QSH insulators to the interface state between them, we
simulate the transition from two separate edges to a joint
interface. To do this, we scale the TB Hamiltonian elements
[HAB and HBA in Eq. (18)] that mediate the hopping between
the two materials by a factor κ , with κ = 0 (κ = 1) for zero
(full) coupling. And we calculate the spin LDOS of the two
0th principal layers of the QSH and QAH parts in the interface
region separately (see Fig. 2) using Eq. (20). For κ = 0.0,
corresponding to the two edges separated far enough without
coupling, we find the helical and chiral edge states for QSH and
QAH insulators, respectively, both of which are spin-polarized
and bridge the fundamental band gap [Figs. 5(a) and 5(b)].
Upon the approach of the two semi-infinite systems (simulated
by increasing κ to 1.0), two spin-down edge states couple to
each other, open a gap at the crossing point and finally merge
with the bulk-state continuum [Figs. 5(c)–5(j)]. But the spin-up
edge state of QSH insulator “survives” in the formation of the
interface and gradually permeates into the opposite side, as
shown in Fig. 5. More precisely, the dispersion of the spin-up
edge state does not change significantly with κ because no
states with the same spin polarization could be coupled. The
evolution of edge states confirms that the interface state in this
system arises from the hybridization of the edge states of the
QSH and QAH phases, which should be robust against any
local perturbations.

B. Multivalley high-Chern-number QAH state with C = 2

It is previously known that the number of edge states is
equal to the absolute value of the Chern number due to the
bulk-edge correspondence [4,5,55]. For QAH with a high
Chern number (|C| � 2), there are two or more chiral edge

states. However, there are only two helical edge states with
opposite spin polarizations at the edge of QSH insulators. How
these edge states hybridize when the edges of QAH and QSH
insulators approach each other? Does any localized state exist
at the interface between QAH and QSH insulators? If yes, how
many interface states exist in the bulk band gap? To answer
these questions, we simulate the interface between QSH and
multivalley high-Chern-number QAH (HQAH) states using
the generalized Kane-Mele model outlined in Sec. III A. By
switching off or on the exchange field parameter M we can
drive the model into QSH or HQAH with C = 2 based on the
parameters listed in Table I.

We calculate the electronic structure and its evolution with
scaling factor κ for the interface region, as shown in Fig. 6.
For the uncoupled subsystems, we find the established 1D
Dirac states of the QSH part and two chiral edge states of
the HQAH part with C = 2 [κ = 0.0, panel (a) in Fig. 6].
For clarity, we mark the spin polarization of all edge and
interface states [Figs. 6(a) and 6(e)]. The helical QSH edge
states consist of two gapless states connecting conduction and
valance bands at different valleys (K and K ′), while the two
chiral QAH edge states are of the same spin polarization and
located within the K or K ′ valley separately. Increasing the
scaling factor κ opens up band gaps at the crossing points of
edge states with the same spin polarization [Fig. 6(b)], leaving
only two gapless states connecting bulk bands at different
valleys. What is more, these states can hybridize with each
other to change their dispersions in momentum space and
mix their spin polarization, showing complicated evolution
behavior comparing with the above case of C = 1. Further
increasing κ , one interface state is shifted upward into the
conduction bands while the other state is shifted downward
into the valence bands [Figs. 6(c) and 6(d)]. So one gapless
state moves to the K valley and the other moves to the K ′ valley
gradually. Finally, for full coupling, κ = 1.0, two interface
states with opposite spin polarizations are left in the bulk band
gap [Fig. 6(e)]. These results are essentially consistent with
the theoretical analysis of Sec. II, because two spin-down edge
states propagating in opposite directions (one from the QSH
side and one from the HQAH side) couple to each other and
vanish as κ increases, leaving a spin-up state from the QSH
part and a remaining spin-down state from the HQAH part in
the bulk band gap [see Fig. 6(f)].

More interestingly, the two interface states with opposite
spin polarizations are located in different valleys with large

075138-7
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FIG. 5. (Color online) Spin-resolved electronic structures of the
outmost principal layer (i.e., the 0th layer) of QSH (left panel) and
QAH (right panel) parts in the interface system. The scaling factor
κ increases from top to bottom (κ = 0.0 uncoupled; κ = 1.0 fully
coupled). Different colors represent Sz along different directions (red
and blue represent the +z and −z directions, respectively). The spin
LDOS of Sz is depicted as a color scale.

separation in momentum space [56]. In other words, the
formation of QSH/HQAH interface leads to valley-contrasting
spin polarization of interface states. The coupling of spin and
valley physics at the interface makes it possible to distinguish
the valley degree of freedom by controlling the spin degree of
freedom.

C. Valley-polarized QAH state with C = −1

Valley-polarized QAH (VQAH) phase is a quantum state
that exhibits the electronic properties of both the quantum
valley Hall state and QAH state [40,41]. This novel topo-
logically nontrivial state is characterized by a Chern number
C = −1 and a valley Chern number Cv = 3. On the boundary
of the VQAH insulator, there are two chiral edge states from
the K ′ valley propagating in opposite directions to the only
one edge state from the K valley. Due to the large separation
of the two valleys in momentum space, the edge states are
robust against intravalley scattering. However, in the presence
of short-range disorder, intervalley scattering is inevitable and
the edge state from the K valley can be easily scattered back
to an edge state from the K ′ valley. Consequently, one pair
of counterpropagating edge states (one from the K valley and
the other from the K ′ valley) are destroyed, leaving only one
chiral edge state from the K ′ valley, as required by the total
Chern number C = −1. Therefore we expect that the behavior
of electrons in the QSH/VQAH interface is similar to that of
QSH/QAH interface in Sec. IV A.

To demonstrate the conjecture, we calculate the electronic
structures of the QSH/VQAH interface using the generalized
Kane-Mele model described in Sec. III A with parameters
listed in Table I. At the beginning (κ = 0.0), one gapless state
connects conduction bands with valance bands at the K valley,
whereas two gapless states with opposite spin polarizations
are at the K ′ valley [Fig. 7(a)], which is consistent with
previous works of the VQAH insulator [41]. On the contrary,
the helical states of the QSH part connect conduction and
valance bands at different valleys. Surprisingly, we find that
a gap opens at the Dirac point of the helical QSH edge states
when increasing the scaling factor κ [Fig. 7(b)]. This is distinct
from the cases in Secs. IV A and IV B where gaps open at
the crossing point of hybridized edge states from opposite
sides of the interface. Moreover, both upper and lower parts
of the detached Dirac cone move towards the K ′ valley and
eventually merge into bulk bands as the interface coupling
strength increases [Figs. 7(c) and 7(d)]. It seems that the edge
states of the VQAH state are not affected during the process.
However, the spin polarization of one edge state at the K ′ valley
changes when κ = 1.0 [see Fig. 7(e)]. This is not surprising,
as we will explain in an intuitional way as shown in Fig. 7(f).
When the two semi-infinite subsystems approach one another,
the two counterpropagating spin-up edge states [red arrows
in Fig. 7(f)] interact with each other and vanish gradually,
leaving only spin-down states at the interface. Actually, if we
neglect the pair of VQAH edge states, which can be removed
by intervalley scattering (dashed-line arrows in Fig. 7), the
situation is almost the same as the case of C = 1 in Sec. IV A

TABLE I. Parameters of the generalized Kane-Mele model (14)
in different topological phases (in unit of the hopping energy t) [40].

Topological phase λSO λIR λER λv Ma

HQAH (C = 2) 0.02 0.08 0.01 0.0 0.5
VQAH (C = −1) 0.07 0.08 0.05 0.0 0.5

aBy reducing M to 0 and keeping other parameters unchanged, we
can drive this model into the QSH phase.
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FIG. 6. (Color online) (a)–(e) LDOS of the QSH/HQAH interface region as a function of κ . The average spin LDOS of Sz is marked for
all gapless states in (a) and (e). (f) Schematic of the spatial distribution of the edge (interface) channels at κ = 0.0 (κ = 1.0).

except that the remaining gapless channel is valley-polarized
and could serve as a valley filter [41].

D. Hydrogenated bismuth (111) thin film:
a first-principles study

We further investigate the QSH/QAH interface state in
realistic material systems, i.e., the interface between fully and
semihydrogenated Bi (111) thin film [see Fig. 8(a)]. Firstly, we
construct 16-band ab initio TB models for H-Bi(111) and sH-
Bi(111) in a Wannier basis, including all the Bi s and p valence
orbitals. The effective TB Hamiltonian matrix elements of the
interface system are then obtained directly from the two bulk
Wannier Hamiltonians. Finally, we implement the interface
Green’s function method to obtain the LDOS of the interface
region. It is worth noting that when generating the Wannier

functions for the interface treatment, the Wannier basis
function should be chosen as similar as possible for the two
systems before constructing the interface Hamiltonian. Only
in this way will the coupling Hamiltonian between the two
materials through the interface be well defined. We therefore
use the projected atomiclike WFs without applying a maximal-
localization procedure [46]. The valence bands maxima of the
two bulk systems have been aligned to the common Fermi level
in the interface system, in accordance with the vacuum energy
level.

Although the ab initio TB parameters using Wannier
functions at the surface or interface are taken from bulk values,
the edge electronic structures agree with the direct DFT results
reported earlier [24]. As shown in Fig. 8(b), there is a pair of
helical states at the edge of H-Bi(111), indicating that it is
a QSH insulator. Whereas for sH-Bi(111), which is a valley-

κ = 0.0κκκκ === 0000 00.0.0κκκ

κ = 0.0 κ = 0.2 κ = 0.4 κ = 1.0

10

10

10

10

10

QSH VQAH (C=-1) QSH VQAH (C=-1)

κ = 0.5

(a) (b) (c) (d) (e)

(f)

κ = 1.0

FIG. 7. (Color online) (a)–(e) LDOS of the QSH/VQAH interface region as a function of κ . The average spin LDOS of Sz is marked for
each gapless states in (a) and (e). (f) Schematic figure of the spatial distribution of the edge (interface) channels at κ = 0.0 (κ = 1.0). The pair
of gapless states which would vanish in the presence of intervalley scattering are labeled by a dashed-line arrow.
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(b) right edge of H-Bi (c) H-Bi/sH-Bi interface  (d) left edge of sH-Bi

(a) 

QSH: hydrogenated-Bi(111) Interface QAH: semi-hydrogenated-Bi(111)

FIG. 8. (Color online) (a) A schematic illustration showing the QSH/QAH interface state between the fully and semihydrogenated Bi (111)
films. (b) The helical edge state of H-Bi(111), (c) the QSH/QAH interface state between H-Bi(111) and sH-Bi(111), and (d) the chiral edge
state of sH-Bi(111).

polarized QAH insulator with C = 1, a chiral edge state exists
around the K valley [Fig. 8(d)]. For the H-Bi(111)/sH-Bi(111)
interface, a gapless state exists at the band gap as shown in
Fig. 8(c). More importantly, the interface state is around the
K valley, namely is valley-polarized, hence could be a good
candidate for designing dissipationless valleytronics. These
results again confirm the existence of the QSH/QAH interface
state.

V. SUMMARY

In summary, we have studied the gapless states at the
QSH/QAH interface using theoretical analysis and numerical
calculations. We find that a chiral gapless state exists at
the QSH/QAH interface, which does not simply inherit
from the chiral edge states of QAH insulators. In fact, a
chiral QAH edge state is typically destroyed due to the
coupling to one of the helical edge states of a QSH insulator,
when the two subsystems approach each other. Hence the
“survived” chiral interface state stems from TR symmetry
protected helical edge states of QSH insulators, and usually
has an opposite spin polarization to the original chiral
edge states of QAH insulators. Based on TB models, we
systemically investigate the interfaces between QSH and dif-
ferent kinds of QAH insulators, including single-valley QAH,

multivalley high-Chern-number QAH, and valley-polarized
QAH insulators. The existence and distinct behaviors of the
interface states are observed in all cases. In addition, we have
used first-principles calculations to simulate the QSH/QAH
interface in realistic material systems [i.e., hydrogenated
Bi (111) bilayer], confirming the conclusions from the TB
models.

Unlike the edge states of QSH or QAH insulators, which
are significantly affected by edge defects, reconstruction and
chemical decoration, the interface state is robust against
these perturbations. Since the interface states are deeply
buried between two bulk materials, the physical protection
makes the interface state more stable and insensitive than
topological edge states, which is important for enhancing the
performance and stability of topological electronic devices in
real environment.
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APPENDIX A: THE QSH/QAH INTERFACE STATE FROM
THE BHZ MODEL ANALYSIS

In the following, we give a detailed analysis of the wave
function connection at the QSH/QAH interface. From Eq. (7),
we can easily get

λ2
1 + λ2

2 = 2k2
x + 2F and λ2

1λ
2
2 = M2 − E2

B−B+
, (A1)

where F (M,E) = A2 − B−(M − E) − B+(M + E)

2B−B+
. Since

λ1,2 should be positive for y < 0 region, the equation can
be further reduced into

λ1 + λ2 =
√

2k2
x + 2F + 2θ, (A2)

where θ (M,E) = λ1λ2 =
√

M2−E2

B−B+
. Similarly, for y > 0, we

get

λ′
1 + λ′

2 =
√

2k2
x + 2F ′ + 2θ ′, (A3)

where F ′ = F (M ′,E − S), θ ′ = θ (M ′,E − S), M ′ = M +
(GE − GH )/2, and S = (GE + GH )/2.

For simplicity, let us define the left side of Eq. (12) as a
function �(E):

�(E) = (
√

F + θ + √
F ′ + θ ′)2[(M ′+S − E)θ+(M−E)θ ′]

+ BS − D(M ′ − M)

B−B+
[(M ′ + S − E)θ−(M−E)θ ′].

(A4)

Hence solving Eq. (12) is equivalent to determining zero
points of the function �(E). As the whole system should be
insulating, the interface state (if exists) should lie in the bulk
gap, bridging conduction and valance bands. Therefore the
energy range we should consider [i.e., the domain of �(E)]

is just the bulk energy gap of the interface system. If �(E)
has a zero point in the gap, one interface state should exist.
However, if no zero point exists, it is evident that no interface
state exists in the whole energy gap, due to the fact that the
BHZ model is just a single-valley model.

Before proceeding with the detailed proof, we first mention
certain restrictions on S ± M ′ and M to ensure that the domain
of the function �(E) is not empty, which can be obtained by
noting that

λ2
1λ

2
2 = M2 − E2

B−B+
> 0, λ′2

1 λ′2
2 = M ′2 − (E − S)2

B−B+
> 0.

(A5)

Physically, these restrictions just mean that the whole interface
system is still an insulator rather than a metal and that the
interface state should lie in the bulk energy gap. In other words,
E should lie both in the QSH gap [−|M|,|M|] and in the QAH
gap [min(GE + M,GH − M), max(GE + M,GH − M)] (i.e.,
[S − |M ′|,S + |M ′|]). Hence the intersection of these two sets
must not be empty, i.e.,

S − |M ′| < |M|, − |M| < S + |M ′|. (A6)

The interval of the insulating gap for the whole interface
system is thus determined by the relative value of ±M and
S ± M ′.

Obviously, it is extremely difficult to directly calculate the
zero points of �(E), which is in fact unnecessary. Since only
the existence of the zero points is important rather than the
specific values of them, we adopt an indirect method here.
The basic idea of the method is to evaluate the existence of
zero points of �(E) inside the gap through its behavior on the
boundary of the gap. This is not straightforward. To clarify the
method, let us first look at a simple example: supposing f (x)
is a continuous function on the interval [a,b], if f (a) > 0,
f (b) = 0, and ḟ (b) > 0 as shown in Fig. 9(a), we can assert

a b

0

At least one zero point

a b

0

Undetermined zero points(b)(a)

FIG. 9. (Color online) Schematic illustration of the simple example. (a) In the first case where f (a) > 0, f (b) = 0, and ḟ (b) > 0, there
must be at least one zero point. (b) In the second case where f (a) > 0, f (b) = 0, and ḟ (b) < 0, the existence of zero points cannot be
determined directly.
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that f (x) must have at least one zero point on [a,b] due to the
continuity requirements of f (x). Although there are certain
situations where the existence of zero points cannot be decided
directly [for example, f (a) > 0, f (b) = 0, and ḟ (b) < 0, see
Fig. 9(b)], still a lot of information can be obtained by this
method. And for those exceptional cases, a different method
will be adopted to demonstrate the existence of zero points.

Because the relative values of ±M and S ± M ′ are not
assumed yet, the boundary of the insulating gap is not

determined. Hence we derive behaviors of �(E) at E = ±M

and S ± M ′ first. After that, different possibilities of their
relative values are discussed separately. Since �(M) = �(S +
M ′) = 0, all we need to derive are just the signs of the following
four quantities:

�(S − M ′), �(−M), �̇(S + M ′) and �̇(M), (A7)

where �̇(E) = d �(E)/dE is the derivative.

By direct calculation, it is easy to get

�(S − M ′) = 2M ′θ
[

(
√

F+θ + √
F ′+θ ′)2+BS−D(M ′ − M)

B−B+

]
,

(A8)

�(−M) = 2Mθ ′
[

(
√

F+θ+√
F ′+θ ′)2 − BS − D(M ′ − M)

B−B+

]
.

For convenience, in the following, we will proceed with a simplifying assumption that A is large enough (roughly speaking), so
that F and F ′ are large enough, to ensure that

(
√

F + θ + √
F ′ + θ ′)2 >

∣∣∣∣BS − D(M ′ − M)

B−B+

∣∣∣∣ (A9)

for all possible values of E in the bulk energy gap. Further discussions about this restriction on A will be given later (see
Appendix B). Using this restriction, we have

�(S − M ′) ∼ M ′, �(−M) ∼ M. (A10)

Here, “∼” means having the same sign.
To get the derivative �̇(E), it is convenient to use the following relations:

∂F

∂E
= ∂F ′

∂E
= − D

B−B+
,

∂θ

∂E
= − E

θB−B+
and

∂θ ′

∂E
= − E − S

θ ′B−B+
. (A11)

Then we get

�̇(E) =
( −D − E

θ

B+B−
√

F + θ
+ −D − E−S

θ ′

B+B−
√

F ′ + θ ′

)
(
√

F + θ + √
F ′ + θ ′)[(M ′ + S − E)θ + (M − E)θ ′]

+ (
√

F + θ + √
F ′ + θ ′)2

[
(M ′ + S − E)

−E

θB−B+
+ (M − E)

S − E

θ ′B−B+
− (θ + θ ′)

]

+ BS − D(M ′ − M)

B−B+

[
(M ′ + S − E)

−E

θB−B+
− (M − E)

S − E

θ ′B−B+
+ (θ ′ − θ )

]
. (A12)

Note that the derivative �̇(E) is divergent at E = S + M ′ and M . Because we just care about the sign of �̇(E), we take the limit
and leave out all the finite terms, which yields

�̇(S + M ′) = M ′

B+B−
(S + M ′ − M)

[
(
√

F + θ + √
F ′ + θ ′)2 − BS − D(M ′ − M)

B−B+

]
1

0+ ,

(A13)

�̇(M) = − M

B+B−
(S + M ′ − M)

[
(
√

F + θ + √
F ′ + θ ′)2 + BS − D(M ′ − M)

B−B+

]
1

0+ .

Due to the restriction (A9) on A, it is readily seen that

�̇(S + M ′) ∼ M ′(S + M ′ − M), �̇(M) ∼ −M(S + M ′ − M). (A14)

Equations (A10) and (A14) play a critical role in deciding the existence/absence of the interface state as shown in the following
discussion.

Now, let us determine the signs of the four quantities in Eq. (A7) in different cases according to Eqs. (A10) and (A14). First
of all, we consider the MM ′ < 0 case where either M ′ < 0 < M or M < 0 < M ′ is valid. According to Eq. (A6), we know that
S + M ′ − M ∼ M ′ in both cases. Therefore �̇(S + M ′) ∼ M ′M ′ > 0 and �̇(M) ∼ −MM ′ > 0 [see Eq. (A14)]. Combining
with Eq. (A10): �(S − M ′) ∼ M ′, �(−M) ∼ M , we thus can determine the existence of an interface state in all possible
situations. (1) M ′ < 0 < M , S + M ′ < −M < M < S − M ′. The interval of the energy gap is [−M,M]. Since �(−M) > 0,
�̇(M) > 0 and �(M) = 0, there must be zero points in [−M,M].
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(2) M ′ < 0 < M , S + M ′ < −M < S − M ′ < M . The interval of the energy gap is [−M,S − M ′]. Since �(−M) > 0,�(S −
M ′) < 0, there must be zero points in [−M,S − M ′].

(3) M ′ < 0 < M , −M < S + M ′ < S − M ′ < M . The interval of the energy gap is [S + M ′,S − M ′]. Since �̇(S + M ′) > 0,
�(S − M ′) < 0, and �(S + M ′) = 0, there must be zero points in [S + M ′,S − M ′].

(4) M ′ < 0 < M , −M < S + M ′ < M < S − M ′. The interval of the energy gap is [S + M ′,M]. Since �̇(S + M ′) > 0,
�̇(M) > 0, and �(M) = 0, as well as �(S + M ′) = 0, there must be zero points in [S + M ′,M].

(5) M < 0 < M ′, S − M ′ < M < −M < S + M ′. The interval of the energy gap is [M, − M]. Since �(−M) < 0, �̇(M) > 0,
and �(M) = 0, there must be zero points in [M, − M].

(6) M < 0 < M ′, S − M ′ < M < S + M ′ < −M . The interval of the energy gap is [M,S + M ′]. Since �̇(M) > 0, �̇(S +
M ′) > 0, and �(M) = 0, as well as �(S + M ′) = 0, there must be zero points in [M,S + M ′].

(7) M < 0 < M ′, M < S − M ′ < −M < S + M ′. The interval of the energy gap is [S − M ′, − M]. Since �(−M) < 0,
�(S − M ′) > 0, there must be zero points in [S − M ′, − M].

(8) M < 0 < M ′, M < S − M ′ < S + M ′ < −M . The interval of the energy gap is [S − M ′,S + M ′]. Since �(S − M ′) > 0,
�̇(S + M ′) > 0, and �(S + M ′) = 0, there must be zero points in [S − M ′,S + M ′].

Thus we have proved that when MM ′ < 0, the interface state will always exist.
Now let us turn to the MM ′ > 0 case. Since the above method does not work in this case, we use a different method. We

rewrite the original Eq. (12) as

(M ′ + S − E)θ

[
(
√

F + x + √
F ′ + x ′)2 + BS − D(M ′ − M)

B−B+

]
+ (M − E)θ ′

[
(
√

F + x + √
F ′ + x ′)2 − BS − D(M ′ − M)

B−B+

]

= 0. (A15)

For MM ′ > 0, there are also two possible situations. (1) M >

0 and M ′ > 0. In this case, the restrictions from Eq. (A5) on
E are −M < E < M and S − M ′ < E < S + M ′. It is easy
to see that M − E > 0 and M ′ + S − E > 0. (2) M < 0 and
M ′ < 0. Similarly, we have M − E < 0 and M ′ + S − E < 0.
Therefore in both cases, we have M ′ + S − E ∼ M − E. Note
that in Eq. (A15), θ , θ ′, and expressions in square brackets are
positive. Obviously, the left side of Eq. (A15) does not change
sign as E varies in the bulk energy gap, clearly indicating that
the equation does not have a solution. Thus no interface state
exists when MM ′ > 0.

In conclusion, we have shown that if MM ′ < 0, an
interface state exists; and if not, no such state exists for
the upper block. For the lower block, we can perform a
similar analysis. The only difference is that we should use
M ′′ = M − (GE − GH )/2 and S ′′ = −S instead of M ′ and S.
After a very similar derivation, we conclude that the existence
condition of interface states for the lower block is MM ′′ < 0.

Finally, we can consider the QSH/QAH interface based on
the above conclusions. For the QAH side, Eqs. (3) and (4)
must be satisfied, i.e.,

M ′M ′′ < 0, (A16)

(M + S)(M − S) > 0. (A17)

Physically speaking, Eq. (A17) just ensures that the QAH
system is in an insulating phase, while Eq. (A16) guarantees

that either MM ′ < 0,MM ′′ > 0 or MM ′ > 0,MM ′′ < 0 is
valid. Hence an interface state exists either in the spin-up or
spin-down channel at the QSH/QAH interface.

APPENDIX B: DISCUSSIONS ABOUT THE RESTRICTION
ON THE PARAMETER A

As mentioned above, we make a simplifying assumption
that the parameter A is large enough to ensure Eq. (A9).
Actually, A indeed satisfies the restriction in realistic materials
described by the BHZ model [3]. As a parameter of the BHZ
model, A already meets certain conditions to ensure that the
model can describe correct topological phases. For example,
in an previous analytical study of the BHZ model, Zhou et al.
[38] showed that A in fact satisfies the following restriction,
which is not mentioned in the original BHZ model [3],

A2

B+B−
>

4M

B
> 0, (B1)

to guarantee the existence of topological edge states.
As Eq. (A9) should be valid for all allowed values of E in

the bulk energy gap, here we derive a possible condition for A:

A >

√
�(

√
|B−| +

√
|B+|)2 + |B||S| + 2|D|�

2
, (B2)

where � = max(2|M|,|M − S + M ′|,|M + S − M ′|). This
condition is indeed satisfied by the parameters of HgTe/CdTe
quantum wells [3].
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