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Large and small Fermi-surface spin density waves in the Kondo lattice model
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We demonstrate the existence of metallic spin density waves (SDWs) in the Kondo lattice model on a square
lattice for a wide range of parameters by means of real space dynamical mean-field theory. In these SDWs, the
spin polarization as well as the charge density depend on the lattice site and are modulated along one direction
of the square lattice. We show that within this phase of metallic SDWs the Fermi surface changes from small
to large, when the coupling strength is increased. Furthermore, the transition between the large Fermi-surface
SDW phase and the paramagnetic phase is of second order, while the transition between the small Fermi-surface
SDW phase and the paramagnetic phase is of first order. A local quantum critical point is thus avoided in our
calculations by undergoing a first-order phase transition.
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I. INTRODUCTION

Strongly correlated materials are of special interest in
condensed matter physics because they often exhibit remark-
able phenomena which cannot be explained by single-particle
theory. A particular class of strongly correlated materials are
heavy fermion systems, in which quantum criticality accom-
panied by non-Fermi liquid behavior or unconventional su-
perconductivity can often be observed [1–11]. Heavy fermion
materials include strongly interacting f electrons, which are
hybridized with conduction spd bands. The main driving
forces in these materials are the Kondo screening, which
favors a paramagnetic state, and the Ruderman-Kasuya-Kittel-
Yosida (RKKY) interaction, which favors a magnetically
long-range ordered state. Especially, when both effects are
of comparable strength, fascinating many-particle phenomena
such as quantum criticality and non-Fermi-liquid physics can
arise.

It has been found that quantum phase transitions in heavy
fermion systems can be categorized into two classes: (i)
quantum fluctuations at the phase transition arise solely due
to the magnetic order and the Fermi surface behaves smoothly
across the transition, which corresponds to the Hertz-Millis-
Moriya type of quantum critical point (QCP) [12–14] and (ii)
exactly at the quantum phase transition between magnetism
and paramagnetism, not only the magnetic order vanishes,
but also the Kondo screening vanishes and the Fermi surface
changes abruptly, which is referred to as local quantum
criticality [1,15]. While CeNi2Ge2 is an example for the Hertz-
Millis-Moriya type of QCP [6], there is evidence that the QCP
observed in YbRh2Si2 corresponds to a local quantum critical
point [16–21]. These experimental and theoretical results on
quantum phase transitions in heavy fermion systems have
been summarized in the global phase diagram [2,8–10,22–27],
which includes small/large Fermi-surface antiferromagnetic
phases and small/large Fermi-surface paramagnetic phases.

A commonly used theoretical model to describe heavy
fermion systems is the Kondo lattice model, in which effective
local moments originating from the interacting f electrons
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are coupled to conduction electrons. The Kondo lattice model
reads [28–32]

H = t
∑
〈i,j〉σ

c
†
iσ cjσ + J

∑
i

�Si�si,

�si = c
†
iσm

�ρσmσn
ciσn

, (1)

where c
†
iσ creates an electron with spin direction σ on lattice

site i. The first term in Eq. (1) describes the hopping of
conduction electrons, and the second term describes the
coupling of the conduction electrons to the localized spins
with interaction strength J . Throughout this paper, we assume
an antiferromagnetic coupling, J > 0, and take the hopping
constant t as unit of energy. All calculations are performed on
a two-dimensional square lattice.

In this paper, we examine magnetism and quantum phase
transitions in the Kondo lattice model by means of the
dynamical mean-field theory (DMFT) [33–35], which has
been extensively used for this purpose [36–58]. Although these
previous studies include calculations for the antiferromagnetic
state and the magnetic quantum phase transition, they were
performed for the Néel state with commensurate ordering
vector. Exactly at half-filling for a particle-hole symmetric
lattice, the Néel state is insulating. Thus the behavior of the
Fermi surface across the quantum critical point cannot be
studied. Some of these previous studies also used the Néel state
away from half-filling within the metallic antiferromagnetic
phase. However, away from half-filling, one can expect
that the Néel state becomes energetically unstable towards
incommensurate magnetic states, as has also been found
in many experimental systems by neutron scattering, e.g.,
for CeRu2Si2 [59], CeCu2Si2 [60], CeRhIn5 [61], etc. A
theoretical study using classical spins already proved the
existence of incommensurate SDWs [62]. However, due to
the approximation of classical spins, many-particle effects,
particularly the Kondo effect, are absent in Ref. [62].

In this paper, we use the DMFT, and explicitly include
the possibility of incommensurate magnetic states in the
Kondo lattice model by using large-scale real-space DMFT
(RDMFT). We will focus on the analysis of metallic SDW
states away from half-filling, which have not been carefully
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studied yet, and analyze static and dynamical properties with
particular emphasis on the behavior of the Fermi surface across
the quantum phase transition.

This paper is organized as follows. In the next section
(Sec. II), we will shortly explain the methods used in this
paper. This is followed by the section (Sec. III), in which
we will summarize the calculated phase diagram and explain
the different types of SDWs observed in our calculations.
Static (Sec. IV), dynamical properties (Sec. V), and the phase
transitions between different phases (Sec. VI) are explained in
more detail in the subsequent sections, before concluding the
paper.

II. METHOD

We use large-scale real-space dynamical mean-field theory
(RDMFT) to study the Kondo lattice model, Eq. (1), defined
on a two-dimensional square lattice. In RDMFT, each lattice
site of a finite cluster is mapped onto its own impurity model.
This mapping is done by calculating the local Green’s function
of each lattice site via

Gloc(z) =
∫

dkxdky[z · I − Hkx ,ky
− �]−1, (2)

where Hkx ,ky
is the hopping Hamiltonian of the chosen

cluster and � is the self-energy matrix. The momentum
dependence of Hkx ,ky

arises thereby through the boundary
conditions. For this study, we use (20 × 20), (60 × 10), and
(30 × 30) clusters with periodic boundary conditions. The self-
energy is diagonal and momentum-independent within this
approximation; correlation effects between different lattice
sites are not included. However, the self-energy depends on
the lattice site of the cluster, which makes it possible to
describe SDW states. From the local Green’s function, a
lattice-site-dependent hybridization is calculated via

�ii(z) = z − 1

Gloc,ii(z)
− �ii(z), (3)

which determines the input for a single impurity Kondo
model. These equations are reduced to the usual single-site
DMFT, if the cluster consists of a single site. To obtain the
self-energy of the Kondo impurity model, we use the numerical
renormalization group (NRG) [63,64], which can calculate
reliable self-energies at zero and finite temperature [65,66].
We then iterate Eqs. (2) and (3) until the self-energy matrix
becomes self-consistent. In order to improve the stability of the
iterative calculations, we do not directly use the self-energy as
calculated by the NRG, but we add 50% of the self-energy of
the last iteration, �i+1 = 0.5�i + 0.5�i−1, which is usually
called “mixing” and frequently used in DMFT calculations.
Recently, we have used similar calculations to study spin
density and charge density waves in the Hubbard model [67].

III. PHASE DIAGRAM

Figure 1 summarizes our obtained results. Close to half-
filling, the physics of the Kondo lattice model is dominated by
the interplay of the Kondo effect and the RKKY interaction,
as described by the Doniach phase diagram [28]. At weak
coupling, where the RKKY interaction dominates, we observe

FIG. 1. (Color online) Phase diagram of the Kondo lattice model
as calculated by RDMFT. The SDW phase away from half-filling is
separated into a large Fermi-surface (FS) phase at strong coupling and
a small Fermi-surface phase at weak coupling. A detailed explanation
is given in the main text.

a magnetically ordered phase. At strong coupling, where the
Kondo effect becomes dominating, a paramagnetic state is
stabilized.

Exactly at half-filling, the model exhibits perfect nesting
and we observe the well-known transition from an antiferro-
magnetic Néel state at weak coupling to a paramagnetic Kondo
insulator at strong coupling. This continuous transition occurs
approximately at Jc/t ≈ 2.2 within DMFT for the square
lattice. Notice that the Kondo lattice model on a square lattice
remains insulating at half-filling for all interaction strengths,
J > 0, although the origin of the insulating gap gradually
changes. Our obtained critical interaction strength for the
transition between the Néel state and the Kondo insulator
reasonably agrees with previous DMFT calculations [58].
We can thus reproduce previous results with our RDMFT
calculations.

Away from half-filling, the homogeneous Néel state be-
comes unstable and changes into a phase of SDWs, in which the
polarization of the conduction electrons as well as the localized
spins are lattice-site dependent. For coupling strengths larger
than the hopping amplitude, this SDW phase becomes unstable
upon doping towards the large Fermi-surface paramagnetic
state. On the other hand, for weak coupling, J < t , SDWs can
be observed for any conduction band filling.

Even within this SDW phase, the modulation of the electron
polarization and electron density depends on the model
parameters. In Fig. 2, we compile information about typical
SDWs, which can be observed in the vicinity of half-filling.
For each type of SDW, (a)–(c), we show in the upper part of
each panel false-color plots of the electron density (left plot)
and the electron polarization (right plot) for a cluster of lattice
sites. The lower plots of each panel show intersections of the
above false-color plots.

Figure 2(a) shows the antiferromagnetic Néel state exactly
at half-filling. In the Néel state, the polarization of the
electrons changes its sign between nearest neighbors. The
electron density, on the other hand, is unity for all lattice
sites. Increasing the interaction strength beyond J/t = 2.2,
the antiferromagnetic state changes into the Kondo insulator
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FIG. 2. (Color online) Different magnetic states close to half-
filling: (a) antiferromagnetic Néel state exactly at half-filling (J = 2t).
(b) Doped SDW/CDW at weak interaction strength (J = 0.8t).
(c) Doped SDW/CDW close to the quantum critical phase transition
(J = 1.8t). For each state (a)–(c), we show a false-color-plot of the
charge density (top left), a false-color-plot of the electron polarization
(top right), an intersection of the charge-density plot for a given y site
(bottom left), and an intersection of the electron-polarization plot for
a given y site (bottom right).

(not shown in Fig. 2), where all lattices sites are occupied in
average with a single electron and the polarization vanishes.

Away from half-filling, the perfect nesting, which exists
exactly at half-filling, is lost, and the system can gain energy by
modulating the electron polarization over the lattice sites. We
have tried in our calculations different types of modulations,
such as vertical SDWs and diagonal SDWs. It turned out that
the most stable type of SDW on the square lattice is the vertical
SDW, as shown in panels (b) and (c) of Fig. 2. The amplitude

of the electron polarization is modulated along one direction
of the square lattice. Along the other direction, the polarization
shows a Néel-state-like “AB” oscillation. However, not only
the polarization is modulated, but also the electron density
depends on the lattice site: there are stripes of high electron
density and stripes of low electron density. CDWs are well
known in strongly correlated materials, e.g., high-Tc cuprates,
and have been detected there by x-ray scattering [68]. Within
the regions of high electron density, we generally observe
a Néel-state-like behavior; the polarization changes its sign
between nearest neighbors. The behavior in the low-density
regions, however, depends on the interaction parameter and
the average occupation of the conduction electrons. For large
interaction strengths close to the quantum critical transition,
we observe that the polarization vanishes in the low-electron-
density regions, see Fig. 2(c). The Kondo effect becomes
strong in these regions so that the localized moments are
screened by the Kondo effect instead of forming a magnetically
ordered state. On the other hand, for weak interaction strength,
J < t , and especially for an average electron filling n < 0.9,
we observe that the low-electron-density regions are still
magnetically polarized. We find that nearest-neighbor sites
form ferromagnetic bonds along one axis, see Fig. 2(b). For
weak interaction strengths, the localized moments cannot
be screened by the Kondo effect, which is exponentially
weak. Here the magnetic state is completely determined by
the RKKY interaction. The localized moments are nearly
fully polarized and form also inside the low electron-density
region a magnetic state. Furthermore, the modulation of the
polarization cannot be described anymore by a simple sine
wave, but a more complex polarization pattern is realized.
Due to a changed Fermi vector in this region, the system
can gain energy by combining ferromagnetic bonds with
antiferromagnetic ones. Experimentally, similar combinations
of antiferromagnetic and ferromagnetic correlations have been
observed in YbRh2Si2 [69,70].

IV. STATIC PROPERTIES OF THE SDW PHASE

An important point, which was neglected in previous studies
is that both the spin polarization and the electron density are
modulated away from half-filling. In Fig. 3, we show the
amplitude of the SDW (top) and the amplitude of the CDW
(bottom) for different coupling strengths and conduction band
fillings. We observe that the electron polarization within the
SDW is largest for approximately J ≈ t exactly at half-filling.
The spin polarization becomes weaker when doping the system
away from half-filling. The amplitude of the CDW, however,
is strongest for J ≈ t and conduction band fillings 〈n〉 ≈ 0.9.
Exactly at half-filling, the electron density is homogeneous.
Furthermore, the CDW is coupled to the SDW; within the
paramagnetic state, no charge-density modulation exists. The
Kondo effect alone is not sufficient to stabilize a CDW state
for these conduction band fillings. With increasing coupling
strength, the CDW vanishes faster than the SDW. However,
this might be related to the fact that the SDW state can only be
found very close to half-filling for strong interaction. In this
parameter region, the ground state becomes more and more
homogeneous, and the amplitude of the CDW is very small.
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FIG. 3. (Color online) (Top) Electron polarization in the high-
density regions (corresponding to the maximal polarized electrons)
for different coupling strengths and conduction band fillings. The
red lines correspond to contour lines at |n↑ − n↓| = (0; 0.1; 0.2).
(Bottom) The difference of the electron density between high- and
low-density regions. The red lines correspond to contour lines at
|nhigh − nlow| = (0; 0.03; 0.06; 0.09; 0.12).

The observed modulations of the spin polarization and the
electron density are not independent of model parameters.
In order to obtain information about the wavelength of the
modulations, we have performed a Fourier transformation
of the obtained DMFT solutions. For this purpose, we have
used (60×10) clusters for our calculations. The Fourier
transformation for the occupation and the polarization read

ñ(kx,ky) = 1

N

∑
x,y

eikxx+ikyy(n↑(x,y) + n↓(x,y) − naver ),

m̃(kx,ky) = 1

N

∑
x,y

eikxx+ikyy(n↑(x,y) − n↓(x,y)),

where we have subtracted the average filling of the lattice,
naver = 1

N

∑
x,y(n↑(x,y) + n↓(x,y)), and N corresponds to the

number of lattice sites. The absolute values of these Fourier
modes show distinct peaks at certain momenta in the Brillouin
zone. We show these momenta in Fig. 4 for J/t = 0.8. For
this interaction strength, the SDW phase exists until close to
quarter filling, where it changes into another magnetic phase
via a first-order transition. The wavelength does not depend
on the coupling strength J within the weak coupling region
of the phase diagram. If we neglect the parameter region of
small hole doping, where the wavelength of the SDW exceeds
the cluster size, the largest Fourier component in the SDW
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FIG. 4. (Color online) Strongest Fourier mode of the charge
density (top) and spin polarization (bottom) for different conduction
band fillings. The interaction value is J/t = 0.8, for which the SDW
phase exists until 〈n〉 ≈ 0.6.

and the CDW can be fitted by a linear function in the number
of holes. Exactly at half-filling, we find a Néel state with
modulation �k = (π,π ) without a CDW. Away from half-filling,
this Néel state changes into an SDW with modulation �k =
π (1 − 〈h〉,1) accompanied by a CDW with modulation �k =
π (2〈h〉,0), where 〈h〉 = 1 − 〈n〉 corresponds to the number
of holes in the lattice. For stronger interaction values, the
SDW phase vanishes upon doping into the paramagnetic heavy
fermion state for small hole doping. The wavelength in this
parameter region is too long, hence, we could not accurately
analyze the doping dependence of it.

V. SPECTRAL FUNCTION AND FERMI SURFACE

As shown in Fig. 1, we have divided the SDW phase
into two regions; one with large and one with small Fermi
surface. We next want to show momentum-resolved spectral
functions and the corresponding Fermi surfaces, which justify
this distinction.

Figure 5 shows spectral functions for the paramagnetic
phase (left), the strong-coupling SDW phase (middle), and
the weak-coupling SDW phase (right). The lower panels
correspond to magnifications around the Fermi energy of the
upper panels. The green dashed line marks the Fermi energy.
In the weak-coupling SDW phase (right panel in Fig. 5),
we only find slight modifications from the noninteracting
energy momentum dispersion. These modifications mainly
occur close to the Fermi energy around (π,0), (0,π ), and
(π/2,π/2), where we observe a suppression of the spectral
weight. Compared to the noninteracting spectrum, additional
weak bands occur around (0,0) and (π,π ) below the Fermi
energy. Especially the band that is close to the Fermi energy
at (π,π ) is a remnant of the heavy fermion band, which,
however, lies below the Fermi energy. The main contribution
to the spectral weight at the Fermi energy originates from the
noninteracting dispersion at (π,0), (0,π ), and (π/2,π/2).

The spectral functions of the paramagnetic metallic phase
(left panel in Fig. 5) and the strong-coupling SDW phase
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FIG. 5. (Color online) Spectral functions for the paramagnetic state (left), the strong-coupling SDW (middle), and the weak-coupling SDW
state (right). The lower panel is a magnification of the upper panel around the Fermi energy.

(middle panel), differ substantially from the weak-coupling
case. The bands that cross the Fermi energy in the non- and
weakly-interacting case at (π,0) and (0,π ), are absent at the
Fermi energy in this phase. While in the weakly interacting
SDW phase there is a band that connects the low-energy
parts (ω/t = −4) with the high-energy parts (ω/t = 4), in
the paramagnetic and the strong-coupling SDW state, there
is a gap above the Fermi energy separating the low- and
the high-energy parts of the spectrum. The noninteracting
bands, which approach the Fermi energy at (π,0), (0,π ), and
(π/2,π/2) are bent towards each other and cross the Fermi
energy close to (π,π ). The spectrum of the paramagnetic state
and the strong-coupling SDW state look thereby very similar
to each other. The gap above the Fermi energy seems to be
more pronounced in the SDW state. However, this is parameter
dependent. Another general feature in the dispersion of the
SDW state is that there is a band at (0,0) close to the Fermi
energy. This is a shadow band originating from the ordered
state [67,71].

From the spectral functions shown in Fig. 5, we can see
that the Fermi surface changes within the SDW phase. For a
better understanding, we have compiled the calculated Fermi
surfaces for a few parameters in Fig. 6. Different rows show
different transitions, which can be observed in the Kondo
lattice model. The upper panels show the transition between
the weak-coupling SDW phase and the paramagnetic phase at
〈n〉 ≈ 0.8 for J/t = (0.6; 0.8; 1.0; 1.2; 1.4) (left to right). One
can clearly observe a change in the Fermi surface topology
at J/t = 1. While in the left two panels the Fermi surface is
small including only conduction electrons, the Fermi surface
in the right two panels is large, which includes conduction
electrons and localized moments. A similar change in the
Fermi surface topology can be observed when increasing the
interaction strength within the SDW phase (middle panels
of Fig. 6). The Fermi surface clearly changes in the second
panel from right for J/t = 1.2 and 〈n〉 ≈ 0.9. Finally, the

lower panels show the transition between the strong-coupling
SDW and the paramagnetic phase for different conduction
band fillings and J/t = 1.8. The magnetic order vanishes in
the middle panel for 〈n〉 ≈ 0.93. However, there is no abrupt
change in the Fermi surface for strong coupling when the
magnetic order vanishes. Summarizing these results, we find
that the SDW phase away from half-filling is divided into a
phase with small Fermi surface at weak coupling and a phase
with large Fermi surface at strong coupling. We thus find a
Lifshitz transition within the SDW phase, where the Fermi
surface topology changes.

Although the Fermi surface vanishes exactly at half-filling
due to the insulating nature of the system, a similar change in
the energy-momentum dispersion can be observed. At weak
coupling, the noninteracting bands approaching the Fermi
energy at (π,0), (0,π ), and (π/2,π/2) are gapped out at the
Fermi energy. Bands at (π,π ) and (0,0) do not exist or are very
weak. At approximately J/t ≈ 1.4, this dispersion changes.
The bands approaching the Fermi energy are bent towards
each other. The spectral weight at (π,0) and (0,π ) close to the
Fermi energy is shifted to (π,π ). Although none of these bands
crosses the Fermi energy, we nevertheless observe a similar
change in the energy-momentum dispersion at half-filling as
for the doped system.

VI. PHASE TRANSITIONS

As we have shown above, the Fermi surface changes within
the SDW phase. We will show now that the phase transition
between the SDW phase and the paramagnetic phase is also
influenced by this change inside the SDW phase. In Fig. 7,
we analyze the transition between the SDW state and the
paramagnetic state at weak coupling and conduction-band
filling 〈n〉 ≈ 0.8. This represents an example for the transition
between the small Fermi-surface SDW and the large Fermi-
surface paramagnetic state. We show in Fig. 7 the polarization
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FIG. 6. (Color online) Calculated Fermi surfaces. (Top) Fermi surfaces across the transition between the weak-coupling SDW and the
paramagnetic state at conduction band filling 〈n〉 ≈ 0.8 and (from left to right) J/t = (0.6; 0.8; 1.0; 1.2; 1.4). The transition takes place at
J = t . (Middle) Fermi surfaces inside the SDW phase for (from left to right) J/t = (0.8; 1.0; 1.2; 1.4) and 〈n〉 ≈ 0.9. The Fermi surface
topology changes at J/t = 1.2 (second from right). (Bottom) Fermi surfaces for different dopings across the phase transition between the
strong-coupling SDW and the paramagnetic state at J/t = 1.8 for (from left to right) 〈n〉 = (0.98; 0.93; 0.85). The magnetic order vanishes in
the middle panel.

of the conduction electrons (top), the spin-spin correlation
between localized spins and conduction electrons (middle),
and the double occupancy of the conduction electrons (bot-
tom). We only show the expectation values corresponding

0.6 0.8 1 1.2 1.4
J/t
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FIG. 7. First-order phase transition between the SDW phase and
the paramagnetic phase at weak coupling and 〈n〉 ≈ 0.8. The spin
polarization as well as the charge density order vanish abruptly at
J/t ≈ 1. The figure shows the electron polarization (top), the spin-
spin-correlation, 〈Sc

+SS
−〉, between conduction electrons and localized

moments (middle), and the double occupancy of the conduction
electrons (bottom).

to the maximally polarized regions of the SDW. As can be
clearly seen, the electron polarization vanishes abruptly around
J/t = 1, which signifies a first-order transition between the
SDW phase and the paramagnetic phase. We note that within
the SDW phase also the electrons in the low-electron-density
regions are polarized within this parameter region and that also
this polarization jumps abruptly to zero at the phase transition.
Exactly at this interaction strength, the Fermi surface changes
from small to large. We also observe small discontinuities
in the spin-spin correlation and the double occupancy at the
phase transition. However, both discontinuities are not very
significant. We furthermore note that although the Fermi
surface becomes small, the spin-spin correlation does not
vanish at weak coupling.

The transition at strong coupling between the SDW phase
and the paramagnetic phase looks completely different. We
show the polarization of the conduction electrons (top), the
spin-spin correlation between localized spins and conduction
electrons (middle), and the double occupancy of the conduc-
tion electrons (bottom) for conduction-band fillings across
the phase transition at J/t = 1.8 in Fig. 8. Contrary to the
phase transition at weak coupling, the electron polarization
behaves smoothly upon doping at strong coupling. We observe
the well-known second-order phase transition between the
SDW phase and the paramagnetic phase. Also the spin-spin
correlation and the double occupancy seem to be smooth across
the phase transition, although there might be small kinks.

Finally, let us take a look at expectation values across
the transition of the Fermi surface inside the SDW phase.
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FIG. 8. Second-order phase transition at J/t = 1.8 for different
conduction-band fillings. The figure shows the same quantities as in
Fig. 7.

Figure 9 shows the same quantities as shown in Figs. 7
and 8, but for 〈n〉 ≈ 0.9 and different interaction strengths.
We have marked the coupling strengths, at which the Fermi
surface changes from small to large. At these interaction
strengths, we do not observe any signs of a transition within the
shown expectation values. All quantities including polarization
as well as spin-spin correlations behave smoothly without
any kink. Only for large interaction strength, J/t ≈ 1.6,
we observe the second-order phase transition between the
SDW phase with large Fermi surface and the paramagnetic
phase. Because these results are for the doped system, this
transition occurs already for J/t ≈ 1.6 compared to J/t ≈ 2.2
at half-filling.

Summarizing our results for the static expectation values,
we find a first-order phase transition between the SDW
phase with small Fermi surface at weak coupling and the
paramagnetic phase, and a second-order phase transition
between the SDW phase with large Fermi surface at strong
coupling and the paramagnetic phase. The change between
these two transitions seems to coincide with the change in

FIG. 9. (Color online) The same quantities as in Figs. 7 and 8
across the Lifshitz transition within the SDW phase. The shaded area
corresponds to the interaction strength at which the Fermi surface
changes from small to large.

the Fermi-surface topology occurring inside the SDW phase.
However, we do not observe any sign in the static expectation
values, although the Fermi surface changes inside the SDW
phase.

VII. CONCLUSIONS

We have analyzed the phase diagram of the Kondo lattice
model close to half-filling by RDMFT. We have demonstrated
the existence of incommensurate SDW states which coexist
with CDWs in the Kondo lattice model for a wide range
of parameters. Although the existence of SDW states can
be expected away from half-filling, most of the previous
calculations have neglected this possibility.

Remarkably, we have found that within this metallic SDW
phase the Fermi surface changes from small at weak coupling
to large at strong coupling. This Lifshitz transition, which
does not seem to affect static quantities such as polarization
and spin-spin correlations, is accompanied by a change in the
order of the phase transition between the SDW phase and the
heavy fermion paramagnetic phase. While we have found a
first-order transition between the weak-coupling small Fermi-
surface SDW state and the large Fermi-surface paramagnetic
state, we have found a continuous transition between the large
Fermi-surface SDW at strong coupling and the large Fermi-
surface paramagnetic state.

We want to note that a similar transition between a large
Fermi-surface and a small Fermi-surface antiferromagnetic
state has been found in variational Monte Carlo (VMC)
calculations [72–75], although in these calculations incom-
mensurate SDW states have not been analyzed. These VMC
calculations have also shown that the order of the phase
transition between the paramagnetic state and the antiferro-
magnetic state changes from first order at weak coupling to
second order at strong coupling. Furthermore, these VMC
calculations have confirmed the Lifshitz transition inside
the antiferromagnetic phase. Thus, our RDMFT calculations,
which take incommensurate SDW states into account, agree
with these previous VMC calculations. Antiferromagnetic
states with small and large Fermi surface have also been
found in a different DMFT study [53] and dynamical cluster
approximation (DCA) studies [76,77] using the Néel state
away from half-filling instead of SDWs. Finally, we want
to note that a similar Lifshitz transition has been observed
in the ferromagnetic phase of the Kondo lattice model [54].
Thus a change in the Fermi-surface topology when increasing
the interaction strength seems to be a general property of the
Kondo lattice model and not specific to the SDW phase close
to half-filling.

Comparing our results to the global phase diagram for heavy
fermions, we observe two important differences in our results.
Although we find an SDW phase with small Fermi surface
and the other with large Fermi surface, the phase transition
between the SDW phase with small Fermi surface and the
paramagnetic state is of first order, while it is of second order
in the global phase diagram. Second, the spin-spin correlations
do not vanish in the SDW phase with small Fermi surface.
Thus we do not observe a local quantum critical point in
the Kondo lattice model within the DMFT approximation,
which is supposed to be between the small Fermi-surface
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SDW phase and the paramagnetic phase. This phase transition
turns out to be first order in our calculations. We only find
the previously known continuous quantum phase transition at
strong coupling between the large Fermi-surface SDW and the
paramagnetic phase. However, we cannot rule out that a local
quantum critical point might occur in the frustrated KLM, or
including long range-interactions, or by taking into account
spatial fluctuations, which are not included in this DMFT
study. By including, for example, an intersite exchange, the
strength of the RKKY interaction will be increased, while
the Kondo effect is not strongly influenced. One can thus
expect that the antiferromagnetic phase, and especially the

small Fermi-surface antiferromagnetic phase, extends to larger
interactions strengths. Thus it might be possible in that case
that the Lifshitz transition merges with the continuous quantum
phase transition.
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(2015).
[58] J. Otsuki, Phys. Rev. Lett. 115, 036404 (2015).
[59] L. P. Regnault, W. A. C. Erkelens, J. Rossat-Mignod, P. Lejay,

and J. Flouquet, Phys. Rev. B 38, 4481 (1988).
[60] O. Stockert, E. Faulhaber, G. Zwicknagl, N. Stüßer, H. S. Jeevan,

M. Deppe, R. Borth, R. Küchler, M. Loewenhaupt, C. Geibel
et al., Phys. Rev. Lett. 92, 136401 (2004).

[61] W. Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk,
J. W. Lynn, and R. W. Erwin, Phys. Rev. B 62, R14621 (2000).

[62] M. Hamada and H. Shimahara, Phys. Rev. B 51, 3027 (1995).
[63] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[64] R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

(2008).
[65] R. Peters, T. Pruschke, and F. B. Anders, Phys. Rev. B 74, 245114

(2006).

[66] A. Weichselbaum and J. von Delft, Phys. Rev. Lett. 99, 076402
(2007).

[67] R. Peters and N. Kawakami, Phys. Rev. B 89, 155134 (2014).
[68] P. Abbamonte, A. Rusydi, S. Smadici, G. D. Gu, G. A. Sawatzky,

and D. L. Feng, Nat. Phys. 1, 155 (2005).
[69] K. Ishida, K. Okamoto, Y. Kawasaki, Y. Kitaoka, O. Trovarelli,

C. Geibel, and F. Steglich, Phys. Rev. Lett. 89, 107202 (2002).
[70] S. Lausberg, A. Hannaske, A. Steppke, L. Steinke, T. Gruner,

L. Pedrero, C. Krellner, C. Klingner, M. Brando, C. Geibel
et al., Phys. Rev. Lett. 110, 256402 (2013).

[71] J. Bauer and A. C. Hewson, Eur. Phys. J. B 57, 235 (2007).
[72] H. Watanabe and M. Ogata, Phys. Rev. Lett. 99, 136401

(2007).
[73] H. Watanabe and M. Ogata, Physica B: Condens. Matter 403,

1390 (2008).
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