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The possibility of realizing bosonic fractional quantum Hall effect in ultracold atomic systems suggests a new
route to producing and manipulating anyons, by introducing auxiliary bosons of a different species that capture
quasiholes and thus inherit their nontrivial braiding properties. States with localized quasiholes at any desired
locations can be obtained by annihilating the auxiliary bosons at those locations. We explore how this method
can be used to generate non-Abelian quasiholes of the Moore-Read Pfaffian state for bosons at filling factor
v = 1. We show that a Hamiltonian with an appropriate three-body interaction can produce two-quasihole states
in two distinct fusion channels of the topological “qubit.” Characteristics of these states that are related to the
non-Abelian nature can be probed and verified by a measurement of the effective relative angular momentum of
the auxiliary bosons, which is directly related to their pair distribution function. Moore-Read states of more than
two quasiholes can also be produced in a similar fashion. We investigate some issues related to the experimental
feasibility of this approach, in particular, how large the systems should be for a realization of this physics and to
what extent this physics carries over to systems with the more standard two-body contact interaction.
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I. INTRODUCTION

Emergent particles in two-dimensional systems can, in
principle, transcend the dichotomy of boson and fermion.
The existence of the exotic statistics stems from the fact
that winding one particle around another in two dimensions
is topologically inequivalent to a process in which none of
the particles move at all. Thus, braiding particles does not
necessarily bring the system back to the same state. Particles
obeying fractional braid statistics [1-3] are called “anyons.”
For these particles, the wave function acquires, when one
particle winds around another, a phase that is a nonintegral
multiple of 2. Since the product of phase factors is a commu-
tative operation, this type of statistics is called Abelian braid
statistics, associated with one-dimensional representations of
the braid group. Non-Abelian statistics can arise if there is
a degenerate set of wave functions for quasiparticles at fixed
positions. Braiding of some particles around the others then
corresponds to a unitary matrix transformation in the space of
such states. If such matrices are noncommutative, the particles
are said to exhibit non-Abelian statistics. Systems whose
excitations satisfy non-Abelian braid statistics are of interest
both for a demonstration of this physics, and because of their
potential application in storage and processing of quantum
information [4]. If such degenerate states with quasiparticles at
fixed locations are separated from the rest of the spectrum by an
energy gap, then for sufficiently slow perturbations, dynamics
is restricted to within such a degenerate subspace. Any local
perturbation has no nontrivial matrix elements within this
degenerate subspace, and therefore braiding of quasiparticles
is essentially the only way to perform nontrivial unitary
operations on this subspace at low energies, immunizing the
system against decoherence [5].

Of the many theoretical proposals for the realization of
non-Abelian anyons [6—16], the fractional quantum Hall
(FQH) state of electrons at filling v = % is perhaps the most
promising. It is believed to be described by the Moore-Read
(MR) Pfaffian wave function [6], which represents a chiral
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p-wave paired state [17] of composite fermions [18-20].
Numerical studies have shown support for this interpretation
of the % FQH state: the exact Coulomb ground state at v = % in
the second Landau level (LL) is in the same universality class
as the MR state for systems of up to 18 electrons [21-23], and
the MR wave function has a significantly lower energy than
the spin-polarized or the spin-unpolarized composite-fermion
Fermi sea state in the second LL [24]. Abrikosov vortices
of a chiral p-wave superconductor carry Majorana fermions
and obey non-Abelian braid statistics [17], and it has been
proposed that the quasihole excitations of the MR state
also exhibit non-Abelian statistics [6], with 2n quasiholes
at fixed positions spanning a 2"~!-dimensional degenerate
space [25].

Quantum Hall interferometry [26-32] in the solid-state
devices has been the best explored among the proposals for
demonstration of non-Abelian statistics. It relies on the idea
that the transport of quasiparticles in the edge currents of a Hall
bar is equivalent to braiding them around the quasiparticles
in the bulk, and the phases acquired in such braiding pro-
cesses can be detected through interference between currents
along different paths. Experimental progress has been made
toward the detection of such interferences [33—-38], but the
interpretation of the experiments in terms of non-Abelian
anyons has not been unambiguous. Theoretical work has
suggested conceptual difficulties stemming primarily from the
“volatility” in the location of the edge and significant effort
has gone into understanding all the effects that determine the
edge fluctuations and into extracting signals of non-Abelian
statistics [39—44].

In this work, we show that some of these problems can
be overcome, in principle, in cold atom systems. Bosonic
atoms are neutral, but they behave as charged bosons in a
magnetic field when subjected to rotation because, formally,
rotation plays the same role as a perpendicular magnetic
field [45—-47]. The filling factor is then given by the ratio of
boson density to vortex density. At sufficiently rapid rotation
(i.e., low filling factor), neutral bosons can be driven into the
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strongly correlated regime of the quantum Hall effect [46-56].
Another way to mimic magnetic field in neutral atomic systems
is to generate artificial gauge potentials using atom-light
interaction [57,58]. Quantized vortices have been produced
with various experimental techniques in atomic Bose [59-64]
and Fermi gases [65], and extremely high vorticity has been
achieved [66—68]. Progress towards producing the fractional
quantum Hall effect (FQHE) conditions has been made by
employing an adiabatic pathway to transfer the atom clusters
from zero angular momentum into a ground state of any
higher total angular momentum L [69,70]. In addition to
the schemes described above, there have been many other
proposals [71-80] aiming to realize FQHE or analogous
behavior in lattice models, with ultracold atoms confined in
optical lattice [81-83]. In this paper, we focus on continuum
atomic gases in two dimensions. While FQHE has not been
produced in such systems so far, we will assume that it is
possible. We will also assume that it is possible to engineer
arbitrary two- or three-body interactions in cold atom systems.
A method for realization of three-body interaction has been
proposed by Roncaglia et al.[84] recently with implementation
requirements within present or planned technologies.

One advantage of cold atoms systems is that it is possible
to introduce auxiliary bosons of a different species and
manipulate them [85-89]. We have shown in a previous
paper [90] that for appropriate interactions, the auxiliary
bosons bind quasiholes of the quantum Hall droplet, and thus
serve as “place holders” for quasiholes. They also inherit the
fractional statistics of the quasiholes. One can thus imagine
manipulating the quasiholes by manipulating the auxiliary
bosons. In this paper, we construct a three-body interaction that
accomplishes the same for quasiholes obeying non-Abelian
braid statistics. We demonstrate that a specific choice of
three-body interaction can be used to prepare states of two
quasiholes in either of the two different “fusion channels”
labeled 1 or v, which differ in their topological character and
serve as the elementary qubit of a putative topological quantum
computer based on the FQHE. (Swapping the two states can be
achieved by braiding a third quasihole around one of the two
quasiholes.) The two states can be distinguished through the
different Berry phases produced when one quasihole encircles
another.

Another advantage of cold atom systems is that signatures
of non-Abelian statistics can be seen in the effective relative
angular momentum of a pair of auxiliary bosons [90]. We
show that the fractional part of the relative angular momentum,
which can be deduced from the pair correlation function of
the pair of auxiliary bosons, corresponds to the fractional
Berry phase accumulated when one quasihole is taken around
another. Using explicit numerical calculation of the pair corre-
lation function, we show that the fractional angular momenta
indeed correctly reflect the fractional Berry phases associated
with different fusion channels as predicted [4] by conformal
field theory (CFT). This demonstration of nontrivial statistics,
while still being at the level of a thought experiment, has the
advantage that all the physics happen away from the edge of
the droplet. Another aspect of non-Abelian excitations are the
multiplicities of states with excitations at fixed locations. Such
degeneracies are reflected in the states with auxiliary bosons
carrying quasiholes.
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While the situation is relatively clear, at least theoretically,
for a model three-body interaction, such an interaction will not
be the easiest to implement in cold atom systems. Fortunately,
it has been found [49-52,91] that even bosons with two-body
contact interaction exhibit the chiral p-wave paired Pfaffian
state at v = 1. Our detailed studies show, however, that the
applicability of most of the above ideas does not extend to a
system of bosons with two-body contact interaction, at least for
system sizes available in our studies. This is perhaps related to

the studies [92] of the % state for electrons that show that
5

the excitations of the 3 state for the Coulomb interaction
do not have a one-to-one correspondence to the excitations
of the three-body interaction for small systems amenable to
numerical studies. We note that quasiparticles in the MR state
have also been described theoretically in a way analogous to
the quasiholes [93-95]. This work focuses on the quasiholes
of the MR state.

There have been many other theoretical approaches
[96-100] towards the goal of engineering anyons in quantum
Hall regime and probing their peculiar statistics with the help
of ultracold atoms and optical control. Paredes et al. [96]
proposed to create quasiholes by focusing laser beams onto
the atomic cloud and braiding them by adiabatically moving
the laser beam. Julia-Diaz et al. [98] and Gral} et al. [99]
demonstrated by calculating the Berry phase that Abelian
fractional statistics manifest in very small systems, consistent
with our previous results [90]. Kapit er al. [97] reported
on a numerical experiment to test the non-Abelian braiding
properties of lattice bosons, which could be implemented
with cold atoms in a deep optical lattice and an artificial
gauge field. Different from the above approaches that require
time-dependent potential to braid the quasiparticles, Cooper
and Simon [100] proposed to demonstrate Haldane’s fractional
exclusion statistics of quasiholes in the bosonic Laughlin state
through spectroscopic measurements.

The organization of the paper is as follows. In Sec. II, we
review the relevant ideas regarding the MR Pfaffian state and its
quasihole excitations and construct wave functions describing
the two-quasihole qubit. We then construct a three-body
Hamiltonian in a system of N majority bosons and two
auxiliary bosons in Sec. III which produce the two-quasihole
qubit states as its exact eigenstates. Assuming a system in such
a qubit state, we demonstrate in Sec. [V how the non-Abelian
statistics can be seen by measuring the pair correlation function
of the pair of auxiliary bosons. We further study how to produce
2n-quasihole states in Sec. V and discuss the experimental
feasibility of our proposals in cold atom systems in Sec. VI.
Finally, we conclude in Sec. VII.

II. BACKGROUND

We begin with a review of the MR Pfaffian ground-state
wave function [6], the many-quasihole states, as well as the
explicit qubit representation for four-quasihole states [25].
We show that these wave functions can be expressed in a
bipartite form. In particular, two distinct two-quasihole wave
functions of the bipartite form are shown to be related to the
four-quasihole qubit states with two of the quasiholes sent to
infinity.
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A. Moore-Read state and quasiholes

Moore and Read [6] constructed a set of trial wave
functions for various FQH states using the analogy between
the correlators in various CFTs and the incompressible FQH
states. The MR state of the form

\I’f/fm H(Z’ - Z/)mPf<

l<]

)e > ‘42‘2 (1)

-z

has a filling fraction v = % where m is even for fermions
and odd for bosons. Here, z; = x; + 1y; label the complex
coordinates of the particles, and £ = \/hc/eB is the magnetic
length. This state represents a chiral p-wave superconducting
state of composite fermions [17]. It is also the highest density
exact zero-energy eigenstate of a three-body repulsive contact
interaction, discussed in the following.

Moore and Read also suggested half-flux quantum excita-
tions of the Pfaffian state described by the trial wave function

Iz,I2

Wogh o [ [(i — 2))"P(M)e™ % 7
i<j

(zi = n)(z; —n2) + (zi —n2)(zj — 1)

Zi —Zj '

where M;; = (2)

This state has two quasiholes localized at n; = x| + 1y and
n2 = x5 +1y;, each with a charge 5 l (In the following,

we will suppress the Gaussian factor e TG for ease of
notation.)

The wave function for the state consisting of 2n quasiholes
can be constructed by modifying the argument of the Pfaffian

in Eq. (2) as follows [25]:

j_np)(Zj_ntr)-“
Zi—Zj

(zi = na)(zi —mp) ... (2 + @ <—>j).

M,'j:

3)

In this expression, the 2n quasiholes have been divided
into two groups of n each (ie.,, @, B ... and p, o ...).

There are 2((2:,))2 ways of making such a division. Nayak and

Wilczek [25] demonstrated that they span a space of only 2"~
linearly independent states, consistent with the predictions
from CFT. This degeneracy can be understood by noting that
each quasihole supports a Majorana fermion (a half-composite
fermion). Each pair of Majorana fermions in such a state can
fuse in two distinct ways associated with opposite fermion
parity, thus describing a Hilbert space of dimension 2". Taking
into account the fixed parity of the overall wave function, this
produces 2"~ distinct states.

A set of linearly independent basis states {¢F,} for the
space of 2n-quasihole states has been written by Read and
Rezayi [101] as follows:

N-F

r d(z z n)
oratey = 1Al ] [T 2ereira,

i1 =1 CF+2-1 7 ZF+42

where ®(z1,z2,1) =

Z H(Zl — )22 — Nei—p). 4

T€SH, =1
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J is the Jastrow factor, A is the antisymmetrization operator,
and S, is the group of permutations of {1,2,3,...,2n}. For
given locations {7, };_,_,,, of the quasiholes, the possible wave
functions are indexed by an integer F' and a sequence A. F
is an integer of same parity as the number of particles N,
such that 0 < F < n. A is an ordered sequence of F integers
such that A; < A;4; and 0 < A; < n. For example, for 2n =4
quasiholes in even N system, indices (F,)) can take two values
(F =0,A=1[...Dand (F = 2,A = [0,1]). In general, for each
choice of F, there are (;) = #lF)' possible choices of A.
For 2n quasiholes in even N system, there are ) "y .en( ) =
2"=1 states for a given {#;}. With fixed {n;}, the MR quasihole
states shown in Eq. (3) span an identical space as that of
{¢r..}. Each MR quasihole state can be expressed as a linear
combination of the basis {¢F ,}, in which the coefficients are
generally functions of {n;}. These two bases are no longer
equivalent when {#;} represent positions of auxiliary bosons
instead of localized quasiholes, as we will consider later, in
which case only {¢F ,} are valid wave functions because they
are symmetric in the n;’s. (The MR two-quasihole state is an
exception because it is already symmetric under exchange of
m and 1,.)

The above discussion gives the counting for quasihole
states in a system without any edge degrees of freedom or
equivalently in a spherical geometry. In the presence of an
“open” edge, the parity constraint is relaxed because the edge
can accommodate a Majorana fermion. This is in addition to
the purely bosonic excitations which are fully localized at the
edge. In the above-mentioned basis ¢r ;, the upper limits on
values of F and A arise from a hard angular momentum cutoff
representing the edge. These constraints are again relaxed in
the presence of edge degrees of freedom, thus resulting in
increased degeneracy.

Multiple degenerate states with fixed quasihole positions
are necessary for non-Abelian statistics. The simplest case
with such a degeneracy has four quasiholes, whose states form
a two-dimensional Hilbert space [25]. A basis set {¥!, ¥V}
can be chosen following Nayak and Wilczek which has simple
braiding properties:

li[ nﬁ—% (13124

g — __
SCESVATE

a<f

2

Inal”

PR , 5)

x (W(13)04) £ VX W1ay23))e”

where x = 114123/113124 and nyg = 1o — ng. In this expres-
sion,

Vap)po) = H(Zi — z;)"Pf(M)
i<j
where M;; = (@i = 1)@ —np)2j = 1p)Ej = 10) + U < )
i —Zj
(6)

An adiabatic transport of the quasihole 7, around 7,, or of 13
around 74 results in an overall Abelian phase depending on the
state (1 or ¥). In contrast, braiding of either #; or 1, around
either 13 or 14 results in an interchange of the states ¥'! and
WY as a result of the branch cuts in the /x factor. If the two

075116-3



YUHE ZHANG, G. J. SREEJITH, AND J. K. JAIN

T T T T T T T T
@10} .
| 4-quasihole qubit states ]
rey |
I g )
5 051 [CPHI™) .
> | ]
o &
L . ]
0.0 Buls on o m Y . m m— ]
" 1 " 1 " 1 " 1
0 2 4 6 8

minimum |n-n||

(b) ' ' ' "o
0.2 2-quasihole qubit states N
= [ (‘P(l)(2)||‘P(l)(2)-2\P(12)0 )| |
8 01 F -
() e °
> L _
°
OOpP-o-0-—90 9 0o __° _________ ]
1 l 1 l
0.0 0.5 1.0

maximum nl/Ry

FIG. 1. (Color online) (a) The modulus of the overlap between
the four-quasihole qubit states ¥ and WY as a function of the
minimum distance between two quasiholes in each quasihole-position
configuration. The blue squares represent cases when the minimum
distance is either |, — 1| or |3 — 14/, and red squares are other
configurations. (b) The modulus of the overlap between the two-
quasihole qubit states W) and W2 — 2W(12) as a function of
the maximum quasihole position |n;|/Ry where Ry = /2N /v is the
radius of the quantum Hall droplet. In both calculations, the quasihole
positions are chosen randomly, and the system size is N = 60.

states represent a qubit, then such braiding operations serve as
simple gates.

The states W' and WY correspond to conformal blocks of
a correlator in an Ising CFT as described later in this paper.
The quasihole insertion operators correspond to the o fields
and the two states above correspond to the fusion of o () and
o (1) into 1 or i channels.

Based on a plasma analogy, Bonderson, Gurarie, and Nayak
demonstrated that W and W) are orthogonal in the limit
where the quasiholes are far apart from each other [102]. Here,
we directly compute the overlap between the states ¥V and
W) by Monte Carlo technique for many different quasihole
positions (chosen randomly) for a relatively large system N =
60. Note that all the overlaps calculated in this paper are nor-
malized, denoted as (Yil1;) = (W) / /(i W) (9, 107).
Figure 1(a) shows the amplitude of the overlap (W ||\ Ww®)) as
a function of the minimum distance between two quasiholes
in each set of quasihole positions. The calculation shows that
the overlap is zero (within numerical uncertainty) when the
quasiholes are far enough from each other (e.g., |1; — ;| 2 2).
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When two of the quasiholes approach each other, there are two
branches shown in the figure, where the red squares represent
the configurations in which either 1, or 1, is close to either
N3 or 14, and the blue ones indicate 7; is close to 1, or 13 is
close to n4. We thus conclude that the overlap between W
and W) is essentially zero except when 7, or 1, approaches
13 O n4.

B. Bipartite representation and two-quasihole qubit

The Pfaffian wave function can be rewritten in a bipartite
form [103,104]

N2 N2
v, =J"S H(Zzi — ;) l_[(ZZi—l — 22j1)%
i<j i<j
N
7 =] -z (7)

i<j

where S is the symmetrizer over all the complex coordinates
{zi}i=1—n. The relation to the Pfaffian wave function can be
derived with the help of an identity due to Cauchy [105].

Our study focuses on the bosonic Pfaffian states at filling
v =1 (namely m = 1). This wave function is obtained by
symmetrizing two partitions of incompressible states at filling
fraction v = % Quasihole wave functions can be produced by
now inserting a single quasihole into each of these partitions
as follows:

Yo = S[Q%,lqh(ZhZLZs c NP gn(22,24,26 -5 m)].

N/2 N/2
where <I>%q1qh(x] X205 m) = n(x,- —-n) n(x,- — xj)z.
i=1 i<j

®)

The subscript (.. .)(...) of ¥ on the left-hand side indicates the
quasihole coordinates in the two partitions. Specifically, (1)(2)
implies that n; and 7, belong to different partitions, as opposed
to (12)() that refers (described below) to a state in which
both quasiholes reside in the same partition. We demonstrate
in Appendix A that this wave function () is exactly the
same as the MR two-quasihole wave function written in a
Pfaffian form as shown in Eq. (2). The bipartite representation
immediately suggests another two-quasihole state in which the
two quasiholes are placed in the same partition:

N2 N2
Wi = S [ [ai = n)zai = m) [ [zai — 22)°
i=1 i<
N2
X H(Zziq —22j-1)% ©
i<j

This corresponds to the Pfaffian wave function for the two-
quasihole state (see Appendix A for details):

Wi =Pf<(zi — )@ —m)+ (@ < ])> e -2

Zi —Zj

i<j

(10)
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The two different two-quasihole states W)y and W12y
are related to the two different four-quasihole states in Eq. (5).
More precisely, the space spanned by these two two-quasihole
states can be obtained by taking two of the four quasiholes in
Eq. (5) to infinity by setting n3 = r, ns = re'’ and taking the
limit r — oo. In this limit, we find (see Appendix B)

I
v — “I’éqil = (n —m)"* Yy,
W) 5/8 an
W — Wi = (1 — )P (W) — 2Wa2)0)-

Therefore, "IJ(])(2) and ‘-IJ(])(Z) — 2\1—’(12)() form a two-quasihole
representation for the qubit states. Note that these reduced
states do not transform into one another under any braiding
operation; braiding 7 around 7, simply produces an Abelian
phase. Nevertheless, the fusion properties of the n; and 1,
quasiholes remain the same as those in the four-quasihole
qubit system: n; and n, fuse into identity 1 in W(;y), while in
Way2) — 2¥2) they fuse into ¥. The fusion properties are
reflected in the different Berry phases associated with braiding
one quasihole around another, which we discuss in detail in
Sec. IV. The two-quasihole states thus form a two-level system,
i.e., a qubit. The state can be flipped by introducing a third
quasihole that braids around one of the two quasiholes. This
is exactly the picture of the constricted Hall bar as a quantum
bit for making fractional quantum Hall quantum computer
[26-28].

In a finite system, the two quasiholes that are taken to large
distances actually reside at the edge of the sample and thus the
two wave functions differ at the edge of the system. This can
also be seen when the above wave functions are realized in the
spherical geometry. When placed on a sphere with a flux of
2Q = m(N — 1), the wave functions W1y, (W(12))) has two
additional quasiholes in opposite partitions (same partitions)
at the south pole. Additional edge excitations are possible but
do not influence the properties of the bulk quasiholes.

As discussed above, the four-quasihole qubit states are
orthogonal for well-separated quasihole positions. The same
is true for the two-quasihole qubit states W(j)2) and W(1y2) —
2W(12). For relatively large system size (N > 60), we have
performed many trial computations for different sets of n;
positions, and found the overlaps are essentially zero except
when a quasihole is located close to the edge of the FQH
droplet. The results are shown in Fig. 1(b). Considering that
n3.4 actually reside at the edge, the results indicate that the
overlap is nonzero when either of 1, and 7, is close to 13 or 14,
and is zero otherwise, independent of the distance |1, — 12|.
This is consistent with the results for the four-quasihole qubit
states shown in Fig. 1(a).

III. PRODUCING THE QUBIT STATES WITH
THREE-BODY INTERACTION

A. Quasiholes versus auxiliary bosons

The previous section discussed the nature of localized
quasihole excitations of the Pfaffian state. In describing the
quasiholes, the locations are mere parameters. In our earlier
work [90], we proposed to introduce a pair of auxiliary bosons
into a background FQHE state of bosonic atoms. The auxiliary
bosons capture localized vortexlike quasihole excitations of
the quantum Hall state and then behave as particles with

PHYSICAL REVIEW B 92, 075116 (2015)

fractional braid statistics. In fact, a system with two species of
particles is a natural platform for producing quasiholes, where
the particles of one species (namely the auxiliary bosons) serve
as “place holders” for the quasiholes of the other species. In
other words, the quasiholes of the FQH state are enslaved
by the auxiliary bosons. This idea can be illustrated with
wave functions. For example, the two-quasihole state W(jq)
in Eq. (8) turns into a wave function describing two species
of bosons by changing the quasihole-position parameters 7;’s
into dynamical coordinates and including a Gaussian factor
for them:

N2 N2 N2
Yy = SH(ZZi — ) H(ZZi - sz)z l_[(Zzi—l —12)
i=1 i< i=1
N2
X H(ZZFI - 22171)2674%2(2&‘ i+ Init),
i<j

12)

where § symmetrizes the z bosons. Here, the 1; bosons and the
z; bosons share the same magnetic length as reflected in the
Gaussian factor. Note that W(;y) is already symmetric under
exchange of n; and n,, making it a valid wave function even
when the 7;’s are thought of as auxiliary boson coordinates.
That is also true for W2, but not for MR quasihole states
with 2n > 2. In the following, we will use W1y, and W12
to denote the corresponding wave function for two species of
bosons, which is slightly different from the wave function for
localized quasihole states in Eqs. (8) and (9), but the meaning
should be clear from the context.

We ask if there exists a Hamiltonian that produces the
qubit states W(y2) and W12y — 2W(12)) as its exact eigenstates.
Before proceeding to that question, we first study the orthogo-
nality and normalization properties of the two-quasihole states.

B. Orthogonality of two-quasihole qubit states

We have written two different two-quasihole states with the
help of bipartite representation in the last section as W)y and
W(12)0. In order to study their properties in the thermodynamic
limit, we calculate the ratio of the normalization factor of the
wave functions W(1y2) and W(j2)(:

(Yo Yme)

; (13)
{(WazolWazo)
as well as the normalized overlap
v v
Yo Wazo) (14)

V0o o) (Yaa Yazo)

for different system sizes. Note that we have taken the 7;’s
as the dynamical coordinates of the auxiliary bosons in all
the calculations. Figure 2(a) shows that the values of the two
quantities decrease as the number of particles N increases.
The plot of the natural log of the quantity versus N in
Fig. 2(b) indicates that both Egs. (13) and (14) decrease
exponentially with N. In the limit N — 00, W(j2)) dominates
in the expression W(1y2) — 2W(12)) and is orthogonal to W(1y0).
We thus conjecture that in the thermodynamic limit, the second
qubit state \Ij(l)(Z) — 2\1—’(12)() reduces to \If(lz)().
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FIG. 2. (Color online) (a) Black square represents the ratio of
the normalization factor of the two different two-quasihole wave
functions as shown in Eq. (13) and red circle represents the normalized
overlap between them as shown in Eq. (14) as a function of system
size N. (b) The natural log of the corresponding quantities as a
function of N. In panels (a) and (b), we use ||;]|* to denote the
normalization constant (v;|v;). (c) The normalized overlap between
the two-quasihole qubit states (W) [[W1y2) — 2W2)0) as a function
of N. In all panels »;’s have been taken as dynamical coordinates in
Monte Carlo calculation.

We also compute the normalized overlap between the two
two-quasihole qubit states:
(Y Yae) —2%a0)
V¥l Yoe) (Yoe) — 2% Poe) — 2¥a2)
15)

Figure 2(c) shows that the overlap is very small (<0.07) even
in small system (N = 6) and becomes essentially zero for N >
30. This result implies that W(;y2) and W)y — 2W(12)() serve
as a good orthogonal basis for the twofold-degenerate space of
two quasiholes. This result will be useful in the next subsection
where we show that both W(j)2) and W(1y0) — 2W(12) are exact
zero-energy eigenstates of a certain three-body Hamiltonian.

C. Model Hamiltonians

The Pfaffian ground state is known to be the exact
zero-energy state of the repulsive three-body interaction
Hamiltonian [103]

N
H=Vy Y 8 — s — 7. (16)

i<j<k
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FIG. 3. (a) Energy spectrum obtained by diagonalizing the
interaction V = V.., + V,;, within a Hilbert space formedby N = 8z
bosons and two 7 bosons with L = 32 and l?“‘“) = 12. There are two
zero-energy states in the spectrum. (b) Energy spectrum obtained by
adding the 0.01V,,, term to the interaction in (a) and diagonalizing
the interaction within the same basis.

We consider a system of two species of bosons: N z bosons
and two 7 bosons, and take the three-body interaction to be
identical for all particles. In this sense, we write the interaction
as V = V... + V. + V.. We perform exact diagonalization
within the basis of total angular momentum L = N2/2,
corresponding to the two-quasihole states. Note that Wy«
and Wiy have the same total angular momentum L, but
different maximum single-particle angular momentum for the
z particle: [$) = N — 1 and N, respectively. Here and in the
following, we consider an N = 8 system and take the cutoff on
single-particle angular momentum /.« to be 12 for both z and
n particles. (In fact we have tested that, as long as lax > N,
the value of /;,,x does not affect the zero-energy states obtained
by diagonalizing any of the three-body Hamiltonian we have
considered here and following in the two-quasihole case.) The
exact energy spectrum shows only one zero-energy state under
this interaction, which is exactly W(jy.).

In order to produce W2, we observe from the bipartite
representation that the interaction V = V.. + V_,, annihilates
the wave function of W) as well as W;. We thus
diagonalize V = V., + V., in the same basis as above and
obtain two zero-energy states in the spectrum, shown in
Fig. 3(a). The twofold zero-energy subspace is spanned by
W12)) and W(j)2) because either of the zero-energy states can
be expressed as a linear combination of Wiy and W(jy).
We then use a small V,,, interaction to lift the degeneracy.
Particularly, we diagonalize the Hamiltonian

V =V + Vi +0.01V,,,, an

and obtain a low-energy doublet including one exact zero-
energy state and one close-to-zero-energy state as shown in
Fig. 3(b). The zero-energy state is still exactly W), and the
close-to-zero-energy state approximately corresponds to the
orthogonal state in the twofold zero-energy subspace. This
approximation should become exact when the strength of V.,
interaction approaches infinitesimally small value. Here, for
N = 8, (1) is not orthogonal to W) although they become
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orthogonal at thermodynamic limit as discussed in Sec. II B.
On the other hand, the linear combination \If(l)(z) — 2\11(12)()
is essentially orthogonal to W(j)) even in relatively small
systems as we have shown in Fig. 2(c). Hence, the upper
state of the low-energy doublet is essentially the second
two-quasihole qubit state W(jy2) — 2W(12)y. In the limit of
infinitely small V,,, and large N, the first excited state becomes
exactly W)y — 2¥(12). We thus demonstrate that the qubit,
namely, the two-level system formed by two quasiholes, can be
produced with the three-body Hamiltonian V = V. + V_,,
and each single-qubit state can be precisely obtained by
including a small V,,, interaction that lifts the degeneracy
between the two states.

IV. FRACTIONAL BRAID STATISTICS

A. CFT representation of states

We briefly outline the derivation of the two qubit states for
four quasiholes and their braiding properties. By generalizing
the analogy between wave functions for simple FQHE states
and chiral correlators in certain conformal field theories,
Moore and Read proposed the Pfaffian wave function, which
can be written as a correlator within an Ising CFT consisting of
three primary fields 1,¥,0 of conformal dimensions 0, %, 1L
respectively, together with a bosonic field ¢ [6]. The real
fermion/boson forming an FQHE state is identified as Ye P/m ,
which is fermionic if m is even and bosonic if m is odd. The
Pfaffian wave function made up of N such fermions/bosons
can be written as the the correlator of N such operators. The
quasihole operator is chosen to be o ¢'¢/ 2Vm which satisfies the
requirement that the wave function be single valued in particle
coordinates and have the smallest charge (Q = 1/2m). A wave
function with localized quasiholes is obtained by inserting the
quasihole operators in the correlator. In particular, the wave
function for a four-quasihole state of a system with (even) N
fermion or boson can be written as

Wygh = (o (1) . ..oV (z1) - .. ¥(zn)

X TPt im0
X ei\/rﬁqu) ce ei‘/n?qﬁ(ZN)e_ifdzz«/ﬁPW(Z)). (18)

The above correlator decomposes into two conformal blocks
of (coogaoy...¢) corresponding to the two possible ways
that the four o operators can fuse to give 1 under the fusion
rules of the Ising CFT [106]. The fields o (n,)o (1) and the
fields o(n3)o(n4) can each fuse to a 1 or ¢ fields and the
two choices result in the two wave functions W! and WY,
Exact form of the conformal blocks can be obtained through
bosonization [25,107]. The explicit wave function given in
Eq. (5) can be obtained with the help of the identity [106]

(eialtl)(m) o eiaNd)(zzv)) — H(Zi _ Zj)aiaj.

i<j

19)

Charge neutrality required in the above equation is ensured
by the smeared background charge [6]. It has been conjec-
tured [25] that if the wave functions of states are written
in the basis specified by the conformal blocks, the Berry
phase vanishes: all braiding properties are manifested in the
basis functions. This can be understood using the plasma
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analogy [102,108] and has been numerically verified using
Monte Carlo methods [109]. Thus, we can now read off the
braiding properties directly from the basis wave functions.
As we have discussed in Sec. II B, the four-quasihole qubit
states W1¥) reduce to the two two-quasihole states [shown in
Eq. (11)] if two of the quasiholes are sent to infinity. Since
the Berry phase matrix vanishes in this basis, the phase gained
when braiding n; around 7, should be equal to

2

fOI' \I-’( D(2)» (20)

107

for \ll(l)(Z) - 2\1‘(12)(). (21)
Here, W()2) and W(12)) describe the quasihole states rather
than the states with two species of bosons. However, since
bosons do not produce any additional Berry phases (modulo
2m) for exchanges or windings, the bound state of a boson and
a quasihole should obey the same fractional statistics as the
quasihole. We verify these results numerically in the following
sections.

B. Effective relative angular momenta

The possibility of fractional relative angular momentum
was introduced in a previous work [90] in the context of
quantum Hall states at filling fractions v = 2, which we
briefly review here. The relative angular momentum of a
pair of bosonic particles in the lowest Landau level (LLL)
is quantized to even numbers. It was shown that if the same
bosons bind anyonic quasiholes of a quantum Hall droplet, the
boson-anyon bound states exhibit fractional effective relative
angular momenta whose values are directly related to the
Abelian fractional statistics of the anyons. It was demonstrated
that the binding of a boson to an anyonic excitation can
be achieved with a contact interaction between the auxiliary
bosons and the majority bosons forming the quantum Hall
droplet. It was shown that the fractional angular momentum
results in a “quantization” of the separation R between the
auxiliary bosons given by the expression R? ~ 2M,+£ > where

My =M —v and £? = %, which may be observable in
measurements of the pair correlation function for the auxiliary
bosons.

The combined wave function of the two auxiliary bosons

and the background quantum Hall droplet takes the form

N
Y(@n.m) ~ @ [ @ = )G — n)PuGnun)
i=1

s 1212 _ P+
i=1 202 7 42

(22)

Xe

where W,(z) is the wave function of the homogeneous
incompressible quantum Hall state at filling v and

Pu(mm) = Y Colm —m)"om +n)™ "

L=even

(23)

is a symmetric polynomial with total angular momentum M. In
our evaluations of the pair correlation function we will assume
the most symmetric situation in which 7, lies at the origin.
Then, with n = 5, denoting the relative coordinate, the wave
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function reduces to

Inf?

N v P
W) ~ U0 [ [z - min™e T i, (24
i=1
where M can take all integer values.

The relative distance between the bosons in such a wave
function can be estimated using a simple semi-classical picture
in which the bosons can be thought of as revolving around
each other at a distance R. The most probable value of R is
fixed by the requirement that the total Aharanov-Bohm phase
accumulated along an orbit of radius R be equal to the Berry
phase gained by the wave function upon winding a boson
around the other at the same radius. The latter corresponds to
the number of vortices that 7; sees on the other bosons enclosed
by the orbit. Using a mean field assumption of uniform
distribution of bosons in the quantum Hall droplet away
from the quasiholes, we can arrive at the above-mentioned
dependence of the radius R.

The above argument can be rephrased in terms of a
conjecture that the quantum Hall quasihole wave functions
when written as the conformal blocks of appropriate CFTs have
anormalization constant that is independent of the locations of
the quasiholes [108]. For example, consider the two-quasihole
wave function at filling fraction v = 1/¢q of bosons:

N

Verr 1@ o (=)t [T [T @ =np

i=1j=1,2
N2 _Im Rtiny 2

N

i<j=1

(25)

For sufficiently separated quasihole locations, the conjecture is

that the normalization N = f dz|Yepr 1(z, n1,m2)|? is weakly
’q

dependent on n;,. In terms of this, the pair distribution

function G(ny,n,) of the combined wave function of the two

species of bosons in Eq. (22) is given by

G(ni,m) o /dzlw(z,m,nz)l2

1yl P+np?
q 202

_2 —(1—
= [Py (i) — mal s Ne !
(26)

The peak of the pair correlation function G(n; = 0,|n2| = R)
is then located at

2

R?>=2(M —v) ¢ 27
- 1—v’

This derivation of the relation between M and R? can be
extended to the case of the two-quasihole wave functions of
the Pfaffian. In the above example of the Abelian quantum
Hall state, the two-quasihole state created in the quantum
Hall droplet due to the repulsion between the two species
of bosons corresponded to a unique wave function with two
single-quantum vortex excitations. The Pfaffian presents the
possibility of a qualitatively different behavior. For a suitably
chosen interaction between the species (as discussed in the
previous section), the Pfaffian quantum Hall wave function
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produces half-quantum vortex excitations at the locations of
the auxiliary bosons. Unlike the Abelian case, here there are
two degenerate states with such quasiholes.

For the MR quasiholes, the wave function in Eq. (22) is
replaced by

W(Z’nlﬂlz) ~ quh(anlinZ)PM(nlvnz)v (28)

where Woqn(z,11,12) could be an arbitrary state in the two-
dimensional space of two-quasihole states

Woan(z,m1,1m2) = a¥y2) + b(Y 1)) — 2Wa2)).  (29)

The only dependence of Wyqh(z,n1,1m2) on n;’s is through
the wave functions W(1y2) (12)9 and not through coefficients
a and b. In terms of normalizations NV of \Iléa’h‘/’) [shown in
Eq. (B7)], which by conjecture are weakly dependent on 7 2,
we can write the pair correlation G(7;,7,) in the wave function

in Eq. (28) as

_2
G(ni,m) o [lal*| Pu(ni,n2)*n — ma] 3N
_10
+ 161 Py m)Pln — ml SNV

1_1\In P+iml?
x e DT (30)

The cross term between \IJ%L and \Ilgé’}f is proportional to the
overlap between the two states and has been assumed to be
zero in arriving at the above result. Maximization of the pair
correlation function G (0, R) with respect to R? as before gives

(u-5) < <a(—5)
aM-Z) <R <4 M- -), 31)
8 8

where the right- and left-hand limits correspond to the
(a,b) = (0,1) and (1,0), respectively. The fractional part of
the effective relative angular momentum, as can be read out in
Eq. (31), exactly gives the Berry phases (1/8)2x and (5/8)27
in Egs. (20) and (21).

The relation in Eq. (31) can also be derived within a simple
semiclassical approximation mentioned above for quantum
Hall states with Abelian anyons. For two-quasihole Pfaffian
states, one needs to consider an additional statistical phase
8(LY) that 5, sees on 1, associated with different fusion
channels. We assume 7, is fixed at the origin, and equate
the number of flux quanta (¢y = hc/e) enclosed by the circle
of radius R, i.e., TR>B /¢y = R?/2¢2, to the mean number
of enclosed vortices %1\7 + M +80%) Here, N = 1)R2/2€2 —
1

5V is the average number of enclosed z particles, and the %

factor in front of N comes from the fact that the quasihole of
Pfaffian state has only half-quantum vortex; the last term — % v
reflects the expulsion effect of the centrally located quasihole.

Solving for R?, we obtain
R* =4(M + 8" — v/4)e? (32)

with v = 1 for bosonic Pfaffian state. The phases §"¥) cannot
be estimated from such a semiclassical picture but can be seen
tobe 8 = L and 8) = —2 by comparison with the limiting
cases of Eq. (31).

The mean field derivation of Eq. (32) above has assumed
the condition that the n particle is inside the disk of quantum
Hall state of z. For larger M, 5, is pushed outside the quantum
Hall droplet, and the number of enclosed vortices is simply
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FIG. 4. (Color online) The pair correlation function g(r,0) of the
auxiliary bosons with one boson fixed at the center (a) without any
background z particles and (b) in the background of a v = 1 bosonic
Pfaffian state of N = 20 z particles. The solid and dashed lines in
(b) show the pair correlation function for the different two-quasihole
states \I’(l)(Z) PM(T]l ,7]2) and (\p(l)(Q) — 2\11(12)())PM(;71 , 772), respectively.
The pair correlation functions here and in the following are all quoted
in units of py = (2 £%)~!, where £ is the magnetic length.

M+ N/2+ §U¥) which leads to the relation

R* = 2(M 4+ N/2 + 8992 (outside). (33)

C. Numerical studies

We next verify the two limiting cases in Eq. (31) with
explicit calculation of the pair correlation functions g(|n;| =
r,ny = 0) for states specified by (a,b) = (0,1) and (1,0),
respectively. We fix one auxiliary boson at the origin, and
numerically calculate the density profile of the other one with
Monte Carlo techniques. As a reference, we first consider a
system containing only the two auxiliary bosons 1, and 7, for
2 < M < 14 (with no z bosons), in which case the peak of the
pair correlation function is simply given by R? = 2M¢? [90].
The result is shown in Fig. 4(a). As we introduce the two
auxiliary bosons into a bosonic Pfaffian state of z bosons,
the density profile of the bosons screened by the quantum
Hall fluid “moves outwards” as shown in Fig. 4(b), where
the solid line displays the pair correlation for Wy state and
the dashed line for (V1)) — 2W(12))) state. The change in the
length scale governing the auxiliary pair of bosons (£2 — 2£2)
is mainly due to the reduced effective magnetic field caused
by the interaction between auxiliary bosons and background
bosons [90].

To further explore the fractional statistics from the pair
correlation function, we plot the square of the peak positions
as afunction of M and N in Figs. 5(a) and 5(b) for the two states
\I’[(l)(Z) and (‘-If(l)(z) — 2\1/(12)()). The predicted behaviors from
Egs. (32) and (33) are also shown with black and red dashed
lines for comparison. The behavior predicted by Eq. (32) is
fully confirmed for quasiholes in the interior of the quantum
Hall droplet. The behavior changes from Eq. (32) to (33) for
large M, when the auxiliary boson 7; lies outside the droplet.
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FIG. 5. (Color online) The peak positions of the pair correlation
function as a function of the relative angular momentum M for N =
6-60, for (a) W) state and (b) W)y — 2W 2 state. The black
dashed line plots the predicted behavior in Eq. (32) and the red dashed
line plots Eq. (33). (c) The quantity %(R2 /1> — 4M) as a function of
M for N = 40 and 50 for W, (black square), W12, (blue circle),
and W) — 2W¥(12) (red diamond). The black dashed lines plot the
expected y value: —% and % (d) The differences of the quantities
1(R*/1* — 4M) between W(iyo, and Wiy are shown in the black
square, and between W2y and W(yy2) — 2W(12), are shown with the
red circle.

Note that the fractional part of the effective angular momentum
y = 8U¥) — /4 is just given by the x intercept of the black
dashed line. To study y more precisely, we write Eq. (32) as
R?/€> = 4M + y)and solve for y: y = ;(R*/ 1> — 4M). We
therefore plot the quantity 1(R?/1*> — 4M) as a function of M
for N = 40 and 50 in Fig. 5(c). This quantity is displayed for
the three wave functions: \11(1)(2), \Il(IZ)(), and \I’(l)(z) — 2\11(12)(),
and the expected values, y = —% for W1y and y = —% for
Wy2) — 2¥(12)), are also plotted with dashed line. Figure 5(c)
shows that the numerical result of y is consistent with
the expected value, and the state Wiy, [corresponding to
(a,b) = (1, — 1)] produces a R? value in-between the two
limits in Eq. (31). The deviation at small M (M = 1,2) is
unsurprising because quasiholes need to be well separated
to exhibit the expected braid statistics [110-112], and the
deviation at larger M for N = 40 indicates proximity of n;
to the edge. Figure 5(d) plots the differences of the quantities
in Fig. 5(c) between W(jy2) and W) (black square), and
between Wiy and W(1y2) — 2W(2) (red circle). The latter
one is expected to be 0.5.

From these numerical results, we stress that even though it
is not easy to detect the accurate fractional Berry phase from
small system (N = 6...10), the pair correlation of the aux-
iliary pair has an obviously different profile for the two topo-
logically different states especially for small M. Both of these
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profiles are also clearly distinguishable from that of an un-
screened pair. The radius of a small screened pair with M = 2
is close to the expected value 2,/2 + y £ even for small system
size N = 6, which is significantly different from the radius
R = 2¢ of the unscreened pair. We note that the smallest pair
with M = 1 is not meaningful for the purposes of braid statis-
tics, presumably due to the non-negligible overlap between the
two quasiholes. Therefore, in our discussion of the experimen-
tal feasibility in Sec. VI, we will only consider M > 2.

V. MANY QUASIHOLES

We have shown that the two-quasihole wave functions
can be produced in a system with two species of bosons
interacting with a three-body potential. Wave functions for
states containing 2n quasiholes, in principle, can also be
produced as low-/zero-energy states of a system of N z
bosons and 2n auxiliary bosons under a three-body interaction
Hamiltonian. Specifically, one can see from the bipartite form
of the MR 2n-quasihole states [shown in Eq. (A6)] that
they have zero energy for the interaction V = V. + V.
As we describe in the following, the zero-energy states of
this Hamilonian have degeneracies that exceed the 2"~ !-fold
degeneracy of the FQHE quasihole states, due to the additional
degree of freedom associated with the wave function of the
auxiliary bosons. However, when these degrees of freedom
are frozen, for example, by fixing the locations of the auxiliary
bosons to produce localized quasiholes, the expected 2"~
degeneracy is obtained.

The uninteresting degeneracies arising from bosonic edge
excitations of the quantum Hall system can be removed by
constraining the edge with a momentum cutoff. We diagonalize
the interaction V =V, + V,;, for a system of N =6 z
bosons and four auxiliary bosons, with a cutoff on single-
particle angular momentum equal to [,y = N [corresponding
to the standard MR four-quasihole wave function Wyg, in a
form of Eq. (6)]. For simplicity, we study only those sectors that
have the same total angular momentum as the MR quasihole
state. Numerically, we find that the energy spectrum has three
Zero-energy states.

The counting can be explained by noting that the zero-
energy states should have the form W(z,n)g(n) where W(z,n)
is a 2n-quasihole state of the FQH system and is annihilated
by V... Taking {n;} as dynamic coordinates for the auxiliary
bosons, W(z,n) is also annihilated by V.., because of the
binding of the quasihole to the bosons. The function g(n)
is any possible wave function of the 2n auxiliary bosons. A
basis for space of such zero-energy states can be obtained
as @r,(z,mh,(n) where ¢r ; are the quasihole basis states
introduced in Eq. (5). h,(n) are wave functions of 2n bosons
which can be indexed by a partition (nondecreasing ordered se-
quence) p of length 2n and has a form /1, (x) = S[x}"x5> ... ].
The total angular momentum of this state is

2 F 2n

N F
Lrsp=—+No—D+Y h——@u—D+) .
k=1 I=1

(34)

Those states that have the same total angular momentum
% + N(n — 1) as the MR state of 2n quasiholes satisfy
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TABLE I. Number of zero-energy states for 2—6 quasiholes.

Number of Degeneracy for Degeneracy for
quasiholes 2n Lmax bosons localized quasiholes
2 N -1 1 1

4 N 3

6 N+1 11 4

the constraint Z,le )‘»k + 21221 W= %(2{1 — 1). Correct de-
generacy can be estimated by enumerating the states that
satisfy this constraint. For the above-mentioned case of 2n = 4
quasiholes, the states are

(F=0,A=1...1,n0=10,0,0,0]),
(F =2,»=10,1],n = [0,0,0,2]),
(F =2,A,=10,1],n = [0,0,1,1]).

In order to produce localized quasiholes, we fix the values
of n;’s, and then the degeneracy of the zero-energy states
reduces to the expected number 2"~! = 2. It can be explicitly
checked that the space spanned by the 2"~! as obtained states
is identical to the space of the 2"~! MR quasihole states with
same quasihole positions.

The same calculation for six quasiholes is performed with
L = N?/2+42N and I = N + 1. There are 11 Zero-energy
states for 6 n; bosons immersed in N = 6 z bosons, and
the degeneracy reduces to 4 when fixing the n; positions.
The degeneracy of 11 can again be obtained by enumerating
(F,A, ) that satisfy the mentioned constraint.

We summarize the degeneracy results in Table I and
conclude that the MR 2n quasiholes states can be produced
by turning on a three-body interaction V = V.. + V,;, in a
system of 2n auxiliary bosons plus N z bosons and destroying
the auxiliary bosons at some particular positions, leaving 2n
quasiholes at those locations.

For larger values of I,,x, the number of zero-energy states
is greater due to edge excitations. We have not studied the
counting of such states.

VI. FEASIBILITY IN ULTRACOLD ATOM SYSTEMS

A. Preparing the model wave functions

FQHE states can in principle exist in rapidly rotating
gases of ultracold bosonic atoms. By an adiabatic scheme
implemented by Gemelke et al.[70], one can reach the ground
state at a given total angular momentum L for N bosons.
We have discussed in the Sec. III that the two-quasihole qubit
states can be produced with a three-body Hamiltonian. We now
study how a Pfaffian wave function of the form W, Py (11,72)
can be prepared. We will only consider M > 2 cases as we
discussed above that M = 1 is too small to show meaningful
information. The standard Hamitonian in the LLL with a
three-body interaction (in the rotating frame) is

N+2
H=Vy Y 8G — s — o) + (w: — QL
i,j<k

+(w, — Q)L,, (35)
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where 2 is the rotation frequency, w, and w, are the harmonic
confinement frequencies, and L, and L, are total angular
momentum operators for the z and n particles, respectively.
We assume the interaction is independent of the species which
produces the W) state as its unique zero-energy state at
Ly = N2/2. As shown above, the other 2-quasihole state
Wy2) — 2¥(2)) can be produced as the first excited state
for an appropriately chosen interaction. For L = Ly + M,
W1y Pu(n1,12) has zero interaction energy, but itis in general
not the only zero-energy state; other zero-energy states can be
constructed wherein the additional angular momentum M is
absorbed by z particles. We ask if the edge excitations of the
z particles can be suppressed by taking w, 2 w,, following
the strategy used in Ref. [90]. The exact ground state of
this Hamiltonian at M =2 and 3 is well approximated by
Wiy Pu(n1,12), while for M > 4 the second or third excited
state has a pair correlation function matching well with that of
Wy2 Pu(n1,m2). At minimum, the state of M = 2 and 3 can
be adiabatically prepared in principle. Then, the measurement
for pair correlation function can be implemented through
single-atom detection combined with a short time-of-flight
expansion. More detailed discussion can be found in Ref. [90].

B. Two-body contact interaction

We have shown above that many relevant topological states
with two or more quasiholes can be engineered with three-body
interaction. However, the three-body interaction is not easy to
implement. A more realistic interaction in cold atom systems
is the two-body contact interaction

H =V, 8 —7)).

i<j

(36)

The MR Pfaffian state is not the exact ground state of this
Hamiltonian. Encouragingly, however, it has been shown [49—
52,91] that this interaction produces an incompressible state
at v = 1, which is accurately, though not exactly, described by
the Pfaffian wave function. We therefore ask to what extent the
above results carry over to the two-body contact interaction.
We focus on the following two aspects: (i) Can a two-
body interaction produce the low-energy Pfaffian quasihole
states with the expected degeneracy? (ii) In order to detect
statistics through pair correlation function measurement, we
ask whether a two-body interaction can produce a ground state
of which the pair correlation function for two auxiliary bosons
is similar to that of the Pfaffian wave function Woq, Py (11,72).
We will only discuss the Wy, state for simplicity because
similar conclusions apply to W(i)2) — 2W(12)). We will also
focus on M > 2 cases as M = 1 has been shown ineffective
in reflecting statistics information correctly.

To answer the first question, we perform exact diagonaliza-
tion of 6-10 bosons with an additional 2 and 4 auxiliary bosons
within a Hilbert space specified by a total angular momentum
L and a cutoff on single-particle angular momentum /,,x. The
value of L is fixed according to the Pfaffian quasihole wave
functions, for example, L = N2 /2 for two-quasihole states
Wiy and Wioyy. The value of [, is taken to be equal or
greater than the largest single-particle angular momentum in
wave functions. In order to tune the two-body interaction, we
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write the interaction potential as

V=V.+MV,;+21V,, 37

where A; and X, control the relative strength of z-n and n-n
interactions. Because the three-body interaction V =V, , +
V.zn excluding n-n interaction term (V.,,,) produces degenerate
Pfaffian quasihole states, we keep A, = 0.0 and only tune the
value of A; for the two-body interaction. We have not been
able to find any values of A; and [, that produce a degenerate
or quasidegenerate set of low-energy states with significant
overlap with the Pfaffian quasihole wave functions, for either
two or four quasiholes.

Now, we study the second question for M = 2. We recall
that the Pfaffian wave function W1y Py (n1,12) can be
approximately produced as the ground state of the Hamiltonian
in Eq. (35) with w, > w, at L = N?>/2+ M. In fact, if
we take [,.x to be the minimal value [,,c = N — 1, the

FIG. 6. (Color online) The pair correlation functions g(r,0) of
the 1 bosons of the ground state obtained from diagonalizing the
two-body Hamiltonian with parameters shown in the figure are plotted
for different system sizes N = 6 (blue square), N = 8 (green circle),
N = 10 (red diamond). As comparison, the pair correlation functions
calculated from the model wave functions Wy Py (11,72) are also
shown with solid lines. The plots for N = 8 and 10 have been shifted
up by 0.05 and 0.1 units, respectively, for ease of depiction. (a),
(b) For M = 2, an isotropic contact interaction fails to produce a
similar pair correlation function as that of the model wave function,
but it is possible to find a universal set of interaction parameters
A1, for different system sizes that gives agreement. (c) For M = 3, a
slightly different confinement potential for z and n bosons is necessary
to produce a desired ground state. However, the proper value of
parameter w sensitively depends on the system size.
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zero-interaction-energy states have the exact unique form
W2 Pu(n1,m2), without requiring the confinement term in
the Hamiltonian. We now diagonalize an isotropic two-body
interaction (A; = A, = 1.0) with the same [, = N — 1 and
L =N?/2+ M for M = 2. The pair correlation functions
for the n bosons of the ground state are clearly different
from that of the wave function W(j)2) Py (11,72), as shown
in Fig. 6(a). We next tune the parameters A;, and find that
Ay = 10 and A; = 1.6 give good agreement for a system size
of N =8, which also apply to N = 6 and 10 as shown in
Fig. 6(b).

For M > 2, a confinement potential that is slightly stronger
for z bosons than 5 bosons needs to be included in the
Hamiltonian in order to help the 5;’s absorb all of the
additional angular momentum to produce the multiplicative
factor Py(n1,1n2). We denote the difference in the harmonic
confinement frequencies of the two species of bosons as §w =
; — wy. By diagonalizing the new Hamiltonian with different
SwatL = N?/2+ M and I, = N — 1, we find that the pair
correlation function of the ground state depends sensitively on
the value of dw. Figure 6(c) shows the pair correlation function
of the ground state obtained with parameters A} = 1.6, A, =
10, and §w = 0.15 at M = 3 for different N. It is not possible
to find a single set of parameters that gives the desired pair
correlation function for all N.

Up to now we have studied the W(;)) state; the same argu-
ments apply to the other state W)y — 2W(12)y with optimal
parameters A; = 0.4, X, = 10, and dw = 0.023 for N = 8.
In the study of M = 2,3 cases, all exact diagonalizations are
performed with the smallest value of /;,,x as specified by the
wave function. A larger /,,,x generally requires a different set
of parameters. In conclusion, two-body interaction fails to
produce a realization of the Pfaffian quasihole wave functions
with the desired degeneracy, at least for all the systems we
have considered.

VII. CONCLUSIONS

We have pursued the idea that the non-Abelian quasiholes
in the Pfaffian fractional quantum Hall states can be captured
and manipulated by introducing auxiliary bosons of a different
species. We have shown how, assuming a precise control of
the Hamiltonian, this can be used to produce qubit states with
desired topological properties. Furthermore, a measurement
of the pair distribution function of the auxiliary bosons can
provide a direct confirmation of the Abelian and non-Abelian
braid statistics of these quasiholes.
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APPENDIX A: EQUIVALENCE OF BIPARTITE AND
PFAFFIAN REPRESENTATIONS OF 2r-QUASITHOLE
STATES

We demonstrate that the Pfaffian wave function of 2n-
quasihole states can be represented as an equivalent bipartite
form. We first consider the two-quasihole states for simplicity.
There are two two-quasihole states in the bipartite represen-
tation: one in which the two quasiholes are constructed in the
same partition and another one in which the two quasiholes
are constructed in different partitions. They have the form

=

Yoz nun) =S (z2i — n1)(z2i — n2)

—

vzl

2 2
X H (z2i — 22j) (22i-1 — 22j-1)" ¢ »

i<j=1
(A1)
N
2
Yo (z:nn) =S H(Zzi — n1)(22i-1 — 12)
i=1
X 1_[ (22 — 22)) (2211 — 22j-1)°
i<j=1
(A2)

Following, we demonstrate that these states can be represented
in terms of the Pfaffian of a matrix. We will take Wi, as an
example and the proof for ¥y can be completed by simply
replacing zy; in the factor (zp; — 1) with zp;_; throughout the
derivation.

Factorizing out a Jastrow factor J(z) = [[;. j(z,- — z;) from the wave function gives

=

Wii2)0(z,n1,12) = J(2)A

i=1

N
2

N
[ 21z — 22))(z2i-1 — 22j-1)

(z2i — n1)(z2i — 1n2) 5

l_[szl(ZZi - Zijl)

N N 1
= (DT @AL [ G = e = mydet———

i=1

2 — 22j-1
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=(=DTEI@) Y sen@) AL [z — m)ai —m)]‘[
i=1 i=1

UESN/z
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(A3)
22i — 220,—1

The symbol .4 denotes antisymmetrization over all coordinates z;, and an identity due to Cauchy [105]

1

det———— = (=1)¥(@~D

22i — 22j-1

N
[1% j (z2i

— ZZj)(ZZi—] - sz—l)

(A4)
— 22j-1)

N
H,‘,zj (Z2i

has been used to obtain the second line of Eq. (A3). The third line comes from the expansion of the determinant where the sum

is computed over all permutations o of the set {1,2, ...
the wave function can be simplified as

W20 @1.m) = (=DFETDWN /2 @A |

— (—DFEDN/21I(2) x Pf<(zi

,N/2}. Note that all the permutations yield the same contribution, thus

(z2i — n1)(z2i — 1n2)
20i — Z22i—1

=)@ — )+ < j))
i —Zj ’

i=1

(A5)

which is identical to the Pfaffian representation in Eq. (10) up to an overall normalization factor. The definition of Pfaffian has
been used in the last step, and the Gaussian factors are suppressed for simplicity.

N
The above derivation can be easily generalized to 2n-quasihole state by replacing the factor ]—[f:,(zgi — n1)(22i—1 — n2) In
N
Eq. (A2) with [[2,[(z2i — 1e)(z2i — 1) - - - (z2i—1 — Np)(Z2i—1 — N5) - - .]. Thus, a bipartite representation for the Pfaffian wave
function in Eq. (3) is constructed:
Vs, )po.) =S l_[(ZZi — Ne)(z2i —Mp) .. (22i—1 — Np)(22i-1 — H (22 — 22))*(z2i1 — 22j-1)* (A6)
i=1 i<j=1

APPENDIX B: TWO-QUASIHOLE REPRESENTATION OF
THE FOUR-QUASIHOLE QUBIT STATES IN CERTAIN
LIMIT

We now show that the two-quasihole states W(j)») and
Wiy — 2Wa2) can represent the two four-quasihole qubit
states in Eq. (5) in the limit that two of the quasiholes are
sent to infinity. We take n3 =r, n4 = re'?, and r — oo for
Eq. (5). Now, W(13)24y and W(14(23) reduce to the standard MR
two-quasihole wave function W(jy) with quasiholes located
at n; and n,, while \I’(lz)(34) reduce to \11(12)(), with a same
normalization factor for all of them as shown as follows:

N No
W34y, Yaayes) = 1 e 2 V),
(B1)

NO
Wazes = Ve Way.

In this limit, the factor x — 1+ (1 —
1—e i

—i6 — _
e”! )(ﬂ1r772)_1+
€(n — ), where € = is a very small number. Be-
fore we apply any approximation, we rewrite W(j3y24) £

VxW4)03) in Eq. (5) as
(x £ VX)Wases + (1 — ) W24 (B2)

with the help of the identity

1
Wa2y3s) — Yasyes) = ;(‘1’02)(34) —Yasnee)  (B3)
from Ref. [25]. By applying /x — 1+ %e(m — 12), the two

topologically different four-quasihole wave functions W%

(

in Eq. (5) are written as (form = 1)
(1 — 12)*
1 172
[1£ (14 3€0m —m))]
x [(x £ V) W23 + (1 — 0)Wa64]. (B4)

W)

Thus,

WD — () — 1) B3 — (11— 1) By (BS)

and

|
v (1 — m2)®

[— Len — )]

1
X |:§€(771 —m)(Waaes) — 2‘1’(12)(34))}

= (m = 1) (Waye) — 2%¥a2)0)- (B6)

Therefore, ¥ reduces to W(j)2), and W) reduces to a
linear combination of the two kinds of two-quasihole wave
functions (W(1y2) — 2W¥(12)), With prefactors (17 — 12)"/® and
(71 — 12)/8, respectively.

In the above derivation, we have neglected the factor

Z“ ‘W in Eq. (5). This factor simply contributes to an
overall normalization constant of the wave function and is
only considered when the dependence of the normalization
constant on the locations of quasiholes is discussed, as in the
derivation of Eq. (30) in Sec. IV B. In that case, a more precise
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version of Egs. (B5) and (B6) is needed as

PHYSICAL REVIEW B 92, 075116 (2015)

I P+

1
v — Wéql =(m —m)" Ve 7,

_Im 2+

v — ‘D%h) =(m —m)*Wae — 2%l . (B7)
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