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Electronic correlations in Hund metals
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To clarify the nature of correlations in Hund metals and its relationship with Mott physics we analyze the
electronic correlations in multiorbital systems as a function of intraorbital interaction U , Hund’s coupling JH ,
and electronic filling n. We show that the main process behind the enhancement of correlations in Hund metals is
the suppression of the double occupancy of a given orbital, as it also happens in the Mott insulator at half-filling.
However, contrary to what happens in Mott correlated states the reduction of the quasiparticle weight Z with
JH can happen in spite of increasing charge fluctuations. Therefore, in Hund metals the quasiparticle weight and
the mass enhancement are not good measurements of the charge localization. Using simple energetic arguments
we explain why the spin polarization induced by Hund’s coupling produces orbital decoupling. We also discuss
how the behavior at moderate interactions, with correlations controlled by the atomic spin polarization, changes
at large U and JH due to the proximity to a Mott insulating state.
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The Mott transition is one of the most dramatic manifes-
tations of electronic correlations [1,2]. In the single orbital
Hubbard model at half-filling the system becomes insulating
at a critical interaction Uc to avoid the cost of doubly
occupying the orbital. Away from half-filling metallicity
is recovered. Nevertheless atomic configurations involving
double occupancy are avoided inducing strong correlations
between the electrons. Charge fluctuations are suppressed and
bad metallicity is observed.

In multiorbital systems the Mott transition happens not only
at half-filling but at all integer fillings [3]. The crucial role
of Hund’s coupling JH on electronic correlations has been
recognized only recently [4–14]. JH modifies Uc in a doping
dependent way [4,8] and promotes bad metallic behavior in a
wide range of parameters [7,9].

Within the context of iron superconductors, which accom-
modate six electrons in five orbitals when undoped, the term
Hund metal was coined to name the correlated metallic state
induced by Hund’s coupling at moderate interaction U [15].
Originally Hund metals were described as strongly correlated
but itinerant systems which are not in close proximity to a Mott
insulating state and have physical properties distinctly different
from doped Mott insulators [10]. On the other hand, a number
of authors [16–22] have described iron superconductors as
doped Mott insulators due to the doping dependence of cor-
relations observed: there is both experimental and theoretical
evidence of an enhancement of correlations with hole doping
as the half-filling Mott insulator, with five electrons in five
orbitals, is approached [16–26].

Orbital dependent correlations, named orbital differen-
tiation, have been observed in some iron superconduc-
tors [16,19,21,23,26–28] and are known to play an important
role in ruthenates [29]. It has been emphasized that Hund’s
coupling decouples the orbitals [8,23,30–32], leads to orbital
differentiation, and even to an orbital selective Mott transi-
tion [8,30,31]; however, the origin of such decoupling is not
well understood.

*leni@icmm.csic.es

It urges one to clarify the nature of correlations in Hund
metals and its relationship with Mott physics. In this paper
we analyze the electronic correlations in multiorbital systems
(N = 2,3, . . . ,5 orbitals) as a function of interactions and
electronic filling n. We confirm that the doping dependent
increase of correlations with JH at moderate interactions
is directly connected to the Mott transition at half-filling.
However, contrary to what happens in correlated single-orbital
systems the increase of correlations with JH , as measured
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FIG. 1. (Color online) (a) Quasiparticle weight Z vs intraorbital
interaction U and Hund’s coupling JH for six electrons in five orbitals,
the filling of undoped iron superconductors. U and JH are in units of
the bare bandwidth W and U . A strongly correlated metallic region
with small Z, in violet, appears in a wide range of parameters. The
Mott insulating state is in black. The region in yellow-orange is
metallic with moderate correlations. (b) Z vs JH for the system in
(a) and selected U . (c) Z vs electronic filling n and JH with U = W

for a five-orbital system. The strong suppression of Z with JH seems
connected to the n = 5 half-filled Mott insulator.
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FIG. 2. (Color online) Quasiparticle weight Z vs intraorbital interaction U and Hund’s coupling JH for a three-orbital system with electronic
filling (a) n = 0.5, (b) n = 1.0, (c) n = 1.5, (d) n = 2.0 (e) n = 2.5, and (f) n = 3.0 half-filling. The Mott transition, in black, is found for the
commensurate values n = 1,2,3 with different dependence on JH . Extended metallic regions with strongly reduced Z are only found for filling
close to half-filling. U and JH are respectively given in units of the nonrenormalized bandwidth W and of U . The system shows particle hole
symmetry; results are also valid for electronic filling 2N − n.

by the suppression of the quasiparticle weight Z, does not
necessarily imply a suppression of charge fluctuations. We
trace back this behavior to the opposite dependence of intra-
and interorbital charge fluctuations with Hund’s coupling.
With simple energetic arguments we explain the underlying
phenomenology, including how the spin polarization drives
the orbital decoupling. Our study unveils differences between
systems with two electrons and those with other commensurate
partial fillings. We discuss a change of behavior at large JH

and U , related to the proximity of the Mott insulator.
To address the generic features of Hund metals we consider

degenerate 2D multiorbital systems with hopping t restricted to
the same orbital and to nearest neighbors and bandwidth W =
8t . For the interactions we start from the Hubbard-Kanamori
Hamiltonian [10,33],

Hint = U
∑

a

na↑na↓ + (U ′ − JH )
∑

a<b,σ

naσ nbσ

+U ′ ∑
a �=b

na↑nb↓ − JH

∑
a �=b

c
†
a↑ca↓c

†
b↓cb↑

+ J ′ ∑
a �=b

c
†
a↑c

†
a↓cb↓cb↑. (1)

a is the orbital index, ↑ and ↓ the spin, and na↓ and na↑ the
electron occupancy of a given orbital with spin ↓ or ↑. We treat
the interactions using a Z2 slave spin representation [30,34],
and keep only density-density terms. That is, pair hopping and
spin-flip terms do not enter into the calculation [21,22]. The
model is particle-hole symmetric with respect to half-filling.
We take U ′ = U − 2JH , with U ′ the interorbital interaction,
as found in rotationally invariant systems [33]. Repulsive
interactions require JH/U � 0.33. See the Appendix for
further details.

The quasiparticle weight Z provides a way to quantify
the correlations between electrons. Z measures the overlap
between the elementary excitations of the correlated and the
noninteracting systems. It is equal to unity in noninteracting
systems, decreases with increasing correlations, and vanishes
in Mott insulators. In Fermi liquid theory it equals the inverse
of the mass enhancement. Figure 1(a) shows in color plot
the quasiparticle weight Z as a function of U and JH for a
five-orbital system with six electrons, the filling of undoped
iron superconductors. Three regions can be distinguished: a

metallic state with moderate correlations in yellow-orange
color, an insulating Mott state at large U in black, and a
strongly correlated metallic state with reduced coherence in
violet. The critical Uc at which the Mott transition sets it
depends nonmonotonously on JH [8]. At large values of JH

the system remains metallic even for large U [9].
The correlated metallic state, in the following Hund metal,

appears at finite JH in a wide range of parameters, including
U < W . The way in which this region depends on the
interactions reveals the crucial role played by JH on inducing
the strong correlations which seem unrelated to the n = 6 Mott
insulating state. Similar phase diagrams are found in other
cases, e.g., for two electrons in three orbitals, Fig. 2(d), and
for two and three electrons in four orbitals and three electrons
in five orbitals, Fig. S1(a)–S1(c) in the Supplemental Material
(SM) [35].

Hund’s coupling polarizes the spin locally. The small
Z in a Hund metal is due to the small overlap between
the noninteracting states and the spin polarized atomic
states [5,7,36]. The suppression of Z is thus concomitant
with an enhancement of the spin fluctuations CS ; see
Fig. 3(a). Here CS = 〈S2〉 − 〈S〉2 with 〈S〉 = 0 and
S = 1

2

∑
a=1,...,N (na↑ − na↓). Arrows in Fig. 3(a) mark J ∗

H (U )
the interaction at which the system enters into the Hund metal
defined empirically as the value of JH with the strongest
suppression of Z, i.e., the most negative dZ/dJH value, after
which Z stays finite; see Fig. S2(c) in SM [35]. Above J ∗

H , CS

reaches a value close to that of the Mott insulator at this filling
showing that in the Hund metal state each atom is highly spin
polarized, Figs. 3(a) and S3(b) and S3(c) in SM [35].

We now focus on the doping dependence of the correlations.
Figure 1(c) shows Z as a function of the electronic filling
n and JH for U = W , far from the n = 6 Mott transition.
The strength of correlations shows a clear asymmetry with
electronic filling around n = 6. No special feature is observed
at n = 6 for this value of U which confirms that the n = 6
Mott transition is not responsible for the strong suppression of
Z. On the other hand, the entrance to the strongly correlated
Hund metal appears at smaller JH as n approaches n = 5. Con-
nection with the Mott insulating state at half-filling is evident.

A clear doping dependence of correlations is also observed
in three-orbital systems, Fig. 2. An extended region of param-
eters with small quasiparticle weight, in violet, is found only
for fillings relatively close to half filling n = 3. For smaller
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FIG. 3. (Color online) (a) Enhancement of spin fluctuations CS and suppression of Z with JH . U = 1.5W for two electrons in three orbitals
(red), U = W for six electrons in five orbitals (black), and for three electrons in four orbitals (green). CS and Z are renormalized to their JH = 0
value at the given U . Arrows mark J ∗

H (U ). The reduction of Z is concomitant to the enhancement of CS . (b) Charge fluctuations CnT
and

quasiparticle weight Z vs Hund’s coupling JH renormalized to C0
nT

and Z0, their value at JH = 0, and the corresponding U ; see legend. The
enhancement of CnT

while Z is suppressed differs from the behavior of Mott correlated states. The region of interaction parameters for which
CnT

is suppressed or enhanced is shown in Fig. S4 in SM [35]. (c) CnT
/C0

nT
vs JH for five orbitals with U = W and different electronic fillings

n. Z decreases with JH for all values in this figure and vanishes in the Mott state at n = 5 (not shown). (d) Intraorbital C intra
n and interorbital

C inter
n charge fluctuations vs U and JH for six electrons in five orbitals. With increasing JH , both C intra

n and C inter
n decrease in absolute value. In

the Hund metal C intra
n quickly saturates to its value in the Mott state, while C inter

n decreases towards zero with JH .

fillings Z depends more weakly on JH . The dependence of
the Hund metal region on the interaction parameters for filling
n = 2.5 in Fig. 2(e) closely follows the n = 3 Mott insulating
state, in black in Fig. 2(f).

The hallmark of Mott physics is the suppression of
charge fluctuations CnT

which vanish at the Mott tran-
sitions. Here CnT

= 〈n2
T 〉 − 〈nT 〉2 = 〈(δnT )2〉 with nT =∑

a=1,...,N na , na = na↑ + na↓, δnT = nT − 〈nT 〉, and 〈nT 〉 =
n. In single orbital systems the charge fluctuations CnT

and Z have a similar doping and interaction dependence.
Consequently, very often the suppression of Z is assumed
to imply localization.

Figure 3(b) shows the evolution of CnT
with JH and

compares it with that of Z, both quantities being normalized
to their JH = 0 value. Unexpectedly, Z and CnT

depend
differently on JH . For the system with two electrons in three
orbitals Z decreases and CnT

increases with JH . That is,
contrary to what happens in Mott systems, the suppression
of Z happens on spite of an increase of metallicity. In the
six electrons in five orbitals case the strong reduction of Z

comes along with a reduction of CnT
. However at larger JH , Z

continues decreasing, while CnT
increases. The enhancement

of CnT
with JH is reduced as half-filling (n = 5) is approached;

see Fig. 3(c). The different dependence of Z and CnT
on JH

implies that in Hund metals the quasiparticle weight Z and
the mass enhancement are not good measures of the charge
localization. The different behavior of CnT

and Z extends to a
large region of parameters, as it can be seen comparing CnT

in
Fig. 4 with Z in Figs. 1(a) and 2(d).

The increase of charge fluctuations with JH can be traced
back to the suppression of interorbital correlations C inter

n .
Accounting for the equivalency of all the orbitals

CnT
= N

(
C intra

n + (N − 1)C inter
n

)
, (2)

with C intra
n = 〈n2

a〉 − 〈na〉2 = 〈(δna)2〉 the intraorbital fluctu-
ations, δna = na − 〈na〉, and 〈na〉 = n/N . C inter

n = 〈nanb〉 −
〈na〉〈nb〉 = 〈δnaδnb〉 and a �= b. C intra

n , by definition positive

or zero, is largest in the noninteracting limit. C inter
n is negative

for repulsive interactions and it vanishes in the absence of
interactions as the charge in different orbitals is not correlated.
The entrance into the Hund metal has a very strong effect on
C intra

n and C inter
n being both strongly suppressed; see Fig. 3(d).

Due to their different sign in Eq. (2) this suppression has an
opposite effect in CnT

. The increase of CnT
with JH is driven

by the interorbital correlations which effect is enhanced by the
degeneracy factor (N − 1) in Eq. (2). On the other hand, the
suppression of CnT

at J ∗
H in the six electrons in five orbitals

case in Fig. 3(b) is due to that of C intra
n . Except at half-filling,

C intra
n and C inter

n , Fig. 3(d), do not vanish in the Mott insulator
but their contributions cancel each other leading to zero CnT

;
see Fig. 4.

FIG. 4. (Color online) Charge fluctuations CnT
for a (a) five-

orbital system with six electrons and (b) a three-orbital system with
two electrons. CnT

is normalized to its noninteracting value (U = 0
and JH = 0) to facilitate comparison between its suppression and that
of Z in Figs. 1(a) and 2(d). CnT

and Z show different dependence on
interactions. This is true not only in the Hund metal region discussed
in the text, but also in the low JH region. For small JH /U , CnT

are
strongly suppressed with U , even for interactions at which Z is only
slightly renormalized. This suppression is due to the enhancement of
the (negative) C inter

n .
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The phenomenology above can be understood by studying
the energy of the hopping processes. Let’s consider two N -
orbital atoms with n electrons (n � N ) and assume that inside
each atom the electron spins are parallel to satisfy Hund’s
rule. An electron which hops from one atom onto the other
one can end into (i) an empty orbital with spin parallel to that
of the occupied orbitals with interaction energy cost E↑↑ =
U − 3JH , (ii) an empty orbital with spin antiparallel to that
of the occupied orbitals with Einter↑↓ = U + (n − 3)JH , and
(iii) an occupied orbital with Eintra↑↓ = U + (n − 1)JH [37].
Particle-hole symmetry considerations apply for n > N .

At half-filling, n = N , processes (i) and (ii) are blocked by
Pauli exclusion principle and process (iii) controls the critical
Uc(JH ) for the Mott transition which strongly decreases with
JH ; see Fig. 2(f). For other integer fillings and large JH

the Mott transition is controlled by process (i) and Uc(JH )
increases with JH [8], but processes (ii) and (iii) are blocked
at smaller interactions. In the metallic state the process (i)
is allowed and promoted by JH . We ascribe the entrance in
the Hund metal at J ∗

H to avoiding process (iii). This process
is suppressed by JH for n > 1 and it is directly connected
to the Mott transition at half-filling. Its suppression strongly
reduces the intraorbital double occupancy and C intra

n enhancing
the atomic spin polarization in the Hund metal.

Process (ii) is suppressed by JH for n > 3 and promoted
for n < 3 (as U ′ = U − 2JH ). This introduces a qualitative
difference between systems with two electrons and those with
larger integer fillings, which causes that in two-electron sys-
tems the suppression of Z and the enhancement of CS with JH

are smoother and favors the enhancement of CnT
. Nevertheless,

even when process (ii) is allowed, the suppression of process
(iii) indirectly reduces the occurrence of atomic configurations
with antiparallel spins in different orbitals (not shown).

The strong suppression of C intra
n = 〈|δna|2〉 at the crossover

J ∗
H (U ) reduces the interorbital charge correlations 〈δnaδnb〉.

The latter are further suppressed by the reduction of the
effective interaction between the electrons in different orbitals,
which produces orbital decoupling (measured by 〈δnaδnb〉

〈|δna |2〉 ): the
interaction between electrons in different orbitals is U ′ or U ′ −
JH depending on if they have parallel or antiparallel spins; see
Eq. (1). At J ∗

H the occurrence of atomic configurations with
parallel spin strongly increases while those involving opposite
spin become less frequent, effectively reducing the interaction
between electrons in different orbitals to U ′ − JH [38]. If JH

is further increased the decoupling is enhanced as the effective
interaction U ′ − JH = U − 3JH decreases. At JH/U = 0.33,
this interaction and C inter

n vanish.
As discussed above, at intermediate filling and interactions,

around J ∗
H (U ) the dependence of the quasiparticle weight

and the fluctuations on the interactions is controlled by the
establishment of the atomic polarization. On the other hand,
at large JH and U , the behavior of the locally spin polarized
system becomes dominated by the decrease with JH of the
effective interaction between spin-parallel electrons and by
the proximity to the Mott insulator, which happens at a larger
critical interaction with increasing JH . In particular, in the
large JH and U limit, both Z and CnT

increase with JH ,
Figs. 1(a) and 1(b), S2(a) and S2(b), and 4(a)–4(d). Moreover,
while, with increasing U , Z decreases monotonously, CS

increase for intermediate U but they start to decrease at large

U and JH , see Fig. S3(a) and S3(b). This behavior, driven by
the interorbital spin fluctuations, is contrary to what happens
in the single-orbital Hubbard model, for which Z and CS show
an opposite dependence on U in all the range of parameters.

In conclusion, we have clarified the nature of correlations
in Hund metals and its differences with those in Mott systems.
In Hund metals the enhancement of correlations originate in
the suppression of atomic configurations which reduce the
magnetic moment, specially intraorbital double occupancy,
while the hopping of electrons with spin parallel to the
locally spin polarized atoms is allowed. The suppression of
hopping processes involving intraorbital double occupancy
links the correlations in Hund metals to the Mott transition
at half-filling. However, contrary to what happens in Mott
correlated systems, the reduction of the quasiparticle weight
Z in Hund metals, can happen in spite of increasing charge
fluctuations. Therefore, in Hund metals the quasiparticle
weight and the mass enhancement are not good measures of
charge localization. The tendency towards orbital decoupling
in the Hund metal is due to the reduction of the effective (and
JH -dependent) interaction between electrons in different or-
bitals produced by the predominance of atomic configurations
involving parallel spins. Finally, we note that at large U and
JH the dependence of the quasiparticle weight and the spin
fluctuations on the interactions reveals a crossover to a region
of parameters controlled by the proximity to the Mott insulator.

The behavior discussed, together with other known proper-
ties of Hund metals [8] as the enhanced width of the Hubbard
bands or the screening of the atomic moments [39] is expected
to play a prominent role in iron superconductors, ruthenates,
and many oxides. This is confirmed by the similarity between
the behavior in Fig. 1 and that found with realistic models
of iron superconductors [16,23,27]. Nevertheless, the physics
of these materials will be strongly influenced by the inequiv-
alency of the orbitals [16,19,21–23,27,29] specific for each
material, and not included here.
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and the participants of the workshop “Magnetism, Bad Metals
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Grants No. FIS2011-29689 and No. FIS2014-53219-P, from
Fundación Ramón Areces, a fellowship from University of
Rome La Sapienza, and from the National Science Foundation
under Grant No. NSF-PHY11-25915.

APPENDIX: ISING Z2 SLAVE-SPIN APPROACH

Approaches which use slave particles have being widely
used to deal with interacting fermions. In particular, in
multiorbital systems, slave-spin approaches, in Z2 [30,34] or
U (1) [27] versions, have proven to be very useful. In this work
we have used the Z2 slave-spin technique developed in [30,34]
in its single-site approximation.

In the Z2 slave-spin approach the two possible occupancies
of a spinless fermion on a given site, nc = 0 and nc = 1, are
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FIG. 5. (Color online) Comparison between quasiparticle weight Z of computed with DMFT and the slave spin method described. We
show for a model with three equivalent orbitals with semicircular density of states with n = 1,2,3 electrons per site. A semicircular density
of states with half-bandwidth D is used in both calculations. The DMFT data, taken from [9], were computed using the complete interacting
Hamiltonian including the spin-flip and the pair-hopping terms. Only the density-density part (Ising approximation) is included in the slave-spin
calculation.

substituted by the two states of a pseudospin spin-1/2 variable,
Sz = −1/2 and Sz = +1/2:

|0〉 = |nf = 0,Sz = −1/2〉, |1〉 = |nf = 1,Sz = +1/2〉.
nf is the occupation of an auxiliary fermion f , introduced to
satisfy the anticommutation relations. Two unphysical states
|nf = 0,Sz = +1/2〉, |nf = 1,Sz = −1/2〉 are generated in
the procedure. To eliminate them, the local constraint nf =
Sz + 1

2 has to be imposed.
In a multiorbital system each of the orbital and spin species

have to be treated in this manner. That is, a set of 2N

pseudospin-1/2 variables Sz
iaσ and auxiliary fermions fiaσ are

introduced at each site i. Here a = 1,N and σ are the orbital
and spin indices. On each site these variables have to satisfy
the local constraint:

n
f

iaσ = Sz
iaσ + 1

2 , (A1)

which can be done with time-dependent Lagrange multipliers
fields λiaσ (τ ).

Following the prescription in [34] the physical fermions
ciaσ are represented by

ciaσ = fiaσ Oiaσ , c
†
iaσ = f

†
iaσO

†
iaσ .

Here Oiaσ is a pseudospin-1/2 operator defined as

Oiaσ =
(

0 γiaσ

1 0

)
,

with γiaσ a complex number [34]; see below.
To solve the interacting problem several approximations

are introduced [30,34]. (i) Only the density-density terms of
the Hubbard-Kanamori Hamiltonian, Eq. (1) in the main text,
are included [40]. (ii) The constraint is treated on average, i.e.,

using a static Lagrange multiplier λaσ and the Hamiltonians
of the pseudospin slave variables and the auxiliary fermions
are decoupled. (iii) The problem is solved in a single-site
mean field approximation, which render all variables site
independent. After these approximations the total Hamiltonian
can be written as the sum of two effective Hamiltonians, for
the auxiliary fermions and the pseudospins, Hf and HPS, to be
solved self-consistently at mean-field level.

The fermionic Hamiltonian for a generic multiorbital
system without orbital hybridization is

Hf =
∑
aσ

∑
k

(Zaσ εaσ (k) + εa − μ − λaσ )f †
aσ (k)faσ (k),

(A2)

where μ is the chemical potential, εa the crystal field, and
εaσ is the original fermionic dispersion. In this single-site
approximation the renormalization of the dispersion is given
by the quasiparticle weight

Zaσ = 〈Oaσ 〉2,

self-consistently determined from the solution of the pseu-
dospin Hamiltonian

HPS =
∑
aσ

haσOaσ +
∑

λaσ

(
Sz

aσ + 1

2

)
+ U ′

2

(∑
aσ

Sz
aσ

)2

+ JH

∑
a

(∑
σ

Sz
aσ

)2

− JH

2

∑
σ

(∑
a

Sz
aσ

)2

,

where haσ = 〈Oaσ 〉∑
k εaσ (k)〈f †

aσ (k)faσ (k)〉.
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In the case of a spin and orbital degenerate system without
spontaneous breaking of the symmetry, as the one discussed
in the main text, λa,σ , ha,σ , and Za,σ become orbital and spin
independent and the corresponding indices can be dropped.
A convenient choice for γi,aσ = γ in this case is [34] γ =

1√
n(1−n)

− 1.
In Fig. 5 the quasiparticle weight Z calculated within

this Ising Z2 slave-spin approach for system three-degenerate
orbitals with n electrons per site is compared with the DMFT
results from [9], which include the full rotationally invariant
Hund interaction. Here we use a semicircular density of states,
different to the square lattice with hopping to first nearest
neighbors used in the main text. An overall agreement between

the two methods is observed. The Ising slave-spin approach
captures the different behaviors of Z observed for the whole
range of JH values. Quantitatively, the agreement is quite
good for n = 1,3, with Z and the critical Uc for the Mott
transition just slightly overestimated, as it is common in slave
variable approaches and in the Gutzwiller approximation. At
intermediate filling (n = 2) and large JH , the suppression of
Z in slave-spin approach is weaker than in DMFT. Moreover,
Uc is underestimated probably due to a more prominent role
played in this region of parameters by the pair-hopping and
spin-flip terms, neglected in the calculation. The qualitative
behavior, an extended metallic region with reduced coherence,
is in any case well captured.
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