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Manifestation of nematic degrees of freedom in the Raman response function of iron pnictides
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We establish a relation between the Raman response function in the B1g channel and the electronic
contribution to the nematic susceptibility within the spin-driven approach to electron nematicity of the iron-based
superconductors. The spin-driven nematic phase, characterized by the broken C4 symmetry, but unbroken O(3)
spin-rotational symmetry, is generated by the presence of magnetic fluctuations associated with the striped phase.
It occurs as a separate phase between Tm and Ts in systems where the structural and magnetic phase transitions
are separated. Detecting the presence of nematic degrees of freedom in iron-based superconductors is a difficult
task, since it involves measuring higher-order spin-correlation functions. We show that the nematic degrees of
freedom manifest themselves in the experimentally measurable Raman response function. We calculate the Raman
response function in the tetragonal phase in the large-N limit by considering higher-order Aslamazov–Larkin
type of diagrams. They are characterized by a series of inserted quartic paramagnon couplings mediated by
electronic excitations that resemble the nematic coupling constant of the theory. These diagrams effectively
account for collisions between spin fluctuations. By summing an infinite number of such higher-order diagrams,
we demonstrate that the electronic Raman response function shows a clear maximum at the structural phase
transition in the B1g channel. Hence, the Raman response function can be used to probe nematic degrees of
freedom.
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I. INTRODUCTION

Iron-based superconductors show rich phase diagrams, with
the high-temperature superconducting dome being in close
proximity to an antiferromagnetic striped phase [1] that sets in
at a temperature Tm. In addition, a structural phase transition
at Ts , from the high-temperature tetragonal phase into an
orthorhombic phase, has been shown to closely follow the
magnetic transition [2–5], i.e., Ts � Tm. It was proposed that
spin fluctuations, associated with the striped phase, lead to
emergent electronic nematic degrees of freedom at higher
temperatures [3,6–9]. These electronic nematic degrees of
freedom then couple to the lattice and induce the structural
phase transition to the orthorhombic phase [10–12].

There is mounting evidence for an electronic nematic state:
resistivity-anisotropy measurements [13,14] and the measure-
ment of the elastoresistance [15], the observed anisotropies
in thermopower [16], optical conductivity [17,18], torque
magnetometry [5], and in scanning-tunneling microscopy
(STM) measurements [19]. Measurements of the elastic
constants showed that the shear modulus strongly softens
in the high-temperature tetragonal phase [12,20–23]. A the-
oretical analysis [12] based on nematic fluctuations due to a
strong magneto-elastic coupling showed that the inverse shear
modulus is proportional to the susceptibility of the nematic
order parameter χnem, which diverges at the structural phase
transition, explaining its softening. The most direct evidence
for the magnetic origin of nematicity so far is the scaling of the
shear modulus and the NMR spin-lattice relaxation rate, seen
in iron pnictides [20]. An interesting open issue in this context
is the lack of such scaling behavior in iron-chalcogenides [24].

A relation between nematicity and the Raman response
of iron-based superconductors was already studied in
Refs. [21,25], where the Raman response was compared with
the shear modulus, as well as in Refs. [26,27]. Here, we
demonstrate, based on an explicit microscopic theory that (i)
there is no enhancement of the electronic Raman response
function in the B2g channel upon lowering the temperature,
(ii) that the Raman response function develops a pronounced
peak at the structural phase transition in the B1g symmetry,
and (iii) that there is some response in the A1g channel, which
weakens as the temperature is lowered towards the structural
transition temperature.

We start from the spin-driven scenario for the nematic
phase, in which magnetic fluctuations stabilize a nematic
phase, characterized by the broken C4 symmetry. The Raman
response function measures the electronic density-density
correlator weighted by appropriate symmetry factors. Since
electrons interact with spin fluctuations, the latter will manifest
themselves in the Raman response function in the form of
corrections to the electron self-energy and the Raman vertex,
formally expressed in terms of Aslamazov–Larkin diagrams
[28]. The importance of inclusion of such diagrams for
studying nematicity in pnictides has already been pointed
out in Ref. [21]. We show that the leading-order Aslamazov–
Larkin (AL) diagram supports only A1g and B1g symmetry, but
not B2g symmetry, which explains the lack of enhancement of
the Raman response signal as one approaches the structural
transition in the B2g channel, as seen in experiments [25,29].
However, this leading-order approach cannot account for the
rapid increase in the amplitude of the Raman response function
in the B1g channel, as one approaches the structural transition,
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as seen in the experiments of Refs. [25,29]. Instead it would
predict a similar increase only at the magnetic phase transition.
Therefore, we go beyond the leading-order approximation
and take into account collisions between spin fluctuations
that become more and more important as one approaches the
nematic (structural) transition. Our approach is based on the
exact same collisions between spin fluctuations that led to
the emergence of spin-induced nematicity in the first place.
Formally, this is accomplished by inserting a series of quartic
paramagnon couplings, mediated by electronic excitations,
into the Raman response function. Such quartic couplings
contain a product of four fermionic Green’s functions and
give rise to a peak of the electronic Raman response function
at the structural phase transition in the B1g channel. On the
other hand, if we re-sum such higher-order AL diagrams in
the A1g channel, this will lead to the suppression of the Raman
response in the aforementioned channel.

The paper is organized as follows: In Sec. II we present
the microscopic model for the spin-driven nematic phase. We
calculate the effective action and analyze it in the large-N limit,
where N2 − 1 is the number of components of the collective
paramagnon field. Following Ref. [7], we derive the condition
for the susceptibility of the nematic order parameter to diverge.
In Sec. III we then show how to calculate the Raman response
function using a diagrammatic approach. We first calculate
the leading-order Aslamazov–Larkin diagram and show that
there is no response in the B2g channel and a finite response
in the B1g and A1g channels. We then calculate higher-order
diagrams that take into account collisions between spin
fluctuations. Finally, after summing an infinite number of these
higher-order diagrams within a controlled 1/N expansion, we
show (i) that the maximum of the Raman response function
in the B1g channel occurs when the nematic susceptibility
diverges, i.e., at the structural phase transition, and (ii) that the
amplitude of the Raman response function in the A1g response
gets suppressed. We present our conclusions in Sec. IV.

II. MICROSCOPIC MODEL: SPIN-DRIVEN NEMATICITY

In what follows, we adopt a coordinate system of a single
Fe unit cell, where the kx and ky axes are along the Fe–Fe
bonds.

Two different approaches have been proposed in order
to explain the origin of nematic phase in pnictides and its
relation to the magnetic phase—the orbital scenario [30–35]
and the spin-driven nematic scenario [3,6,7]. For a discussion
of these approaches see, for example, Ref. [6]. Here we follow
the approach of a spin-driven nematic state. In this scenario,
the nematic phase is stabilized by magnetic fluctuations that
are associated with the stripe-density wave (SDW) phase. The
order parameter of the SDW state [36] can be characterized
by an O(3) × Z2 manifold [8,9]—O(3) is the spin-rotational
symmetry and Z2 is a discrete symmetry associated with
the choice of the ordering wave vector, QX = (π,0) or
QY = (0,π ). Let the two order parameters associated with
these two ordering wave vectors be �X and �Y , respectively.
The SDW state is characterized by broken O(3) and Z2

symmetries. On the mean-field level the breaking of Z2 and
O(3) symmetry occurs simultaneously. However, when one
includes fluctuations, these transitions can be split. In case of

joint transitions, they are usually both first-order transitions
[7]. The criterion for breaking the discrete Z2 symmetry via
a second-order transition is a threshold value of the magnetic
correlation length ξ . Decreasing the temperature leads to an
increase of ξ . Before the correlation length diverges at the
magnetic-phase-transition temperature, the threshold value
will be reached and spin-driven nematicity sets in. This
naturally explains why the magnetic and structural phase
boundaries are correlated and leads to an intermediate phase
with Z2 symmetry breaking without O(3) symmetry breaking.
This intermediate state is the nematic phase in the pnictides.
It is characterized by unequal strength of the magnetic
fluctuations associated with the ordering wave vectors QX

and QY : 〈�2
X − �2

Y 〉 �= 0, but no long-range magnetic order,
〈�X,Y 〉 = 0.

In what follows we summarize the steps of Ref. [7] and
outline the mathematical model the for spin-driven nematic
phase. We start from a simplified itinerant model where we
include the bands near the � point and the X and Y points in
the Brillouin zone. For our main result no explicit knowledge of
the detailed parametrization of the band structure is necessary,
except for the fact that the band structure is not perfectly
nested. However, in order to obtain explicit numerical results
we use the simplified model of Ref. [7]. We consider parabolic
dispersions with

ε�,k = ε0 − k2

2m
− μ,

εX,k+QX = −ε0 + k2
x

2mx

+ k2
y

2my

− μ, (1)

εY,k+QY = −ε0 + k2
x

2my

+ k2
y

2mx

− μ,

where mi are the band masses, ε0 is the offset energy, and
μ denotes the chemical potential. The corresponding Fermi
surfaces are shown in Fig. 1.

In order to study the established stripe magnetic phase, we
consider the following electronic Hamiltonian that contains

FIG. 1. Band structure: the model consists of the central hole-like
� band and the electron-like X and Y bands, shifted by QX = (π,0)
and QY = (0,π ), respectively.
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the interactions in the spin channel with momenta near QX

and QY and the coupling of magnetic degrees of freedom to
the lattice:

H = H0 + Hint + Hel-nem,

H0 =
∑
i,k

εi,kc
†
i,kαci,kα,

Hint = −1

2
us

∑
i,q

si,q · si,−q,

Hel−nem = λel

∫ (
s2
X − s2

Y

)
(∂xux − ∂yuy). (2)

Here, c
†
i,kα is the creation operator of an electron with

momentum k, spin α, and in the band i. The spin operator
is given by

si,q =
∑

k

c
†
�,k+qαλαβci,kβ, (3)

where λαβ denotes the N2 − 1 component vector of the
generators of the SU(N ) algebra. In the case N = 2 it holds
that λαβ = 1

2σ αβ with the vector of the Pauli matrices σ . us

is the coupling in the spin channel, which can be expressed
in terms of density-density and pair-hopping interactions
between hole and electron pockets [37]. In principle, if one
writes down the most general interaction terms for the band
structure described above, one will also encounter couplings in
the charge-density wave and superconducting channels [37].
These are of no interest to the present work because we analyze
the nematic phase which is generated due to spin fluctuations
associated with the magnetic phase. These terms will therefore
be omitted. Hel-nem represents the nemato-elastic coupling
between the nematic order parameter and the orthorhombic
distortion ∂xux − ∂yuy , which plays an important role in
Raman experiments, as has been shown in Refs. [21,38]. λel

is the nemato-elastic coupling constant and u = (ux,uy) is the
phonon displacement field. After introducing the spinor

�
†
k = (c†�,k,α c

†
X,k,α c

†
Y,k,α

), (4)

where α denotes every possible value of the SU(N ) spin index,
the partition function can be written as

Z =
∫

d�due−S[�,u],

S[�,u] =
∫ β

0
dτ

∫
x

{�†∂τ� + H(�†,�)} + Sph[u], (5)

Sph[u] =
∫ [

c0
s (∇u)2 + (∂τ u)2],

where β = T −1 is the inverse temperature, and Sph[u] denotes
the pure phononic action, with c0

s being the bare value of
the orthorhombic coupling constant. Since we are considering
a system near a magnetic instability (an assumption that
is well justified by phase diagrams of many iron-based
superconductors) we can decouple the s · s interaction term
in Hint (which is quartic in fermionic fields) by using a
Hubbard–Stratonovich decoupling in the spin channel. In
Ref. [37], the competition between different instabilities for

the model (1) has been analyzed (stripe-density wave, charge-
density wave, superconductivity), and the magnetic instability
has been found to be the dominant one for a certain realistic
range of interpocket (intrapocket) interaction parameters. This
is the parameter space that we are interested in, where the
leading instability is the magnetic one. By performing the
Hubbard–Stratonovich decoupling, we eliminate the quartic
interaction between fermions at the expense of a functional
integral over two additional bosonic fields �X and �Y , with
N2 − 1 components. The bosonic fields couple linearly to
the corresponding fermionic spin densities. We can write the
partition function as

Z =
∫

d
id�due−S[�,
i ,u], (6)

with the action

S[�,
i,u] = −
∫

k

�
†
kG−1


,k�k + 1

2us

∫
x

(
�2

X + �2
Y

)

+ λel

u2
s

∫ (
�2

X − �2
Y

)
(∂xux − ∂yuy)

+ Sph[u]. (7)

Here, the matrix of the inverse Green’s function G−1
k is given

by

G−1

,k = G−1

0,k − V
, (8)

with the bare term

G0,k =
⎛
⎝Ĝ�,k 0 0

0 ĜX,k 0
0 0 ĜY,k

⎞
⎠, (9)

and the interacting term

V
 =
⎛
⎝ 0 −�X · λ −�Y · λ

−�X · λ 0 0
−�Y · λ 0 0

⎞
⎠. (10)

Ĝi,k = Gi,k 1̂ with G−1
i,k = iωn − εi,k and the N × N unit

matrix 1̂. We invert the matrix equation (8) by expanding the
geometric series and obtain the following expression for G


that we will use later:

G
 =
∞∑

n=0

(G0V
)nG0. (11)

A. Effective action in large-N expansion

In this section, we first show how to obtain the Ginzburg–
Landau expansion of the effective action in powers of the spin
fluctuation fields �X,Y in the limit of large N , in the spirit
similar to that of Ref. [7], where only N = 2 was considered.
Next, we reformulate this effective action in terms of the
collective nematic Ising variable φ and analyze the equation
of state for φ. We deduce the condition for the onset of the
nematic phase by examining the susceptibility of the nematic
order parameter. We begin by integrating out the fermionic
degrees of freedom from Eq. (5), as well as phonons. It follows
that

Z =
∫

d
ie
−Seff [�X,�Y ], (12)
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with action

Seff[�X,�Y ] = −Tr ln(1 − G0V
)

+ 1

2us

∫
x

(
�2

X + �2
Y

)

− 1

2

∫
gnem-el

(
�2

X − �2
Y

)
,

where gnem-el(q,ω) = γ 2
elq

2

c0
s q

2−ω2 is the frequency- and

momentum-dependent coupling, and γ 2
el = 1

2 ( λel
u2

s
)2. Here,

Tr(· · · ) refers to a sum over momentum, frequency, spin, and
band indices. We further expand in powers of �X,Y to obtain

Seff[�X,�Y ] = 1

2
Tr(G0,kV
)2 + 1

4
Tr(G0,kV
)4

+ 2

us

∫
x

(
�2

X + �2
Y

)

− 1

2

∫
gnem-el

(
�2

X − �2
Y

)
. (13)

After using a series of identities for the generators of the SU(N )
algebra, needed to evaluate the above traces (for details see
A 2), we arrive at the following effective action in the large-N
limit:

Seff[�X,�Y ] =
∑

i

r0,i

2
i +

∑
i,j

uij

2
i 


2
j

− 1

2

∫
gnem-el

(
�2

X − �2
Y

)
, (14)

with the coefficients

r0,i = 1

2us
+ 1

2

∫
k

G�,kGi,k,

(15)
uij = 1

8N

∫
k

G2
�,kGi,kGj,k.

We used the notation
∫
k

= T
∑

n

∫
ddk

(2π)d . The index k =
(k,ωn) combines the momentum k and the Matsubara fre-
quency ωn = (2n + 1)πT .

By using the identities∫
k

G�,kGX,k =
∫

k

G�,kGY,k,

(16)∫
k

G2
�,kG

2
X,k =

∫
k

G2
�,kG

2
Y,k,

valid because the underlying Hamiltonian obeys the full C4

symmetry, we can write the action in the more convenient
form

Seff[�X,�Y ] = r0
(
�2

X + �2
Y

) + u

2

(
�2

X + �2
Y

)2

− gr

2

(
�2

X − �2
Y

)2
, (17)

with coefficients

r0 = 1

2us

+ 1

2

∫
GX,kG�,k,

u = 1

16N

∫
k

G2
�,k(GX,k + GY,k)2,

gr (q,ω) = g + γ 2
el

q2

c0
s q

2 − ω2
,

g = − 1

16N

∫
k

G2
�,k(GX,k − GY,k)2. (18)

r0, u, and g have been calculated as a function of temperature
and band parameters in Ref. [7]. It was found that u > 0 and
u > g in general. The coupling g vanishes for circular electron
pockets but is positive for a nonzero ellipticity.

B. Nematic susceptibility in large-N expansion

In order to investigate the possibility of the nematic
transition occurring before the magnetic transition, we follow
the steps of Ref. [7] and introduce two auxiliary Hubbard–
Stratonovich scalar fields φ and ψ to decouple the quartic
terms in the action (17); φ → �2

X − �2
Y and ψ → �2

X + �2
Y .

This choice of Hubbard–Stratonovich decoupling is unique
since no other competing channels exist, as was shown in
Ref. [7]. The resulting effective action is given by

Seff =
∫

q

χ−1
q

(
�2

X + �2
Y

) +
∫ (

φ2

2gr

− ψ2

2u

)

+
∫

x

ψ
(
�2

X + �2
Y

) +
∫

x

(φ + hn)
(
�2

X − �2
Y

)
, (19)

and we have added a field hn conjugate to the nematic order
parameter 
2

X − 
2
Y . This term is needed in order to calculate

the susceptibility of the nematic order parameter. A finite value
of φ implies nonzero expectation value of φ

gr
= 〈�2

X − �2
Y 〉 �=

0 and the system develops nematic order. The large-N mean-
field value of ψ is always nonzero and describes the strength of
magnetic fluctuations. In case of split magnetic and structural
phase transitions, there is no magnetic order right below the
structural transition temperature, i.e., 〈�X,Y 〉 = 0. Next we
integrate out the N2 − 1 component fields �X,Y :

Seff[ψ,φ] = N2
∫

q

{
φ2

2gr

− ψ2

2u

}
+ N2

2

∫
q

{

ln
[(

χ−1
q + ψ

)2 − (φ + hn)2
]}

. (20)

We note that the effective action (20) has an overall
prefactor N2. For N � 1 the integral over the fields φ

and ψ can be performed via the saddle-point method, i.e.,
by analyzing the extremum of the action. This is the so-
called large-N expansion, which is asymptotically exact in
the limit of large N and guarantees that all conservation
laws are automatically fulfilled. In Ref. [7], a comparison
of large-N expansion with some other approaches, such as
renormalization group, was performed and very similar results
were obtained, which justifies its use to treat this problem.
After solving for ∂Seff[φ,ψ]/∂φ = ∂Seff[φ,ψ]/∂ψ = 0, we
obtain the equations of state for φ and ψ :

ψ

u
=

∫
q

χ−1
q + ψ(

χ−1
q + ψ

)2 − (φ + hn)2
,

(21)
φ

gr

=
∫

q

φ + hn(
χ−1

q + ψ
)2 − (φ + hn)2

.
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By differentiating the second of equations (21) with respect to
the conjugate field, we find that the static nematic susceptibil-
ity, similar to Ref. [39], is given by

χnem = ∂φ

∂hn

∣∣∣∣
hn=0

= gstat
∫
k
χ2

k

1 − gstat
∫
k
χ2

k

, (22)

where, from now on, we have shifted χ−1
k → χ−1

k + ψ , which
simply corresponds to the renormalization of the mass term
due to fluctuations, and where

gstat = g + γ 2
el

c0
s

(23)

is the static limit (ω = 0) of g(q,ω). In Ref. [21,38], it has been
pointed out that the static and the dynamic limit of g(q,ω) do
not commute. The authors stressed that the Raman scattering
operates in the dynamical limit, in which momentum is set
to zero first, q = 0, which leads to gdyn = g, and the Raman
response function essentially does not see the effect of coupling
to the lattice.

III. RAMAN RESPONSE FUNCTION

Raman scattering is a valuable tool to study strongly
correlated electronic systems [40], since it probes lattice,
spin, and electronic degrees of freedom. It has been used
to extract information about the momentum structure and
symmetry of the excitations in the cuprates [28,41–43] and
pnictides. The differential photon-scattering cross section in
Raman spectroscopy is directly proportional to the structure
factor S:

Sq = − 1

π
[1 + n(ω)]ImRq, (24)

which is related to the imaginary part to the Raman response
function R through the fluctuation-dissipation theorem [44].
Here, n(ω) is the Bose–Einstein distribution function, and q =
(q,ω). Since the momentum of light is much smaller than the
typical lattice momentum, one normally uses q ≈ 0 in Eq. (24).

The Raman response function measures correlations be-
tween “effective charge density” fluctuations ρ̃,

R(ω) =
∫ 1/T

0
dτ e−iωτ 〈ρ̃(τ )ρ̃(0)〉. (25)

The effective density, weighted by the form factors that can be
changed via the geometry of the photon polarization, is defined
as

ρ̃k =
∑
i,k′,σ

γk′c
†
i,k+k′,σ ci,k′,σ , (26)

where σ is the spin index, i is the band index, and the operator
c
†
i,k,σ creates an electron with spin σ and momentum k in

band i, where i = X,Y,�. The function γk is related to the
incident and scattered photon polarization vectors and depends
on the curvature of the bands [44]. The multi-orbital nature of
different bands has been pointed out in Ref. [45].

In order to determine the Raman response function, we
couple an external source field to the weighted densities and

introduce the generating functional Wh according to

Wh = 1

Z

∫
d
id�e−S[�,
i ]−�†Vh�,

(27)
Z =

∫
d
id�e−S[�,
i ].

The elements of the matrix Vh in momentum, frequency, spin,
and band space are

Vh,k1k2σσ ′ij = hk1−k2γk1δσσ ′δij , (28)

with h being the field conjugate to the effective density. The
Raman response function (25) is obtained by differentiating
the generating functional Wh (27) with respect to the conjugate
field h:

Rq = δ2Wh

δhqδh−q

∣∣∣∣
h=0

. (29)

Due to the single-particle character of the source term, the
generating functional (27) can be written in the form

Wh = 1

Z

∫
d
id�e

∫
�†G−1


,h�− 1
2us

∫
x
(
2

X+
2
Y ),

(30)
G−1


,h = G−1
0 − V
 − Vh.

Since Wh contains the action that is quadratic in fermions, we
integrate out the fermions and obtain

Wh = 1

Z

∫
d
ie

−Sh[
i ],

(31)
Sh[
i] = 2

us

∫
x

(
�2

X + �2
Y

) − Tr ln
(
G−1


,h

)
.

We further expand:

Tr ln
(
G−1


,h

) = Tr ln
(
G−1




) −
∞∑

n=1

Tr(G
Vh)n

n
. (32)

Then, by using Eqs. (31) and (29),

Rq = 1

Z

∫
d
ie

−Seff [
X,
Y ]

× δ2

δhqδh−q

exp

[
− Tr(G
Vh) − 1

2
Tr(G
Vh)2

]∣∣∣∣
h=0

.

(33)

Here, Seff[
X,
Y ] = Sh[
i]|h=0 is the effective action. We
define the matrix

�q = δVh

δhq

. (34)

A. Self-energy and vertex-correction diagrams

Next, we analyze the leading-order contributions to the
Raman response function. These arise from the self-energy and
vertex-correction diagrams (also known as Maki–Thompson
diagrams) depicted in Fig. 2. Both of these diagrams arise from
differentiating the second term in the exponential (33) twice
with respect to h:

RV,S
q = 1

Z

∫
d
ie

−Seff [
X,
Y ]Tr[(G
�)2], (35)
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FIG. 2. Left: Contribution to the Raman response function that
contains the self-energy correction to the fermionic propagator. Right:
A diagram that contains a vertex renormalization correction—the
so-called Maki–Thompson diagram.

and we replace Seff → S0, where S0 is the quadratic action
given by

S0[
i] = 2

us

∫ (

2

X + 
2
Y

) + 1

2
Tr(G0V
)2. (36)

In order to get the vertex correction (Maki–Thompson dia-
gram), we replace both G
 in Eq. (35) by G
 → G0V
G0,
which comes from the perturbative expansion of Eq. (11):

RV
q = 1

Z

∫
d
ie

−S0[
X,
Y ]Tr[(G0V
G0�)2]. (37)

In order to get the self-energy correction, we replace one of
G
 in Eq. (35) by G
 → G0, and the other one by G
 →
(G0V
)2G0 to get

RS
q = 2

Z

∫
d
ie

−S0[
X,
Y ]Tr[G0�(G0V
)2G0�]. (38)

Due to the integral over the square of the γk factor, the self-
energy and vertex corrections occur in all symmetry channels.
If one evaluates the sum RS + RV explicitly, in the hot-spot
approximation, one finds that there are partial cancellations
in the A1g and B1g channels, and no cancellations in the B2g

channel. One can easily show that, in d = 2,

RS + RV ∝
∫

q

1

r0 + q2
∝ ln ξ, (39)

where we have used r0 = ξ−2, where ξ is the magnetic
correlation length.

In summary, we have shown that the self-energy and Maki–
Thompson diagrams are present in all symmetry channels and
are therefore symmetry insensitive.

B. Leading-order Aslamazov–Larkin diagrams

The Aslamazov–Larkin contribution to the Raman response
function, analyzed in Ref. [28], arises from differentiating
the first term inside the exponential in Eq. (33) twice and
from replacing G
 → (G0V
)2G0, which comes from the
perturbative expansion of Eq. (11):

Rq = 1

Z

∫
d
ie

−Seff [
X,
Y ][Tr[(G0V
)2G0�]]2. (40)

Here, Seff[
X,
Y ] = Sh[
i]|h=0 is the effective action given
by Eq. (13).

As we see below, the key assumption of a description based
on the Aslamasov–Larkin diagrams is that one neglects the

R0(ω)

ω

FIG. 3. (Color online) Leading-order Aslamazov–Larkin dia-
gram. Raman vertices are denoted by black squares. Imaginary part
of the Raman response function as a function of frequency ImR0(ω),
in d = 2.

interactions between spin fluctuations. In other words, one
approximates the effective action in Eq. (40) by the quadratic
action (36). While this assumption is frequently justified, it
is not allowed in the theory of spin-driven nematicity, as we
show later.

The leading-order Aslamazov–Larkin diagram, depicted in
Fig. 3, can be calculated as

R0(ω) = T
∑

i=X,Y,n

∫
q
�2

i (q,�n,ω)χ (q,�n)χ (q,�n − ω)

(41)

with

�i(q,�,ω) = �
(1)
i (q,�,ω) + �

(2)
i (−q, − �, − ω),

�
(1)
i (q,�,ω) = T

∑
n

∫
k
γkG�(k,νn − ω)G�(k,νn)

×Gi(k − q,νn − �),

�
(2)
i (q,�,ω) = T

∑
n

∫
k
γkGi(k,νn − ω)Gi(k,νn)

×G�(k − q,νn − �), (42)

similar to what was found in Ref. [46].

1. Raman response in different symmetry channels

In the concept of the pairing symmetry in high-temperature
superconductors, successful theoretical models supported by
experiments have been developed in order to explain the
symmetry sensitivity of the Raman response function [47].
Similarly, here, before we explicitly evaluate the leading-order
Aslamazov–Larkin diagram, we analyze the contribution to it
in the various symmetry channels. Higher-order corrections
that will be discussed later do not alter this symmetry-based
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analysis. The symmetry factors γ are given by

γ
A1g

k = 1

2

{
∂2ε(k)

∂k2
x

+ ∂2ε(k)

∂k2
y

}
,

γ
B1g

k = 1

2

{
∂2ε(k)

∂k2
x

− ∂2ε(k)

∂k2
y

}
, (43)

γ
B2g

k = ∂2ε(k)

∂kx∂ky

,

where ε(k) is the band dispersion.
We show that the Aslamazov–Larkin diagram, given by

Eqs. (41) and (42), only supports the B1g and the A1g symmetry
channels. Let us consider the structure of the terms in Eq. (41)
which arise from

R
(11)
0 (ω) := T

∑
i=X,Y,n

∫
q

[
�

(1)
i (q,�n,ω)

]2

×χ (q,�n)χ (q,�n − ω). (44)

The term (44) can be rewritten in the following form:

R
(11)
0 (ω) = T

2

∑
n

∫
q

∫
k

∫
p
γkγpχ (q,�n)χ (q,�n − ω)

× [
EA1g

(ω,�n,k,q)EA1g
(ω,�n,p,q)

+EB1g
(ω,�n,k,q)EB1g

(ω,�n,p,q)
]
, (45)

where we have classified the appropriate combinations of
Green’s functions according to their symmetry into

EA1g
(ω,�n,k,q) = T

∑
m

G�(k,νm − ω)G�(k,νm)

×G(+)(k − q,νm − �n),

EB1g
(ω,�n,k,q) = T

∑
m

G�(k,νm − ω)G�(k,νm)

×G(−)(k − q,νm − �n), (46)

and we have defined G(±) = GX ± GY . In particular, we used
the fact that EA1g

has the A1g symmetry (it does not change
under the π/2 rotation or under the reflection with respect to
one of the axes—either kx or ky); see Eq. (43). Similarly, EB1g

has the characteristics of the B1g symmetry—it changes sign
under π/2 rotation but not under the reflection with respect to
one of the axes (kx → −kx , for example). From Eq. (46), we
see that the response will be nonzero only for γ factors in the
A1g or the B1g symmetries. Similarly, by using the same line of
arguments, one can show that all other terms in Eq. (41) support
the A1g or the B1g symmetries only. We have thus ruled out the
response in the B2g channel. The symmetry sensitivity here is
robust and holds whether or not the leading-order diagrams
have been evaluated in the hot-spot approximation.

2. Explicit calculation of leading-order
Aslamazov–Larkin diagram

The leading-order Aslamazov–Larkin diagram has been
evaluated in Ref. [28] assuming that the main contribution
comes from the hot-spot regions and that the momenta
of the fluctuations are peaked around q ≈ QX,Y . After the
analytic continuation to the real frequencies, we found that

the imaginary part of the Raman response function, which is
a quantity of experimental interest, is given by

ImR0(ω + i0+) =
∫ ∞

−∞

dε

π
[n(ε) − n(ε + ω)]

×
∫

q
Im[χR(ε,q)]Im[χR(ε + ω,q)],

(47)

with the spin propagator in the tetragonal phase given by

χR(q,�) = 1

r0 + q2 − i�
, (48)

where r0 tunes the distance from the magnetic transition; see
Eq. (18). This form for the spin propagator has been measured
in elastic neutron scattering experiments in Ref. [48], and
using this form for the propagator an excellent agreement was
achieved with the experimentally measured lineshape of the
Raman response function in the B1g channel in Ref. [29]. In
d = 2, the q integral in Eq. (47) can be performed exactly,
which leads to the following expression:

Im[R0(ω + i0+)]d=2 =
∫ ∞

0
dε[n(ε+) − n(ε−)]

ε+ε−
ε2+ − ε2−

× [F (ε+) − F (ε−)], (49)

with

F (x) = 1

x

(
arctan

r0

x
− π

2
sgn(x)

)
. (50)

We defined ε± = ε ± ω/2. The plot of the function (49) is
shown in Fig. 3. In particular one can deduce that, in the
regime where temperature T is the biggest scale, T � r0,
R0(ω)d=2 � ωT

r2
0

for small frequencies ω, while the amplitude

of the Raman response function scales as Rmax
0 (ω)d=2 � T

r0
in

this regime.
In summary, we have shown that the leading-order

Aslamazov–Larkin diagram gives a nonzero response in the
B1g and A1g symmetries only. It predicts the divergence of the
Raman response at the magnetic transition and does not carry
any signatures of the structural transition. We therefore need
to go beyond the leading-order Aslamazov–Larkin diagram.

C. Higher-order Aslamazov–Larkin-like diagrams

Next, we go beyond the quadratic action approximation for
Seff in Eq. (40) and include the full quartic action to evaluate the
Raman response function. As we will show, diagrammatically
this corresponds to inserting a series of fermionic boxes that
resemble the structure of the nematic coupling constant g

into the leading-order Aslamazov–Larkin diagram in the B1g

symmetry. These diagrams take into account the collisions
between spin fluctuations which were not accounted for in the
leading-order Aslamazov–Larkin diagram.

First we show how these terms arise from the diagrammatic
expansion. We start from Eq. (40), but this time we go
beyond the quadratic approximation for the effective action
and include quartic terms:

Rq = 1

Z

∫
d
ie

−Seff [
i ][Tr[(G0V
)2G0�]]2, (51)
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FIG. 4. Resummed Raman response function. The resummed box
B̃αβ is shaded gray. The first index of the matrix B denotes the type
α = X,Y of entering spin fluctuations, and the second index denotes
the type of exiting spin fluctuations. We insert the gray shaded box
into the Raman response and make some further simplifications to
evaluate the Raman response function (see the main text).

where

Seff[�i] = S0[�i] + 1
4 Tr(G0V
)4, (52)

with the bare action

S0[�i] = 1

2us

∫
x

(
�2

X + �2
Y

) + 1

2
Tr(G0V
)2. (53)

We further expand the exponential

e− 1
4 Tr(G0V
)4 ≈

∞∑
m=0

1

m!

[−1

4
Tr(G0V
)4

]m

(54)

to obtain

Rq =
∞∑

m=0

1

m!
R(m)

q , (55)

where we averaged the following terms with respect to the
Gaussian collective spin action:

R(m)
q =

〈[−1

4
Tr(G0V
)4

]m

[Tr[(G0V
)2G0�]]2

〉
S0

.

In order to evaluate the expectation values one performs
contractions of the 
 fields. We obtain a series of diagrams that
look like the leading-order Aslamazov–Larkin diagram with
an arbitrary number of inserted fermionic boxes, depicted in
Fig. 4.

The higher-order diagrams effectively take collisions be-
tween spin fluctuations into account, which have been ne-
glected in the leading-order Aslamazov–Larkin diagram. As
one approaches the transition line, collisions between spin
fluctuations become more and more important and one would
anticipate significant changes in the Raman response function
due to these processes. As we will show, the resummation of
boxed Aslamazov–Larkin diagrams will lead to the maximum
of the Raman response function at the structural phase
transition in the B1g channel and the suppression of the
response in the A1g channel.

The next task is to resum an infinite number of such
diagrams. Every box can be characterized by two indices:
the first one denotes the type of incoming spin fluctuation, this
can be either X or Y , and the second one denotes the type of

exiting spin fluctuation. Let us denote this box Bαβ . Summing
all boxed diagrams can be most efficiently expressed as

R(ω) = R0(ω) + T 2
∑
�,�′

∫
q,q′

�α(ω,�,q)

×χ (q,�)χ (q,� − ω)

× B̃αβ(q,q′,�,�′,ω)χ (q′,�′)

×χ (q′,�′ − ω)�β(ω,�′,q′). (56)

For our analysis it is sufficient to calculate the box Bαβ at
momenta q,q′ ≈ QX,Y and zero frequencies, which is justified
for small incoming Raman frequency ω, and in the classical
regime relevant near a finite-temperature phase transition. We
write the Raman response function in the tetragonal phase:

R(ω) ≈ R0(ω) +
∫

q,q′
�α(ω,0,q)B̃αβ

×χ2(q,0)χ2(q′,0)�β(ω,0,q′), (57)

where R0(ω) is the leading-order diagram.
The symmetry of the fermionic triangle is such that

�
B1g

X = −�
B1g

Y , �
A1g

X = �
A1g

Y . (58)

This relation can be obtained by simply performing a coor-
dinate system rotation by π/2 inside the momenta integrals
in Eq. (42). This allows us to explicitly perform the matrix
multiplication, which yields

R̃B1g
(ω) = R0(ω) + R0(ω)(B̃XX − B̃XY )

∫
q
χ2(q,0),

(59)

R̃A1g
(ω) = R0(ω) + R0(ω)(B̃XX + B̃XY )

∫
q
χ2(q,0).

Next we need to determine an expression for the full box
B̃αβ , i.e., perform a sum over the leading box diagrams within
the 1/N expansion. This is illustrated in Fig. 4 and can be
written as

B̃αβ = Bαβ + BαδBδβ

∫
q′

χ2(q′,0) + · · ·

=
∞∑

m=1

(Bm)αβ

(∫
q
χ2(q,0)

)m−1

. (60)

The matrix B was deduced from Eqs. (56) and (B4). For details
about explicit evaluation of the SU(N ) trace prefactor [which
arises from contractions of products of λ matrices in Eq. (10)]
for boxed diagrams containing an arbitrary number of boxes
m, please see Appendix B. The matrix B of irreducible boxes
is then given as

B = −N

8

(
gXX gXY

gXY gXX

)
, (61)
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where we used the abbreviation

gXX =
∫

k

G2
�,kG

2
X,k,

(62)

gXY =
∫

k

G2
�,kGX,kGY,k,

and used that, by symmetry,
∫
k
G2

�,kG
2
X,k = ∫

k
G2

�,kG
2
Y,k .

The mth power of the matrix B is given by

Bm = 1

2

(−N

8

)m(
(gm

+ + gm
−) (gm

+ − gm
−)

(gm
+ − gm

−) (gm
+ + gm

−)

)
, (63)

where g± = gXX ± gXY . From this analysis it follows that

R̃B1g
(ω) = R0(ω)

∞∑
m=0

(−Ng−
8

)m( ∫
q
χ2(q,0)

)m

= R0(ω) + R0(ω)
g

∫
q χ2(q,0)

1 − g
∫

q χ2(q,0)
,

R̃A1g
(ω) = R0(ω)

∞∑
m=0

(−Ng+
8

)m( ∫
q
χ2(q,0)

)m

= R0(ω) + R0(ω)
u

∫
q χ2(q,0)

1 + u
∫

q χ2(q,0)
, (64)

where

g = − N

16

∫
k

G2
�,k(GX,k − GY,k)2 (65)

is precisely the nematic coupling constant of Eq. (18) for the
effective action, and u is the other quartic term in Eq. (18),
with u > 0, as found in Ref. [7]. From Eq. (64), we see that
the Raman response in the A1g channel gets suppressed, due to
the term in the denominator, which grows as one approaches
the transition. On the other hand, in the B1g channel, after
performing the analytic continuation to real frequencies and
taking the imaginary part, we get that

ImR̃B1g
(ω) = Im[R0(ω)]

(
1 + gχ el

nem

)
, (66)

where

χ el
nem =

∫
q χ2(q,0)

1 − g
∫

q χ2(q,0)
(67)

is the purely electronic contribution to the nematic susceptibil-
ity calculated in the large-N limit [12] for the model described
in Sec. II A.

On the other hand, the susceptibility of the nematic order
parameter of our model, in the large-N limit is given by

χnem =
∫
q
χ2

q

1 − gstat
∫
q
χ2

q

, (68)

where gstat = g + γ 2
el

c0
s

. As was pointed out in Ref. [38], the
enhancement of the static nematic coupling constant (23)
does not enter the Raman response, due to the fact that the
Raman response operates in the dynamical limit (q = 0 and
finite ω), and the static and dynamic limits do not commute
[38]. In a purely electronic theory γel = 0, and this would
then lead to the divergence of the Raman response function

at the structural phase transition. For finite nemato-elastic
coupling, the nematic (structural) phase transition and the
nematic susceptibility (22) diverge, and

(
g + γ 2

el

c0
s

) ∫
q

χ2
q = 1. (69)

Consequently, the Raman response function in the B1g chan-
nel, given by Eq. (66), has a maximum rather than a divergence
at the structural phase transition, when magnetic and structural
phase transitions are split [2,4,5]. This is in agreement with
recent experiments [29]. The Raman response function could
then be used to probe the dynamic excitation spectrum of
the nematic degrees of freedom, similar to inelastic neutron
scattering that probes the dynamic spin excitation spectrum.
Finally, we would like to comment that the principal results
of our work, summarized in Eq. (64); namely, the pronounced
maximum of the Raman response in the B1g channel at the
structural phase transition, and the suppression of the response
in the A1g channel, are valid in general, irrespective of whether
one uses the hot-spot approximation to facilitate the evaluation
of the leading-order diagram R0(ω).

IV. CONCLUSION

In summary, we have shown that the Raman scattering can
be used as a tool to probe the nematic phase in pnictides.
We have presented a calculation that demonstrates that, in the
low-frequency limit and large-N limit, the Raman response
function shows a clear maximum at the structural transition
temperature in the B1g channel.

In our model, the electronic nematic phase in pnictides
is stabilized by spin fluctuations associated with the striped
phase and occurs as a thin sliver above the magnetic transi-
tion temperature. In order to calculate the Raman response
function, we have gone beyond the leading-order Aslamazov–
Larkin diagram and included higher-order diagrams that
contain a series of quartic paramagnon couplings, mediated
by electronic excitations. Such quartic couplings contain a
product of four fermionic Green’s functions and include the
effect of collisions between spin fluctuations. When resummed
these diagrams lead to the maximum of the electronic Raman
response function at the structural transition in the B1g channel,
and the suppression of the response in the A1g channel.

The method that we developed analyzed the Raman
response function only in the regime of small frequencies.
It would be desirable to extend it to the entire frequency
range, such that one can analyze the entire shape of the Raman
response function as a function of temperature and possibly be
able to extract some information about the dynamical nematic
susceptibility.

Furthermore, one might expect a charge-driven nematic
phase to have similar signatures in the Raman response
function. This could be relevant to the peculiar case of FeSe,
where the nematic phase has been detected, but no magnetic
phase has been seen [24,49,50]. In order to do so, we would
need to develop a theoretical method that goes beyond the
large-N expansion.

Note added. In the final stages of the preparations of
the manuscript we became aware of Ref. [51], where the
behavior of the Raman response function in the vicinity of the
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structural transition has been analyzed. Where there is overlap
with this work, our results agree. In particular, the principal
result of our work, summarized in Eq. (64), that the Raman
response function shows a maximum at the structural phase
transition in the B1g channel, is identical to the result obtained
in Ref. [51]. We included the effect of coupling to the lattice
in our work and analyzed the response in the A1g channel
as well. On the other hand, Ref. [51], where the calculation
has been conducted in the orbital basis, is able to address
the orbital degrees of freedom. The approach of Ref. [51] is
not restricted to small incoming Raman frequency (linear-ω
regime) and calculates the entire lineshape.
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APPENDIX A: EFFECTIVE ACTION
OF THE SU(N) FERMIONIC MODEL

1. Some useful SU(N) identities

Here, we present some useful identities for the structure
constants of SU(N ). They have been used to determine the
scaling of the boxed Aslamazov–Larkin diagrams with N and
to develop the Ginzburg–Landau expansion of the effective
action in powers of spin fluctuation fields 
 (see Sec. II).
We begin by listing some standard SU(N ) identities for the
matrices λi , where i = 1, . . . ,N2 − 1. All repeated indices
are summed over:

{λj ,λk} = 1

N
δjk + djklλl , djkl = dkj l, (A1)

[λj ,λk] = ifjklλl , fjkl = −fkj l, (A2)

λjλk = 1

2N
δjk + 1

2
Rjklλ

l , (A3)

Rjkl := djkl + ifjkl . (A4)

Here, dkj l is symmetric under the exchange of its indices,
while fkj l is antisymmetric under the exchange of neighboring
indices. Furthermore, some useful relations for the summa-
tions of structure constants can be derived [52,53], which read

dakldbkl = N2 − 4

N
δab, (A5)

faklfbkl = Nδab, (A6)
∑

i

diij = 0. (A7)

Useful identities that involve the traces of the SU(N )
matrices are

Tr(λi) = 0, (A8)

Tr(1) = N, (A9)

Tr(λiλj ) = 1
2δij . (A10)

In order to analyze the trace of the product of four SU(N )
generators we evaluate

Tr(λiλjλkλl) = Tr

[(
1

2N
δij + 1

2
Rijpλp

)

×
(

1

2N
δkl + 1

2
Rklrλr

)]

= 1

4N
δij δkl + 1

8
RijpRklp, (A11)

where we used the identity (A3) in the first line, as well as
Eqs. (A8) and (A10) in the second line. These results will
be of importance for the subsequent analysis of higher-order
diagrams.

2. Effective action from Tr log expansion

First we calculate the quadratic terms in the free energy
expansion. This is given by

1

2
Tr(G0V
)2 =

∑
α

∫
k

Gα,kG�,k

N2−1∑
i,j=1

Tr(λiλj )
i
α
j

α

= 1

2

∑
α

∫
k

Gα,kG�,k|�α|2, (A12)

where α = X,Y and we used the identity (A10).
Next we calculate the quartic term in the free-energy

expansion

1

4
Tr(G0V
)4 = 1

2
Tr(λiλjλkλl)

×
∑

α=X,Y

gαα
i
α
j

α
k
α
l

α + 1

2
Tr(λiλjλkλl)

×
∑

α=X,Y

gαᾱ
i
ᾱ


j
ᾱ
k

α
l
α, (A13)

with

gXX = gYY =
∫

k

G2
X,kG

2
�,k,

(A14)
gXY = gYX =

∫
k

GX,kGY,kG
2
�,k,

and we used the notation ᾱ for “not α,” i.e., if α = X then
ᾱ = Y and vice versa. We further substitute the identity (A11)
in (A13) to write

1
4 Tr(GV
)4 = K1 + K2, (A15)
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where

K1 = 1

8N

∑
α=X,Y

gαα|�α|4 + 1

8N

∑
α=X,Y

gαᾱ|�α|2|�ᾱ|2,

K2 =
∑

α=X,Y

gαα

16
RijpRklp
i

α
j
α
k

α
l
α

+
∑

α=X,Y

gαᾱ

16
RijpRklp
i

ᾱ

j
ᾱ
k

α
l
α. (A16)

Since K2 ∼ N−5, while K1 ∼ N−1, the term K2 can be omitted
in the large-N limit.

Combining Eqs. (A16) and (A12), the effective action in
the large-N limit can be written as

Seff[�X,�Y ] =
∑

i

r0,i

2
i +

∑
i,j

uij

2
i 


2
j , (A17)

with the coefficients

r0,i = 1

2us
+ 1

2

∫
k

G�,kGi,k,

(A18)
uij = 1

8N

∫
k

G2
�,kGi,kGj,k.

We note that, in the large-N approximation, there are no �X ·
�Y terms in the action; however, if one considers corrections
to large N these terms might appear in the effective action.

APPENDIX B: IDENTITIES CONTAINING PRODUCTS
OF TRACES OF SU(N) GENERATORS

In this appendix we derive further identities for the traces
of the SU(N ) generators, which have been used to deduce the
dependence of the Aslamazov–Larkin boxed diagrams on N .
In particular, we would like to calculate

Tm := Tr
(
λi1λi2

)
Tr

(
λi2λi1λi3λi4

)
× Tr

(
λi4λi3λi5λi6

) × · · ·

× Tr
(
λi2m

λi2m−1λi2m+1λi2m+2

)
× Tr

(
λi2m+2λi2m+1

)
. (B1)

We begin by considering m = 1. Written out explicitly, it is

T1 = Tr(λiλj )Tr(λkλl)Tr(λjλiλlλk)

=
(

1

4
δij δkl

)(
1

4N
δij δkl + 1

8
RjirRlkr

)

= 1

4

1

(4N )

∑
ijkl

δij δkl +
∑
ikr

1

32
RiirRkkr

= 1

4

1

(4N )
(N2 − 1)2, (B2)

where we have used Eqs. (A10) and (A11) to get to the second
line, and the fact that Riir = 0 in the penultimate line, which
is a consequence of Eq. (A7) and the antisymmetry of f. Using
the same set of identities, we find that

T2 = Tr(λiλj )Tr(λkλl)Tr(λjλiλsλr )Tr(λrλsλlλk)

=
(

1

4
δij δkl

)(
1

4N
δij δsr + 1

8
RjitRsrt

)

×
(

1

4N
δsrδkl + 1

8
RrszRlkz

)

= 1

4

(
1

4N

)2 ∑
ijklsr

δij δklδsr

= 1

4

(
1

4N

)2

(N2 − 1)3. (B3)

Similarly, one can deduce that

Tm = 1

4

(
1

4N

)m

(N2 − 1)m+1 ≈ N2

4

(
N

4

)m

. (B4)
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