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Low-temperature magnetic ordering and structural distortions in vanadium sesquioxide V2O3
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Vanadium sesquioxide (V2O3) is an antiferromagnetic insulator below TN ≈ 155 K. The magnetic order
does not consist of only antiferromagnetic nearest-neighbor bonds, possibly excluding the interplane vanadium
pairs, as one would infer from the bipartite character of the hexagonal basal plane in the high-temperature
corundum structure. In fact, a magnetic structure with one ferromagnetic bond and two antiferromagnetic ones
in the honeycomb plane is known experimentally to be realized, accompanied by a monoclinic distortion that
makes the ferromagnetic bond inequivalent from the other two. We show here that the magnetic ordering,
the accompanying monoclinic structural distortion, the magnetic anisotropy, and also the recently discovered
high-pressure nonmagnetic monoclinic phase, can all be accurately described by conventional electronic structure
calculations within GGA and GGA+U . Remarkably, our calculations yield that the corundum phase would be
unstable to a monoclinic distortion even without magnetic ordering, thus suggesting that magnetism and lattice
distortion are independent phenomena, though they reinforce each other. By means of GGA+U , we find a
metal-to-insulator transition at a critical Uc. Both metal at U � Uc and insulator above Uc have the same magnetic
order as that actually observed below TN, but different monoclinic distortions. Reassuringly, the distortion on
the insulating side agrees with the experimental one. Our results are in line with DMFT calculations for the
paramagnetic phase [A. I. Poteryaev et al., Phys. Rev. B 76, 085127 (2007)], which predict that the insulating
character is driven by a correlation-enhanced crystal-field splitting between eπ

g and a1g orbitals that pushes the
latter above the chemical potential. We find that the a1g orbital, although almost empty in the insulating phase,
is actually responsible for the unusual magnetic order as it leads to magnetic frustration whose effect is similar
to a next-nearest-neighbor exchange in a Heisenberg model on a honeycomb lattice.
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I. INTRODUCTION

For more than forty years, the phase diagram of
chromium/titanium-doped vanadium sesquioxide [1,2] (V2O3)
has gathered great interest, especially because of its isostruc-
tural high-temperature paramagnetic metal to paramagnetic in-
sulator transition, which is by now considered the prototypical
realization of a genuine Mott transition, i.e., not corrupted by
any symmetry breaking. Relatively less attention has instead
been paid on the low-temperature antiferromagnetic phase
of V2O3. Indeed, within a certain doping/pressure range,
vanadium sesquioxide undergoes a magnetic phase transition
[3] below a critical Néel temperature TN [3–5], which is
around 155 K for undoped V2O3 [6]. Since magnetism in
a strongly correlated material is just a side effect of Mott’s
localization, scientific interest in V2O3 has mostly focused so
far on the latter phenomenon rather than on the mechanism that
produces the experimentally observed magnetic order. Indeed,
the magnetic structure in V2O3 raises a number of intriguing
questions most of which are still awaiting an answer.

In V2O3, each vanadium atom has two electrons within the
t2g orbitals of the cubic-split d shell, as schematically shown
in Fig. 1. In the high-temperature corundum structure, the
trigonal field further splits the t2g into a lower eπ

g doublet
and a higher a1g singlet. In the extreme Mott localized
scenario, the two electrons would occupy the eπ

g orbitals and
be coupled into a spin S = 1 configuration in accordance
with Hund’s rules, see Fig. 1. This idealized picture, each
eπ
g singly occupied and the a1g empty, is not far from

what most recent LDA+DMFT calculations predict [7,8].
If we assume legitimate to discard the a1g contribution to
the low-energy processes that control the coupling between

the S = 1 localized moments, we must conclude that the
virtual hopping of eπ

g electrons between nearest-neighbor sites
gives rise to a conventional antiferromagnetic superexchange
within the honeycomb basal plane, whose bipartite character
would then lead to a Néel two-sublattice antiferromagnetism.
Moreover, since the eπ

g orbitals are nonbonding along the c

axis perpendicular to the hexagonal plane, we would expect
an antiferromagnetic order either of the G type (all bonds
antiferromagnetic) or the C type (only out-of-plane bonds
ferromagnetic), which we shall hereafter denote as “simple”
[9] and “layered” antiferromagnetic structures, respectively,
see Fig. 2.

In reality, the experimentally observed magnetic structure
[5], which we shall refer to as “true” and show in Fig. 2,
is completely different. Along the c axis, the two nearest-
neighbor vanadium atoms are coupled ferromagnetically, not
in disagreement with the above expectation. In contrast, among
the three bonds connecting one vanadium atom to its nearest
neighbors within the honeycomb basal plane, only two are
antiferromagnetic but the remaining one is ferromagnetic. This
phase is accompanied by a monoclinic distortion which goes
along with the magnetic structure, making one hexagonal bond
inequivalent from the other two. However, slightly contra-
dicting results about the exact influence onto the respective
bond lengths can be found in literature, from shortening
the antiferromagnetic bonds [6,10], as one would reasonably
expect, to the opposite [11].

The natural issue that arises is why this complicated “true”
magnetic order should be energetically favorable with respect
to the “simple” or “layered” structures in view of the additional
energy cost of the monoclinic distortion. Up to now, this simple
question has still not found a satisfactory answer.
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FIG. 1. (Color online) d levels and their occupancy of a hypo-
thetical isolated vanadium atom in the trigonal field of the high-
temperature corundum structure.

The first attempt to explain the observed magnetic structure
was performed in a series of papers by Castellani, Natoli,
and Ranninger (CN&R) [12–14]. Their starting point was not
the atomic limit of Fig. 1, but the molecule of two nearest-
neighbor vanadium atoms along the c axis, which we shall
refer to as a “dimer.” The a1g orbitals form a covalent bond
along the c axis that falls below the eπ

g levels, see Fig. 3. The
lowest electronic configuration consists then of two electrons
in a spin-singlet configuration occupying the σ bond, and the
remaining two coupled into a spin-triplet configuration within
the eπ

g levels. The residual fourfold orbital degeneracy besides
the threefold spin degeneracy was exploited to build a spin-
orbital Kugel’-Komskii-type [15] of Heisenberg model, whose
mean-field solution in a certain parameter range reproduces
the observed magnetic structure and simultaneously predicts
an orbital ordering. The CN&R’s scenario implies that each
vanadium has spin S = 1/2, while the dimer has S = 1. In
order to explain the observed magnetic moment larger than one
Bohr magneton, CN&R proposed an enhancement mechanism
due to the antiparallel polarization of the oxygens as well as
an exchange polarization of the a1g electrons [13].

The “dimer” building block was later questioned on the
basis of x-ray absorption measurements [16] and of ab initio
LDA+U calculations [9], both supporting a scenario in which
each vanadium is in a spin S = 1 configuration rather than spin

FIG. 2. (Color online) Magnetic structures considered in the cal-
culations, where black and yellow dots correspond to opposite spin
vanadiums. The “true” is the one experimentally observed, while
“simple” and “layered” represent two-sublattice Neél ordered hon-
eycomb planes coupled antiferromagnetically and ferromagnetically,
respectively.

FIG. 3. (Color online) The “dimer” building block of Castellani,
Natoli, and Ranninger, with its electronic configuration.

1/2. This conclusion was further reinforced by x-ray scattering
measurements showing that the observed moment of 1.2 μB

has both a spin contribution 2〈S〉 � 1.7 as well as an orbital one
〈L〉 � −0.5 [17]. All these novel results stimulated attempts to
reexamine the CN&R model in terms of S = 2 dimers (each
vanadium in a spin-triplet state) rather than S = 1 as in the
original formulation, see, e.g., Refs. [18–21], although this list
is by no means exhaustive.

At the meantime, the same belief that the V2 dimer is the rel-
evant building block to explain the magnetic structure started
to be questioned [22–24], until most recent LDA+DMFT
calculations [7,8] have finally come back to the atomic
scenario of Fig. 1 as the most plausible one for the insulating
phase of V2O3. Nevertheless, important issues remain open,
which might escape from very accurate but still approximate
techniques like LDA+U or LDA+DMFT [24,25].

An important one is the aforementioned sizable orbital
contribution to the magnetic moment [17]. We observe that
the t2g orbitals can make available at most an orbital moment
L = 1. Therefore the observed |〈L〉| ∼ 0.5 is a substantial
part of it, which cannot be justified within the atomic limit of
Fig. 1, since the eπ

g alone are not spin-orbit active, but can be
explained within the dimer scenario [21,25].

Equally intriguing remains the monoclinic distortion ac-
companying the magnetic order. As we mentioned, if we
assume the atomic limit of Fig. 1 and neglect contributions
from a1g orbitals, only “simple” or “layered” magnetic struc-
tures can be stabilized. More realistic LDA+U calculations
by Ezhov et al. [9] show that in the corundum structure the
lowest energy magnetic configuration is indeed the “simple”
one, lower by 5 K than the “true” structure. Since the
monoclinic distortion costs elastic energy, it is not easy to
conceive on the basis of these calculations why V2O3 would
distort to stabilize a phase that in the undistorted crystal is
higher in energy. Tight-binding Hartree-Fock calculations by
Perkins et al. [24] performed with hopping matrix elements
of symmetry appropriate to the corundum phase find that the
“true” structure can have lower energy than the “simple” one
even in the undistorted lattice, though in a quite narrow region
of parameter space. Similar conclusions are obtained within
the dimer model [18,19].

In summary, in spite of many attempts performed in the last
forty years, the real cause of the observed magnetic order and
concomitant monoclinic distortion in V2O3 is still elusive and
we believe it is worth trying to shed further light, which we
hope to do in the present study. The approach we shall adopt is
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mainly plain density functional theory (DFT) and its DFT+U

extension to strong electronic correlations, which is especially
suitable for antiferromagnetic insulators. In this sense, this
work is partially an extension of the pioneering one by Ezhov
et al. [9]. Furthermore, model studies are shown to support the
findings from these realistic theories.

The paper is organized as follows. Section II summarizes
the density functional theory (DFT) picture of V2O3 regarding
magnetism and structural distortions. Section III enhances
this picture by strong electronic correlations as described by
DFT+U approaches. Section IV focuses on the orientation of
the magnetic moments as described by DFT+U as well as by an
analytic picture. Section V finally aims at finding reasons for
the type of magnetic ordering realized in V2O3 by considering
suitable model studies.

II. DFT STUDIES

It is obvious that electronic correlations do play a crucial
role in the physics of V2O3, as demonstrated in detail by
several earlier studies [7–9,26], to which the antiferromagnetic
ground state makes no exception. However, already density
functional theory (DFT) in its generalized-gradient approx-
imation (GGA) to the energy functional (here in its PBE
parameterization [27]), in spite of being known to fail for
several strongly correlated systems, can give some important
insights into this state. It is understood that one cannot expect
an accurate description of all the observed properties by plain
GGA, but it will be shown to be a useful starting point for all
further considerations.

The following DFT calculations have been performed
with the QUANTUM ESPRESSO code [28] using ultrasoft pseu-
dopotentials.1 To account for the monoclinic distortion and
magnetic ordering, a supercell containing eight vanadium
atoms is used. Its symmetry properties are described by the
monoclinic space group I2/a [6,29], whose lattice vectors
(am,bm,cm) can be built from the original high-temperature
corundum structure lattice vectors (aH,bH,cH) in hexagonal
notation as follows:⎛

⎝am

bm

cm

⎞
⎠ =

⎛
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2
3

4
3

1
3

1 0 0
1
3

2
3 − 1

3
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⎟⎠

⎛
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cH

⎞
⎠. (1)

If not stated otherwise, the length of the unit vectors will not be
altered throughout the following calculations, but retained at
its experimentally reported value at ambient conditions [29].

A. The nonmagnetic solution

The most basic GGA setup that can be built for V2O3 is a
calculation which is constrained to give a nonmagnetic result.
If done in the enlarged eight-site unit cell and allowing for
relaxation of the atomic positions, its solution has the note-
worthy peculiarity that it incorporates a monoclinic distortion.
In spite of the elastic energy cost that is associated to any kind
of lattice distortion, the energy gain compared to the relaxed

1V.pbe-n-van.UPF and O.pbe-van_ak.UPF from http://www.
quantum-espresso.org.

(a) (b)

FIG. 4. (Color online) Sketch of the monoclinic distortion oc-
curring in the metallic regime as obtained by GGA (without U ):
(a) top view onto the honeycomb plane and (b) side view onto the
vanadium dimers. Note that the arrows are not perspective but show
the movement in the respective view plane.

nonmagnetic corundum structure is as large as 25 meV per
vanadium atom.

The effects of this distortion are sketched in Fig. 4,
which compares the monoclinic distorted structure with the
relaxed corundum structure. The distortion is characterized
by a shortening of one set of nearest-neighbor bonds in
the hexagonal aH-bH plane (the bonds drawn horizontally in
Fig. 4), therewith enlarging the other two. This movement
also leads to a tilting of the vanadium dimers, which, together
with a small out-of-plane movement, enlarges them slightly.
The above-mentioned large energy gain corresponds to a
substantial lattice distortion, with the length of the shortened
bond in the aH-bH plane of 2.56 and thus even slightly smaller
than that of the vanadium dimer along the cH direction of
2.63 Å. Comparing with the length of the enlarged bonds in
the aH-bH plane of about 3.0 Å, one notices that the structure
becomes similar to an array of 1D chains, each of them running
along the dimer and the short bond in the hexagonal plane.

Anticipating results of the next section, we mention that
the same kind of distortion occurs in the antiferromagnetic
metal phase. However, if GGA is supplemented by a Hubbard
U , above a threshold value, an antiferromagnetic insulating
phase is established, which still has a monoclinic distortion
but with two bonds shortened and one lengthened, hence
opposite to that in the metal phases, either nonmagnetic
or antiferromagnetic. We remark that the occurrence of a
monoclinic structural change in the nonmagnetic solution
implies that magnetism and monoclinic distortion are rather
unrelated phenomena.

Although such a monoclinic nonmagnetic metal phase is
unstable against magnetism, as we shall show in the next
section, it is nevertheless of interest in view of the recent
discovery of a high-pressure monoclinic metal phase [30] that
is actually not dissimilar to what we just found. It is therefore
worth investigating the mechanisms that may drive such a
distortion.

We believe that the monoclinic distortion is actually driven
by a Fermi surface nesting of the corundum band structure.
Indeed, the central sheet of the whole Fermi surface, shown in
Fig. 5(a) and calculated with the structural data of Ref. [29]
corresponding to the high-temperature paramagnetic metal,
has nesting properties compatible with an instability towards
a monoclinic distortion with a unit cell doubling. This is
quite evident by looking at cut planes as shown in Fig. 5(b).
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FIG. 5. (Color online) (a) Fermi surface of nonmagnetic metallic
corundum structure V2O3 with relaxed atomic positions, seen along
the crystallographic cH direction, equivalently the Cartesian z axis.
(b) Projections of the Fermi surface onto planes that are obtained
by rotating around the Cartesian y axis of (a). While the vertical
axis corresponds to the Cartesian y direction, the horizontal axis
is the Cartesian x direction (left); rotated about 40◦ with respect
to the former, so that it represents the direction towards a next-
nearest-neighbor atom in the adjacent hexagonal plane (middle);
perpendicular to the latter (right). The black lines indicate the
Brillouin zone boundary of the corundum structure, the grey lines
its shape for the doubled monoclinic cell.

While the aforementioned sheet looks almost circular in the
honeycomb plane of vanadium atoms, relatively large regions
of parallel surfaces can be identified by slightly tilting the cut
plane.

An interesting question is whether this nesting is stable
against doping. The classical phase diagram [1,2] of V2O3

suggests that the monoclinic distortion (as accompanied by
the magnetic ordering) is suppressed by large titanium doping,
while being almost unaffected by chromium doping. We can
estimate the effects of doping by means of energy isosurfaces
similar to the Fermi surface of stochiometric V2O3, but
describing a slightly enlarged (chromium doping) or reduced
(titanium doping) total number of electrons. This is done
in Fig. 6, which shows that titanium doping tends to shrink
the Fermi surface driving the system away from the nesting
condition, unlike what happens with chromium doping. In
spite of the simplicity of this approach, which lacks subtle
correlation effects, it is remarkable that the observed trend is
compatible with experiments.

In order to better uncover the driving physical mechanism,
the band structures in the enlarged eight-atom unit cell shown
in Fig. 7 are particularly enlightening. The chosen path through
the Brillouin zone pertaining to the enlarged eight-atom
monoclinic cell starts from the point V = (0, 1

4 , − 1
4 ) in relative

reciprocal coordinates (compatible with the magnetic order),
moves further to � and along the vanadium dimer (� − A

direction), further goes in the plane perpendicular thereto at

FIG. 6. (Color online) Projections of Kohn-Sham energy isosur-
faces of nonmagnetic metallic corundum structure V2O3 with relaxed
atomic positions onto a plane as in the middle column of Fig. 5(b).
The isovalues are chosen to represent roughly values of 5%, 10%,
and 15% (from left to right) titanium doping (top row) and chromium
doping (bottom row). The black lines indicate the Brillouin zone
boundary of the corundum structure, the grey lines its shape for the
doubled monoclinic cell.

the “upper” (kz = 1
2 ) edge of the Brillouin zone (A-M), back

to the original hexagonal aHbH plane at kz = 0 (M-Y ) and
continues in this plane (Y -�-L).
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FIG. 7. (Color online) Band structure (left) and projected density
of states (right) from GGA of nonmagnetic corundum structure V2O3

with atomic positions determined experimentally for the paramag-
netic metallic phase [29] (top), GGA-relaxed atomic positions in
the corundum structure (middle) and GGA-relaxed atomic positions
allowing for a monoclinic distortion (bottom).
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FIG. 8. (Color online) Total energy difference of the P 21/c and
I2/a phases of monoclinic V2O3, as a function of the applied
pressure. The relative units of the pressure axis correspond to the
reported values in the corundum structure at ambient conditions [29]
(0.0) and the experimentally reported values of the high-pressure
phase transition from I2/a to P 21/c [30] (1.0).

Starting from the well-known [31,32] GGA low-energy
density of states and band structure of the corundum non-
magnetic metal, as displayed in the top row of Fig. 7, one
immediately notices a large density of states directly at the
Fermi energy, due to almost flat bands near �. As expected,
relaxation of the atomic positions within the corundum struc-
ture (middle row of Fig. 7) partially reduces this instability, and
furthermore leads to a reduction of the splitting between eπ

g

and high-energy eg [33]. However, allowing for a monoclinic
distortion (bottom row of Fig. 7) further stabilizes the system
by splitting the flat bands around � and opening a pseudogap
at the Fermi energy. We mention that the undistorted structure
is not even metastable, but corresponds to a saddle point in the
total energy.

We finally mention that the above monoclinic nonmagnetic
metal phase is not exactly equivalent to that observed at high
pressure in Ref. [30], which is characterized by a further
symmetry lowering from I2/a to P 21/c. Figure 8 shows
that this symmetry reduction can also be seen in GGA upon
simulating pressure by a decrease of the unit cell volume.
Both phases I2/a and P 21/c are minima of the total energy.
At ambient pressure, I2/a has a slightly lower energy than
P 21/c, but the situation is reverted already applying small
pressure. Therefore the transition from I2/a to P 21/c would
occur according to GGA at significantly lower pressures
than reported experimentally [30]. We believe that this is an
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FIG. 9. (Color online) Band structure (left) and projected density
of states (right) of true antiferromagnetic V2O3 from GGA.

artifact due to GGA underestimation of electronic correlations.
Indeed, the P 21/c structure in GGA is characterized by
a charge disproportionation between inequivalent vanadium
atoms, which is hindered by electronic correlations.

B. Magnetic solutions

Allowing for magnetism in the framework of spin-polarized
GGA, Table I shows that the nonmagnetic GGA solution
described in the previous subsection is unstable compared to
all of the magnetic solutions. Likewise, the energy gain due
to its monoclinic distortion is significantly smaller than the
energy gain due to magnetic exchange.

Comparing the different possible magnetic orderings, an
important result that we find is the stability of the “true” anti-
ferromagnetic ordering already in GGA. Note that this requires
relaxation of the atomic positions within the crystal cell. Also
this relaxation of the “true” antiferromagnetic structure reveals
a monoclinic distortion similar to the experimentally observed
one and similar (but smaller) to the one described above
for the nonmagnetic solution. Note that both the other two
investigated antiferromagnetic configurations (“layered” and
“simple”) remain in an undistorted corundum structure even
allowing for structural relaxation. This can also be expected by
symmetry considerations of the magnetic structure, recalling
that the magnetic exchange energy gain is significantly larger
than an energy gain of the structural distortion. This underlines
the fact that the monoclinic instability, which we showed
occurs even in the nonmagnetic solution, is strengthened
by the “true” antiferromagnetic exchange at least in the
metallic regime, while changing sign at the transition to the
antiferromagnetic insulating state as will be shown later.

As can be seen from the low-energy density of states and
band structure shown in Fig. 9, the main drawback is that pure
GGA cannot describe the insulating behavior of the magnetic

TABLE I. Comparison of some basic quantities, calculated for the different antiferromagnetic configurations of V2O3 within plain GGA.
Energies are given relative to the respective “simple” phase.

“simple” “true” “layered” nonmagnetic

Experimental corundum structure
Total GGA energy (meV/V atom) 0 − 4.1 − 5.2 179.6
Absolute magnetization (μB/V atom) 1.53 1.57 1.54 0

Relaxed structures
Total GGA energy (meV/V atom) 0 − 12.2 − 7.9 112.1
Absolute magnetization (μB/V atom) 1.47 1.55 1.49 0
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FIG. 10. (Color online) Phase stability comparison in the exper-
imentally determined corundum structure of V2O3 within GGA+U .
Closed circles indicate metallic, open circles indicate insulating
solutions.

structure. This is the expected result in view of the importance
of strong electronic correlations in V2O3. Furthermore, one
notices that the splitting between a1g and eπ

g turns out to be
small enough that all orbitals from the t2g block have a similar
filling (with the a1g occupation slightly smaller than each eπ

g ).
This gives rise to a spin magnetic moment of ∼ 1.5μB (see
Table I), thus slightly smaller than the observed experimental
value, which we recall is ∼ 1.7μB once corrected by the orbital
contribution.

III. DFT+U STUDIES

Since the antiferromagnetic insulating state is the ground
state of V2O3, one can expect to gain insight into the effects
of strong electronic correlations already from a simple method
like GGA+U . Here, the simplified version of Cococcioni
and de Gironcoli [34] in the QUANTUM ESPRESSO package
is put into practice, which implies the use of only one
effective parameter U − J and a fully localized limit (FLL)
double-counting correction.

Since the actual value of the parameter U − J is a priori
unknown, Fig. 10 compares the stability of each of the
possible magnetic structures in terms of their total energy
for a wide parameter range. This calculation is performed in
the experimental atomic positions in the unrelaxed corundum
structure [29], nevertheless already shows that a small U − J is
able to stabilize the “true” antiferromagnetic phase, whereas
for large interactions the “simple” and “layered” structures
become more stable.

The relaxation of the structural parameters within GGA+U

further stabilizes the “true” antiferromagnetically ordered
phase and extends its stability region, as shown in Fig. 11.
We observe that the energy gain of the “true” magnetic order
with respect to the next lying one in the unrelaxed structure is
comparable to the 25 meV gain of the nonmagnetic solution
upon allowing for a monoclinic distortion, see Figs. 10 and
11. Therefore the “true” magnetic order and the monoclinic
distortion, even though independent phenomena, nevertheless
reinforce each other. It is thus not surprising that the onset
of magnetism and the monoclinic distortion occur roughly at
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FIG. 11. (Color online) Phase stability comparison in the relaxed
structure of V2O3 within GGA+U . Closed circles indicate metallic
solutions of the layered/true phase, open circles indicate insulating
solutions thereof.

the same temperature TN, with the latter slightly preceding the
former [35,36].

As anticipated, above U − J � 2.0 eV, the “true” antifer-
romagnetic state turns from metallic into insulating, which
sets between 2.0 and 4.0 eV the range of U − J values
that reproduce within GGA+U the magnetic and conducting
properties of the actual material. Figure 12 shows the GGA+U

Kohn-Sham band structure and density of states projected onto
vanadium d-orbitals for U − J = 3.0 eV, which we assume to
be a realistic estimate.

It turns out that the GGA+U realization of the insulating
phase corresponds to the straightforward solution of occupied
eπ
g orbitals and almost empty a1g one, thus implying an S = 1

spin configuration. As mentioned, this is in line with, e.g.,
the U -induced paramagnetic Mott metal-insulator transition
in DMFT [7], though still a matter of debate, for instance,
because neither GGA+U nor single-site DMFT explicitly
includes intersite interactions, which would typically stabilize
the atomic dimer [24,25].

This scenario is further confirmed in Fig. 13, where we
plot the occupation numbers in the crystal field basis that
diagonalizes the GGA+U occupation matrix. We mention
that, since these orbitals are not strongly localized on a
single vanadium atom, the total occupation is not precisely
2. The depletion of the a1g-like crystal-field basis orbital
with increasing values of U − J in favor of eπ

g -like orbitals
is evident. A noteworthy jump occurs at the metal-insulator
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FIG. 12. (Color online) Band structure (left) and projected den-
sity of states (right) of true antiferromagnetic V2O3 from GGA+U

at U − J = 3.0 eV.
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FIG. 13. (Color online) Crystal field basis occupation numbers
(eigenvalues of the GGA+U local density matrix) per vanadium d

orbital as a function of U − J in the relaxed true antiferromagnetic
phase of V2O3. Triangles pointing up indicate the majority spin
channel, triangles pointing down the minority spin channel. As
before, AFM and AFI stand for antiferromagnetic metal and insulator,
respectively.

transition, with the above-mentioned scenario of a majority-
spin a1g orbital that is almost half-filled below and almost
empty above.

One remarkable effect of the monoclinic distortion and the
magnetic ordering is the lifting of the degeneracy between the
two eπ

g orbitals, which is particularly strong in the (unphysical)
magnetic metallic regime, but still present in the magnetic
insulating one. It is a direct consequence of the breaking of
the threefold rotational symmetry of the vanadium planes with
magnetic order or structural distortion, and therefore does not
occur for the other investigated magnetic structures that do not
break such symmetry.

The inequality between the two eπ
g orbitals, more ac-

centuated the smaller U − J , also shows up into different
lengths of the two antiferromagnetic in-plane nearest-neighbor
bonds, as shown in Fig. 14, to such an extent that, in the
metal phase U − J < 2 eV, one of the antiferromagnetic
bonds is the longest. This is qualitatively the same effect as
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FIG. 14. (Color online) Nearest-neighbor vanadium distances
from relaxation in the “true” antiferromagnetic structure, indicating
the monoclinic distortion. AFM and AFI stand for antiferromagnetic
metal and insulator, respectively.

(a) (b)

FIG. 15. (Color online) Sketch of the effects of the monoclinic
distortion occurring in the antiferromagnetic insulating regime as
provided by GGA+U : (a) top view onto a honeycomb plane and
(b) side view onto the vanadium dimers. The different colors used
for the vanadium atom positions correspond to the different spin
orientations (up/down). Note that the arrows are not perspective, but
show the movement in the respective view plane.

in the nonmagnetic metallic regime described in Sec. II A.
Consequently, for U − J < 2 eV, the monoclinic distorted
structure corresponds to the one shown in Fig. 4. On the
contrary, above U − J = 2 eV, i.e., in the realistic insulating
phase, all nearest-neighbor vanadium distances shown in the
same Fig. 14 are compatible with the observed monoclinic
distortion and with the intuitive expectation of elongated
ferromagnetic bonds and shortened antiferromagnetic ones.
This behavior is illustrated in Fig. 15, which again compares
the obtained monoclinic distorted structure (here at U = 3 eV)
with the relaxed corundum structure. In the figure, horizontal
and vertical bonds are ferromagnetic. We note that the in-plane
movement is not parallel to any of the bonds, so that a
small difference between the lengths of the two in-plane
antiferromagnetic bonds persists also in the insulating side.
This difference tends to become smaller with increasing U .
In the out-of-plane direction, in addition to the rotation of the
vanadium dimers caused by the in-plane movement, one can
observe a further increase of the vanadium dimer length by
an out-of-plane movement. This is not exclusively a feature of
the monoclinic distortion, but also of the increased value of
U . Indeed, the dimer stretching grows inversely proportional
to the a1g occupancy if less than 1/2. The reason is that, when
the a1g occupation drops below 1/2, the bonding orbital within
each dimer, see Fig. 3, loses electrons so that the strength of
the bond diminishes hence its length increases. Therefore we
expect that the dimer stretching should be barely visible when
the monoclinic distortion first appears, since it is only quadratic
in the small tilting angle of the dimers that characterizes that
distortion [6], but should become more pronounced as the a1g

occupancy drops down at the metal-insulator transition. This
is in fact in accordance with the experimental data of Ref. [35].

IV. MAGNETIC ANISOTROPY

Already the original 1970’s work by Moon [5] pointed
out that the magnetic moments are oriented with a certain
angle towards the crystallographic c direction. Such a mag-
netic anisotropy is, at first glance, not expected for a light
element like vanadium. However, for similar compounds like
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FIG. 16. (Color online) GGA+U energy difference of “true”
antiferromagnetic solutions with a spin orientation in the honeycomb
plane and in the c direction (perpendicular thereto) as a function of
the Hubbard parameter U . Closed circles indicate metallic solutions,
while open circles indicate insulating solutions.

vanadium spinels, values of spin-orbit coupling in the range
of 13–20 meV have been reported [37–40], which makes
a DFT calculation including relativistic effects (spin-orbit
coupling) and noncollinear magnetism worth trying. To this
end, the implementation thereof [41] in QUANTUM ESPRESSO

has been used with a fully relativistic pseudopotential2 and the
rotationally invariant GGA+U formulation of Liechtenstein
et al. [42]. Due to the high computational demands of such a
calculation, no further relaxation of the structural parameters
has been done, but values of the monoclinically distorted
collinear-antiferromagnetic structure relaxed without U have
been used.

Figure 16 shows the energy difference between GGA+U

solutions with magnetic moments oriented in the honeycomb
plane (Ein−plane) and oriented perpendicular thereto (Ec), i.e.,
in the crystallographic c direction. A first result is that, without
electronic correlations, i.e., at the GGA level, the c-axis
alignment is favored, although with a tiny energy difference.
However, upon increasing U , and specifically above the
metal-insulator transition, the in-plane orientation becomes
more stable. Indeed, there is a close connection between the
change from easy axis to easy plane and the a1g depletion
that occurs at the metal-insulator transition, which can be
illustrated by a simple model calculation.

Let us assume an isolated vanadium in the trigonal crystal
field. A suitable basis set for the t2g manifold (with corundum
symmetry) can be written (the sign is related to the multiple
vanadium atoms per unit cell):

|a1g〉 = |d3z2−r2〉,

|eg1〉 = ±
√

2

3
|dxy〉 +

√
1

3
|dxz〉, (2)

|eg2〉 = −
√

2

3
|dx2−y2〉 ∓

√
1

3
|dyz〉.

2V.rel-pbe-spnl-rrkjus_psl.1.0.0.UPF from the PSLibrary of
http://www.quantum-espresso.org.

We have used a slightly different convention from CN&R
[12,13]. Specifically, we have assumed that the wave func-
tions of the two vanadium atoms, which are related by the
transformation C2(x,y,z) → (−x,y, − z), transform into each
other. In addition, the y axis is assumed to correspond to the
monoclinic b axis, so that the x-z plane is also the monoclinic
a-c one. We observe that the angular momentum operators on
the basis of Eq. (3) read

L̂x = ±i |eg2〉〈a1g| ∓ i |a1g〉〈eg2|,
L̂y = i |eg1〉〈a1g| − i |a1g〉〈eg1|,
L̂z = ±i |eg2〉〈eg1| ∓ i |eg1〉〈eg2|.

Using the representation |na1g
,neg1 ,neg2 ; Sz〉 to denote two

electrons coupled into a spin triplet with z component Sz =
−1,0,1 and occupying the single-particle states (3) with
occupation ni = 0,1 such that

∑
ni = 2, we define the new

states

|1,Sz〉 = −
√

1

2
(|1,0,1; Sz〉 ∓ i|1,1,0; Sz〉),

|0,Sz〉 = |0,1,1; Sz〉, (3)

|−1,Sz〉 =
√

1

2
(|1,0,1; Sz〉 ± i|1,1,0; Sz〉),

which are actually eigenstates of the z component of the
angular momentum operator Lz projected onto the t2g man-
ifold that effectively realizes an l = 1 representation, i.e.,
Lz |M,Sz〉 = M |M,Sz〉, with M = −1,0,1. The spin-orbit
coupling projected onto the basis (3) reads

HSOC = λSOC

2
(2 Sz Lz + S+ L+ + S− L−), (4)

where L± in the basis (3) has the same expressions as for l = 1
angular momentum operators, while the trigonal crystal field
can be written as

Htr = 3Vtr
(
L2

z − 2
3

)
. (5)

One can easily realize that, for Vtr = 0, the lowest energy
state at λSOC 
= 0 is fivefold degenerate, corresponding to two
d electrons coupled according to the Hund’s rules to S = 1,
L = 3, and J = 2. Conversely, for λSOC = 0 but Vtr 
= 0, the
lowest energy state |0,Sz〉 is an orbitally nondegenerate spin
triplet.

However, when both parameters are finite with λSOC � Vtr,
the lowest energy state is

|0〉 ≡ cos θ |0,0〉 − sin θ√
2

(|1,1〉 + |−1, − 1〉), (6)

with

tan 2θ = 2
√

2 λSOC

3Vtr + λSOC
,

followed by the doublet

|±1〉 ≡ cos φ |0,±1〉 − sin φ |∓1,0〉, (7)

with tan 2φ = 2λSOC/3Vtr.
If we regard the three states |0〉 and |±1〉 as the effective

S = 1 states of each isolated vanadium, the above results
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show that the spin-orbit coupling generates an easy-plane
anisotropy:

H∗ = �tr S
2
z � λ2

SOC

3Vtr
S2

z . (8)

We could proceed and consider the effects of a monoclinic
distortion Vm � Vtr that makes the eπ

g orbitals inequivalent
and corresponds to an operator [21]

Hm = −V (1)
m (|a1g〉〈eg1| + |eg1〉〈a1g|)

+V (2)
m (|eg1〉〈eg2| + |eg2〉〈eg1|)

= V (1)
m (LxLz + LzLx) ± V (2)

m (LxLy + LyLx), (9)

where the last expression is the representation on the basis (3).
Its action on the S = 1 basis |0〉 and |±1〉 above is equivalent
to an additional anisotropy term:

δH∗ = −�(1)
m

2
(Sx Sz + Sz Sx)

∓�(2)
m

2
(Sx Sy + Sy Sx), (10)

where, if ξ = (λSOC/3Vtr)
2 � 1,

�(1)
m = 2V (1)

m√
2

(
√

2 sin φ cos θ − cos φ sin θ )

� 2V (1)
m (ξ − 6.5 ξ 2), (11)

�(2)
m = 2V (2)

m sin2 φ � 2V (2)
m (ξ − 3 ξ 2), (12)

which, together with Eq. (8), might indeed justify the magnetic
moment lying in the monoclinic a-c plane, assumed here to be
the x-z plane, 29◦ above the hexagonal basal plane. We cannot
extract the value of that angle since the sign-alternating term
�(2)

m competes against the intersite exchange constants, so that
we would need the latter to get a reliable estimate.

However, even though the above calculation is a very
rough one, still it shows that one can rationalize the observed
magnetic anisotropy already at the level of a single vanadium,
without invoking the “dimer” as a building block [21]. We
finally mention that we cannot exclude further contributions
to spin anisotropy coming from Dzyaloshinskii-Moriya (DM)
exchange processes [43–47], which could be worth analyzing
in the future. We can only state that, because the magnetic
phase possesses time reversal times inversion symmetry [20],
DM processes will not generate weak ferromagnetism.

V. MODEL STUDIES AND DISCUSSION

In the previous sections, we have shown that the GGA+U

accurately accounts for the magnetic, structural, and conduct-
ing properties of V2O3 in its low-temperature phase. This
suggests the possibility of recovering similar results by model
calculations within an independent-particle approximation.

A. Preliminary remarks

In their series of papers [12–14], CN&R, besides deriving
and analyzing by the mean-field approximation an effective
spin-orbital Heisenberg Hamiltonian for coupled spin and

orbitally degenerate dimers, see Fig. 3, also performed a
Hartree-Fock calculation directly on the Hubbard-type Hamil-
tonian for the three t2g orbitals [13]. Their results are worth
being discussed prior to showing our own. Without includ-
ing any trigonal crystal-field splitting between eπ

g and a1g

orbitals, they could stabilize the “true” magnetic order in two
different phases, which they denoted as AO–RS(eπ

g )PS(a1g)
and 2RS(eπ

g ). The former, AO–RS(eπ
g )PS(a1g), is stable at

J/U � 0.2 and is compatible with the “dimer” building block
picture of Fig. 3; it has an antiferro-orbital order (AO) in the
eπ
g orbital space and the magnetic moment of each vanadium

is provided by the unpaired eπ
g electron [RS(eπ

g )], i.e., it is
closer to S = 1/2, while the a1g is paramagnetic [PS(a1g)].
Conversely, the second phase 2RS(eπ

g ) at larger J/U is close
to the atomic picture of Fig. 1, hence to our previous GGA+U

results. It lacks antiferro-orbital order and the occupancy of
each a1g orbital is reduced down to � 0.5. However, CN&R
dismissed such mean-field solution because it has a magnetic
moment close to 2μB [S = 1, thence 2RS(eπ

g )], too large
with respect to the value ∼1.4μB that was believed correct
at that time. In addition, that phase is metallic at the value
U = 2 eV they considered. A monoclinic distortion might
drive a transition into an insulator, but they estimated that a
realistic distortion could open a gap ∼ 0.05 eV an order of
magnitude smaller than the experimental one. Nowadays, we
know that the actual spin contribution to the magnetic moment
is ∼ 1.7μB, which thus favors rather the 2RS(eπ

g ) phase than
the AO–RS(eπ

g )PS(a1g) one. In addition, we also know that the
trigonal crystal field splitting does contribute substantially to
the gap opening [7], hence cannot be neglected as CN&R did.

Since CN&R’s seminal papers, all subsequent mean-field
calculations have been done on spin-orbital Heisenberg models
with nearest-neighbor exchange either within the “dimer”
picture [18–21,24] or in the atomic one [20,24]. These
approaches implicitly assume Mott’s physics, i.e., very large U

and J compared to all other Hamiltonian parameters, which we
believe it is poorly justified especially for pure V2O3 that turns
metallic above the Neél temperature. In fact, the outcome of all
those calculations is that the “true” magnetic ordering has the
lowest energy in a very narrow region of the parameter space,
which would make really fortuitous its occurrence in V2O3.
This is in accordance with the general arguments of Sec. I,
according to which the extreme Mott regime would rather
favor “simple” or “layered” magnetic orderings. Indeed, our
GGA+U analysis suggests that the “true” magnetic structure is
stable, and quite robust indeed, as long as U − J � 4 eV. We
thus believe that the mapping from the three-band Hubbard
model onto an effective Heisenberg model evidently loses
important effects that instead are crucial in stabilizing the
“true” order.

One of the reasons often invoked to prefer the Heisenberg
model in the dimer representation over that in the single-site
one is the evidence by Allen [48] that V3+ loses its ion
identity in all V2O3 phases, mainly by nearest-neighbor
correlations. Incidentally, we note that Allen’s results do not
imply that the bond along the dimer direction is better than
any of the other three nearest-neighbor bonds within the
aH-bH plane, unlike what is commonly stated. In reality, a
much simpler interpretation of those results might be that
V2O3 is not enough correlated. Such a conclusion evidently
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TABLE II. Symmetry relations of the hopping amplitudes for
corundum phase V2O3 according to Ref. [13].

δ1 δ2 δ3 δ4

eπ
g1 → eπ

g1 −α − 1
4 α + 3

4 β − 1
4 α + 3

4 β μ

eπ
g2 → eπ

g2 β − 3
4 α + 1

4 β − 3
4 α + 1

4 β μ

a1g → a1g σ σ σ ρ

eπ
g1 → eπ

g2 0
√

3
4 (α + β) −

√
3

4 (α + β) 0

eπ
g1 → a1g 0

√
3

2 τ −
√

3
2 τ 0

eπ
g2 → a1g −τ 1

2 τ 1
2 τ 0

agrees with our finding that the magnetic and structural
properties are faithfully described by GGA+U and suggests
that further neighbor correlations might be crucial to stabilize
the “true” magnetic structure [24]. We observe that next-
nearest-neighbor correlations are partly included already in
the “dimer” representation, but evidently they are not enough.
In Sec. V C, we shall propose an extension of the effective
Heisenberg model with the inclusion of next-nearest-neighbor
antiferromagnetic exchange that we believe is better suitable
to capture the correct physics at the mean-field level.

B. Hartree-Fock results

An obvious starting point is a three-orbital tight-binding
model with only nearest-neighbor hopping for the corundum
phase supplied by a local Hubbard U and a Coulomb exchange
J . Following Ref. [13], all the required hopping amplitudes
for the tight-binding model can be obtained by symmetry
considerations from six parameters, as shown in Table II,
using the bond nomenclature in Fig. 17. To allow comparison
with previous works, we use a set of parameters calculated by
Saha-Dasgupta et al. [23] in an NMTO basis set, which also
reproduce well our GGA band structure. They are summarized
in Table III. In comparison with other parameters obtained by
Refs. [13] and [31], they are characterized by relatively small
out-of-plane hopping amplitudes, μ and ρ, as also found in
Ref. [49], and by slightly different in-plane values, α and
β. According to Ref. [23], the monoclinic distortion would
lead to a change up to 4% of the hopping amplitudes, with
the possible exception of the out-of-plane ones. We shall
therefore not account for those changes and keep using the
corundum structure parameters. The two-particle interaction,
which includes a Hubbard U and a Coulomb exchange that

3
δ

δ
2

δ
4

δ
1

FIG. 17. (Color online) The nearest-neighbor bonds, δi , i =
1, . . . 4, see Table II, following the notation of Ref. [13]. δ4

corresponds to the vanadium dimer, δ1, δ2, and δ3 are the in-plane
bonds.

TABLE III. Tight-binding parameters (in eV) obtained for the
corundum phase V2O3 by Saha-Dasgupta et al. [23]. Nomenclature
according to Ref. [13].

μ ρ −α β σ −τ

0.06 −0.51 0.08 −0.21 −0.03 −0.26

we assume equal to J = U/4, is treated within the Hartree-
Fock approximation. This amounts to considering a trial
wave-function ground state of a noninteracting Hamiltonian
with the same hopping amplitudes and, in addition, with
spin and orbital dependent on-site energies. We shall use an
eight-site supercell, which allows us to describe the “true”
antiferromagnetic state, so that there are in principle eight
sets of Hartree-Fock on-site energies to be determined by
minimizing the average total energy.

Figure 18 shows the Hartree-Fock total energies for each of
the magnetic configurations that are obtained by a suitable
choice of the initial configuration. The comparison with
GGA+U in the corundum phase is in fact not bad, despite
the roughness of the model Hamiltonian, which we could
in principle improve, e.g., accounting for the monoclinic
distortion or using more rigorous schemes as in Ref. [50].
In particular, we cannot compare directly the value of U

used here with that in GGA+U , which already at U = 0
includes correlation effects. Furthermore, since the value of
U controls the effective crystal-field splitting and the size of
the magnetic exchange equivalently, it is not surprising that the
“true” structure remains the lowest energy one. We find that
the situation changes, e.g., by assuming a larger bare crystal
field, favoring the “simple” two-lattice antiferromagnetism.

Bearing in mind the comparatively large differences be-
tween the reported values of the out-of-plane hopping, a first
check of the model accuracy is to estimate the influence
thereof onto the overall phase stability, which is highlighted in
Fig. 19 in the extreme limit of vanishing out-of-plane hopping
parameters, μ = ρ = 0. This calculation is also significant
since one of the main effects of the monoclinic distortion is
tilting and stretching the out-of-plane vanadium dimer bonds,
see Fig. 14, thus further reducing the out-of-plane hopping.
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FIG. 18. (Color online) Phase stability from a Hartree-Fock cal-
culation using the tight-binding parameters obtained by Saha-
Dasgupta et al. [23] for corundum V2O3. Closed circles indicate
metallic, open circles indicate insulating solutions.
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FIG. 19. (Color online) Phase stability from a Hartree-Fock cal-
culation using tight-binding parameters obtained by Saha-Dasgupta
et al. [23] for corundum V2O3, but fixing all hopping perpendicular to
the vanadium planes to 0. Closed circles indicate metallic solutions,
while open circles indicate insulating solutions.

When μ = ρ = 0, the “layered” and “simple” orderings are
obviously degenerate, but the “true” one is still stable up to
large values of U , although with a smaller energy difference.
This suggests that the reason for the stability of the “true”
structure is primarily in the in-plane physics. The out-of-
plane hopping further stabilizes this phase, at the same time,
destabilizing the “layered” structure compared to the “simple”
one.

The occupation numbers of the three orbitals on each
vanadium site, displayed in Fig. 20, show a very similar
behavior to the GGA+U results of Fig. 13, with the exception
of the small-U nonmagnetic metal phase. In the intermediate
(unphysical) antiferromagnetic metallic regime, one can even
see a slight increase of the majority-spin a1g occupations, but
a sharp decrease at the metal-insulator transition reveals again
the scenario in which the two electrons per site occupy the
eπ
g orbitals, making the a1g orbitals practically empty. Note

that this orbital polarization turns out to be stronger than in
GGA+U , which can be attributed to the fact that the total
occupation of the Hartree-Fock model is kept fixed at 2, so
that no contributions of, e.g., neighboring oxygen atoms can
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FIG. 20. (Color online) Orbital occupations in the “true” antifer-
romagnetic phase from Hartree-Fock as a function of U . Triangles
pointing up indicate the majority-spin channel, triangles pointing
down the minority-spin channel. NM, AFM, and AFI stand for
nonmagnetic metal, antiferromagnetic metal, and antiferromagnetic
insulator, respectively.
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FIG. 21. (Color online) Hartree-Fock density of states of the
nonmagnetic metal at U = 0 and the “true” antiferromagnetic
structure in the insulating regime at U = 1.5 and 2.5 eV.

occur. How to adapt the occupation numbers to compare with
experimental findings is shortly discussed in Ref. [7]. We
mention that in the insulating regime we also found metastable
solutions that correspond to the S = 1

2 scenario of CN&R
orbitals. However, we were unable to find a set of parameters
for which such a solution becomes the global energy minimum.
Typical energy differences between S = 1 and 1

2 solutions for
realistic parameters lie between 0.25 and 0.3 eV per vanadium
atom.

Furthermore, the aforementioned splitting of the eπ
g orbitals

shows up also in the “true” antiferromagnetically ordered
phase with hopping parameters of the corundum structure,
as opposed to the “layered” and “simple” ordering. This is
a further evidence that the magnetic order is prone to the
structural distortion. We highlight that such a splitting is
uniform within all the eight sites of the supercell, as we
also found by GGA+U . In other words, both Hartree-Fock
approximation and GGA+U predict a ferro-orbital ordering
within the eπ

g manifold, unlike the antiferro-orbital one found
in Ref. [13], the previously mentioned AO–RS(eπ

g )PS(a1g)
phase.

In Fig. 21, we show the density of states of the nonmagnetic
metal at U = 0 and of the “true” antiferromagnetic structure in
the insulating regime at U = 1.5 and 2.5 eV. We observe that
U = 1.5 eV is already enough to open a gap of the right order
of magnitude between eπ

g and a1g states, unlike what was found
by CN&R without including any trigonal crystal-field splitting.
Indeed, the latter is amplified by the Coulomb repulsion and
can drive a transition into an insulator by emptying the a1g

orbital. This is evident by the Hartree-Fock on-site energy
terms, shown in Fig. 22, which display a large increase of
the eg-a1g crystal-field splitting with increasing value of U ,
especially for the majority spin, whereas all three orbitals are
basically unoccupied for the minority spin. Also the splitting
of the eg orbitals is visible, which amounts to the relatively
large value of 30 meV for the majority spin in the region of
realistic parameter values. We note that the lowering of eπ

g1
with respect to eπ

g2 follows from our choice of a specific “true”
magnetic order among the three equivalent ones allowed by
the original C3 symmetry.
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FIG. 22. (Color online) Differences of the on-site energy terms in
the “true” antiferromagnetic phase from Hartree-Fock as a function
of U . Triangles pointing up indicate the majority spin channel,
triangles pointing down the minority spin channel. NM, AFM,
and AFI stand for nonmagnetic metal, antiferromagnetic metal, and
antiferromagnetic insulator, respectively.

In conclusion, even the Hartree-Fock approximation to a
three-band Hubbard model with realistic hopping parameters
reproduces the correct magnetic structure and indicates the
tendency towards a spontaneous monoclinic distortion. The
insulating phase is stabilized at lower values of U than within
GGA+U . This is not surprising due to the absence of a pos-
sible GGA+U -like double-counting correction, which therein
causes a downward shift of the vanadium 3d states, leading,
typically, but not always [51], to increased hybridization with
the lower-lying oxygen 2p states.

C. Role of the a1g orbital

Within both GGA+U and Hartee-Fock the effect of U is
to increase repulsion between occupied and unoccupied states,
hence between majority and minority spins and between eπ

g and
a1g orbitals. Therefore, at large enough U , the a1g orbital can be
discarded and one expects a two-sublattice antiferromagnetic
order to prevail. This is indeed the case, see Fig. 11. It thus
follows that the a1g orbital, which is indeed depleted but not
completely at realistic values of U − J , must play a role to
stabilize the “true” magnetic ordering. We argue that such a
role is to provide magnetic frustration. We already mentioned
that the effective Heisenberg models describing nearest-
neighbor coupled “dimers” [12,18–21] already account for
some of further-neighbor correlations, specifically between
two next-nearest-neighbor vanadium atoms lying on adjacent
planes. However, our Hartree-Fock result with vanishing out-
of-plane hopping amplitudes suggests that further neighbor
correlations within the plane are equally important.

Let us imagine that the effective crystal-field splitting,
enhanced by U , is large enough that we can treat the hopping
τ , see Table III, between eπ

g and a1g in perturbation theory.
Let us focus on the vanadium atom drawn as a large circle
in Fig. 23. At second order, τ induces next-nearest-neighbor
eπ
g -eπ

g hopping terms. They are shown as light blue lines in
Fig. 23, and compete against the nearest-neighbor ones, drawn
in dark blue. Note that our “true” antiferromagnetic order
provides an optimal number of antiferromagnetically coupled
“light blue” bonds. If we also take into account the large direct

FIG. 23. (Color online) Illustration of the magnetic ordering (dif-
ferent spin directions as light red and dark red) and of the different
relevant hopping processes from the central atom shown as a large
circle. Besides the nearest-neighbor eπ

g -eπ
g direct hopping, dark blue,

we draw the a1g-mediated next-nearest-neighbor ones: light blue in
the hexagonal plane and green between planes. Bold green lines
denote that two independent paths produce the same hopping process.

a1g-a1g hopping along the c axis, ρ in Table III, next-nearest-
neighbor eπ

g -eπ
g hopping processes between adjacent planes

are generated, see green lines in Fig. 23, where the bold ones
indicate that there are two different paths contributing to that
process. As we previously said, only the latter processes are
taken into account by the Heisenberg model of dimers coupled
by nearest-neighbor exchange constants. Note again that the
optimal number of antiferromagnetic “bold green” bonds,
assuming “true” in-plane order, is given by ferromagnetic
dimer bonds.

If we could use these hopping elements to derive an effective
S = 1 Heisenberg model, we would find on each plane
both nearest-, J1, and next-nearest-, J2, neighbor exchange
constants. In reality, a rigorous approach should include,
at the same order in 1/U , not only the second-neighbor
exchange generated by the next-nearest-neighbor hopping
process described above, an exchange sometimes called
“supersuperexchange” [47], but also high-order frustrating
exchange processes [52,53], as well as the reduction of the
nearest-neighbor antiferromagnetic J1 in accordance with the
Kanamori-Goodenough-Anderson rules, see, e.g., Ref. [54].
However, our scope here is just to highlight that the “true”
magnetic order may naturally arise from a sizable J2 antifer-
romagnetic exchange, not to determine precisely the latter as
well as J1. The phase diagram of the S = 1/2 J1-J2 Heisenberg
model on the honeycomb lattice is relatively well known.
[55–57] The two-sublattice antiferromagnet is stable for J2 �
0.2J1. For 0.2 � J2/J1 � 0.4, there seems to be no magnetic
order. Finally, for J2 � 0.4J1, the magnetic order is exactly the
“true” antiferromagnet, shown in Fig. 23. We cannot exclude
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FIG. 24. (Color online) Fitted next-nearest-neighbor in-plane
hopping parameters ξ and η of a simplified two-orbital model. See
text for details.

that the larger spin S = 1 and the coupling between the planes
could stabilize in our case the “true” antiferromagnet even in
the formerly disordered region 0.2 � J2/J1 � 0.4.

In order to give at least a rough estimate on the amount of
frustration brought by the a1g-mediated next-nearest-neighbor
hopping in terms of the value of J2, we make use of a
more simple model, constructed as follows: we take a two-
dimensional honeycomb plane with eπ

g orbitals only as a basis
of a tight-binding calculation. The nearest-neighbor hopping
of this model shall be equal to the previous calculations,
i.e., parametrized by the same parameters −α = 0.08 eV
and β = −0.21 eV. Furthermore, we add six next-nearest-
neighbor hopping amplitudes per site, which obey the same
symmetry relations as the nearest-neighbor ones (the threefold
rotational symmetry), and can therefore be parameterized by
two parameters in the same way as done for α and β in Table II.
We call these two parameters ξ and η, where ξ corresponds to
the horizontal eπ

g1 → eπ
g1 hopping (similar to −α) and η to the

eπ
g2 → eπ

g2 hopping in the same direction (similar to β). When
the crystal field in our original model is large enough, �1.2 eV,
the upper a1g-derived bands are well separated from the lower
eπ
g -derived ones near the Fermi energy. We can therefore use

the parameters ξ and η directly to fit the band structure of
this simple two-band model to the eπ

g -derived bands of the
original model. The result is shown in Fig. 24 as a function
of an artificial crystal-field splitting of the original model. As
expected, ξ and η decrease in absolute value as the crystal field
increases. However, for not too large crystal-field splitting, ξ

and η have the same order of magnitude as the nearest-neighbor
hopping parameters α and β. Now assuming a hypothetical

J1-J2 Heisenberg model on this fitted two-band dispersion,
ξ and η give us an estimate of the next-nearest-neighbor
exchange constant J2 thereof. It can thus at least be assumed
to be in the same order of magnitude as the nearest-neighbor
exchange J1. Furthermore, it becomes plausible that it lies in
the desired region J2 � 0.4J1 when extrapolating, knowing
that the crystal field is in general not so large that eπ

g and a1g

bands are completely separated.
The above calculation is evidently very rough. However,

we believe that the overall scenario is correct: the a1g orbital,
although pushed by relatively strong correlations above Fermi
in the insulating phase, as first noted by DMFT in Ref. [7], still
heavily contributes to stabilize the “true” magnetic structure.

VI. CONCLUSIONS

In this work, we have shown that the unusual antiferro-
magnetic ordering and the monoclinic structural distortion
in the low-temperature phase of V2O3 are to great extent
unrelated phenomena, which simply reinforce each other when
they both appear. In particular, we find that the nonmagnetic
GGA solution is unstable against a monoclinic distortion,
not in disagreement with the recent discovery of a high-
pressure nonmagnetic monoclinic phase of V2O3 [30]. GGA
calculations suggest that such a monoclinic instability is driven
by a Fermi surface nesting that increases by electron doping
and weakens by hole doping, in accordance with what is
observed by chromium versus titanium doping.

As far as the unusual magnetic ordering is concerned,
we have identified as main driving mechanism the magnetic
frustration brought by the a1g orbitals, which are barely
occupied due to the correlation-enhanced crystal-field split-
ting, yet they contribute to a sizable next-nearest-neighbor
antiferromagnetic correlation.

All these features, including the emergence of magnetic
anisotropy compatible with the observed orientation of mag-
netic moments, are well captured by an independent particle
scheme as GGA+U in the intermediate-U regime and Hartree-
Fock approximation.
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