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Chiral topological superconductor and half-integer conductance plateau from quantum
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We propose to realize a two-dimensional chiral topological superconducting (TSC) state from the quantum
anomalous Hall plateau transition in a magnetic topological insulator thin film through the proximity effect to a
conventional s-wave superconductor. This state has a full pairing gap in the bulk and a single chiral Majorana mode
at the edge. The optimal condition for realizing such chiral TSC is to have inequivalent superconducting pairing
amplitudes on top and bottom surfaces of the doped magnetic topological insulator. We further propose several
transport experiments to detect the chiral TSC. One unique signature is that the conductance will be quantized
into a half-integer plateau at the coercive field in this hybrid system. In particular, with the point contact formed by
a superconducting junction, the conductance oscillates between e2/2h and e2/h with the frequency determined
by the voltage across the junction. We close by discussing the feasibility of these experimental proposals.
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I. INTRODUCTION

The search for topological states of matter has become a
central focus in condensed matter physics. Chiral topological
superconductors (TSC) in two-dimensions (2D) with an odd-
integer Chern number are predicted to host a Majorana zero
mode in the vortex core, which obeys non-Abelian statistics
[1,2] and has potential applications in topological quantum
computation [3]. A chiral TSC with Chern number N breaks
time-reversal symmetry, and has a full pairing bulk gap and N
topologically protected gapless chiral Majorana edge modes
(CMEMs), which can be viewed as a superconducting analogy
of the quantum Hall (QH) state [4–6]. As a minimal topological
state in 2D, the N = 1 chiral TSC is of particular interest, as
its edge state has only half the degrees of freedom of the QH
state with Chern number C = 1. Intensive efforts have been
made to search for the chiral TSC in 2D [7–17], however, it
has not yet been confirmed in experiments.

In principle, a QH state with Chern number C in proximity
with an s-wave superconductor (SC) can be naturally viewed as
a chiral TSC with even number N = 2C CMEMs. Therefore,
it is theoretically possible to realize a chiral TSC with
odd number of CMEMs near a QH plateau transition [12].
However, the strong magnetic field required in a QH state
will severely hinder the superconducting proximity. Instead,
the quantum anomalous Hall (QAH) state has a finite Chern
number C in the absence of an external magnetic field [18,19],
which has been theoretically predicted in magnetic topological
insulators (TIs) with ferromagnetic (FM) ordering [20–30]
and experimentally realized (for C = ±1) in both Cr-doped
[31–35] and V-doped [36] (Bi,Sb)2Te3 magnetic TI thin films.
More recently, a new zero-plateau QAH state with C = 0
and the plateau transitions among C = ±1,0 states have
been theoretically predicted [37] and experimentally observed
[38,39]. Without requiring a large external magnetic field, the
plateau transition from the C = ±1 QAH to the zero-plateau
C = 0 state is a unique parent system for realizing a N = ±1
chiral TSC.

In this paper, we propose to realize the N = ±1 chiral
TSC in a magnetic TI near the QAH plateau transition via the

proximity effect to an s-wave SC. The optimal condition for
realizing the chiral TSC is to have inequivalent SC pairing
amplitudes on top and bottom surfaces of the doped magnetic
TI. We then propose several transport experiments to detect
this chiral TSC. Generally, the conductance could be quantized
into a half-integer plateau at the coercive field in this hybrid
system (Fig. 1), as a signature of the neutral CMEM backscat-
tering. In particular, with a point contact formed by a SC
junction (Fig. 4), the conductance oscillates with a frequency
determined by the voltage across the junction. Last, we briefly
discuss the temperature dependence on the transmission of
CMEM and the feasibility of these experimental proposals.

The organization of this paper is as follows. After this
introductory section, Sec. II describes the effective model
for the SC proximity effect of the QAH state in a magnetic
TI thin film. Section III presents the results on the phase
diagram, edge transport, and experimental proposals on point
contacts. Section IV presents discussion on the feasibility
of experimental realization of chiral TSC in a magnetic TI.
Section V concludes this paper. Some auxiliary materials are
relegated to Appendixes.

II. MODEL

To start, we consider the SC proximity effect of the QAH
state in a magnetic TI thin film with FM order. Without
the proximity effect, the low-energy physics of the system
only consists of the Dirac-type surface states (SS) [37].
The 2D effective Hamiltonian is H0 = ∑

k ψ
†
kH0(k)ψk, with

ψk = (ct
k↑,ct

k↓,cb
k↑,cb

k↓)T and

H0(k) = kyσxτ̃z − kxσyτ̃z + m(k)̃τx + λσz, (1)

where ckσ annihilates an electron of momentum k and spin
σ = ↑,↓, and superscripts t and b denote SS in the top
and bottom layers, respectively. σi and τ̃i (i = x,y,z) are
Pauli matrices for spin and layer, respectively. λ is the
exchange field along z axis induced by the FM ordering. Here
λ ∝ 〈S〉 with 〈S〉 being the mean-field expectation value of
the local spin, and the value of λ can be changed during
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FIG. 1. (Color online) The hybrid QAH-SC device. In region II,
a chiral TSC state is induced through the proximity effect to an s-wave
SC layer on top of the QAH in magnetic TI. A back-gate voltage Vbg

is applied to control the Fermi level in region II. Voltages V1 and V2

are applied on leads 1 and 2, respectively. The SC layer is grounded
through a lead in its bulk.

the magnetization reversal process in magnetic TIs. m(k) =
m0 + m1(k2

x + k2
y) describes the hybridization between the top

and bottom SS. The Chern number of the system is C = λ/|λ|
for |λ| > |m0|, and C = 0 for |λ| < |m0|. Correspondingly,
the system has |C| chiral edge state [37]. In proximity to
an s-wave SC, a finite pairing amplitude is induced in the
QAH system. The Bogoliubov-de Gennes (BdG) Hamil-
tonian becomes HBdG = ∑

k �
†
kHBdG�k/2, where �k =

[(ct
k↑,ct

k↓,cb
k↑,cb

k↓),(ct†
−k↑,c

t†
−k↓,c

b†
−k↑,c

b†
−k↓)]T and

HBdG =
(

H0(k) − μ �k

�
†
k −H ∗

0 (−k) + μ

)
,

�k =
(

i�1σy 0
0 i�2σy

)
.

(2)

Here μ is chemical potential, �1 and �2 are pairing gap
functions on top and bottom SS, respectively.

In a simple case for μ = 0 and �1 = −�2 = �, a basis
transformation [40] decouples the BdG Hamiltonian into two
models with opposite chirality, and

HBdG =
(

H+(k) 0
0 H−(k)

)
, (3)

where H±(k) = kyσx ∓ kxσyςz + [m(k) ± λ]σzςz ∓ �σyςy

with ςx,y,z the Pauli matrices in Nambu space. The topological
property of H+ is clearly seen by a further basis transformation
into a block diagonal form:

H+(k) =
(

h+(k) 0
0 −h∗

−(−k)

)
, (4)

where h±(k) = kyσx − kxσy + [m(k) + λ ± |�|]σz character-
izes a px ± ipy SC [1,7]. The BdG Chern number of h±(k)
depends only on the sign of mass m(k) + λ ± |�| at the 	 point
[37]. Therefore, the Chern number of H+(k) is N+ = −2 for
|�| < −m0 − λ, N+ = −1 for |�| > |m0 + λ| and N+ = 0
for |�| < m0 + λ. Similarly, the Chern number of H−(k) is
N− = 2 for |�| < λ − m0, N− = 1 for |�| > |m0 − λ| and
N− = 0 for |�| < m0 − λ. The total Chern number of the
system is then N = N+ + N−. Figure 3(a) shows the phase
diagram of the system. The phase boundaries are determined
by � ± (m0 ± λ) = 0, which reduce to the critical points

λ = ±|m0| between the C = ±1 QAH and the zero plateau
normal insulator (NI) for � = 0. An infinitesimal SC gap
drives the QAH phase into a N = ±2 TSC. More importantly,
the N = ±1 TSC state emerges in the neighborhood of the
transition between the QAH phase and NI phase.

III. RESULTS

A. Phase diagram

Now we turn to the optimal condition for realizing the
N = ±1 TSC. First, consider the phase diagram for μ = 0
and general values of �1 and �2. The phase boundaries are
determined by the bulk BdG gap closing in Eq. (2). Assuming
�2 = α�1 and α is real, the phase boundaries are given
by ∓(1 − α)�1λ + λ2 = m2

0 + α�2
1, as shown in Fig. 2. For

�1 = �2, the Chern number jumps directly from N = ±2 to
N = 0, and N = ±1 TSC phases disappear due to accidental
particle-hole symmetry in H0 with μ = 0. As �2 decreases, the
N = ±1 TSC phase space emerges and becomes the widest
at �2 = 0. In particular when �1�2 < 0, a helical TSC phase
with helical Majorana edge states emerges on the λ = 0 line
[Fig. 3(a)]. The general case for complex α is studied in
Appendix A, where the topology of phase diagram remains
unchanged. Next, for the case μ 	= 0, which corresponds to
the SC proximity effect of a doped or electrically gated QAH
system, the proximity effect is effectively enhanced by the
finite density of states at the Fermi level [12]. As shown in
Fig. 2, the phase space of N = ±1 TSC near the � = 0
axis enlarges from μ = 0 to μ 	= 0. Therefore, the optimal
condition for N = ±1 TSC is μ 	= 0 and �2 = 0. This leads
us to design the transport device in Fig. 1. The s-wave SC is
only grown on top of the magnetic TI in region II to ensure the
proximity pairing gap of the top SS is larger than that of the
bottom SS, while the Fermi level can be tuned by the back-gate.
The size of the SC layer should be larger than the back-gate
electrode so that there is no metallic regions in the device.
Similarly, one can also employ another device geometry by
using a global back gate and two top gates in region I and III,
to tune the Fermi levels in region I, II, and III separately.
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FIG. 2. (Color online) Phase diagram of the QAH-SC hybrid
system with typical parameters. (a) �1 = �, �2 = 0, μ = 0.
(b) �1 = �2 = �, μ = 0. (c) �1 = �, �2 = 0, μ = 0.7. (d) �1 =
−�2 = �, μ = 0.7. Here �1, �2, μ are in the units of |m0|.

064520-2



CHIRAL TOPOLOGICAL SUPERCONDUCTOR AND HALF- . . . PHYSICAL REVIEW B 92, 064520 (2015)

TSC

TSC TSC

TSC

NSC

1

0

[e2/h]

1

0

0.5

1

[e2/h]

A
B C

D

xy

12

A

B

C D

C’ B’
A’

C’

B’

A’

0QAH NI QAH

1/2

1/2

H

=0
QAH plateau

transi on

H

0

(a)

(b)

(c)

Helical 
TSC

= 1

= 2

=1

= 2

= 0

= 0

*
1H *

2H*
1H*

2H 0

TSCQAH QAH

(d)

= 2
I II III

= 1 = 1

A

(e)

TSCQAH QAH

= 1= 1 = 1

B

TSC
NI NI

(f)

= 1

C

NSC
NI NI

(g)

= 0

D

TSC
NI NI

(h)

= 1

C’

(i)

TSCQAH QAH

= 1= 1 = 1

B’

= 1 = 1

TSCQAH QAH

(j)

= 2

I II III

A’

|m0| |m0|

FIG. 3. (Color online) (a) Phase diagram of the QAH-SC hybrid
system for μ = 0 and �1 = −�2 ≡ �. Only � � 0 is shown.
(b) Without SC proximity effect, the σxy = −1 → 0 → 1 QAH
plateau transition occurs at the coercivity when the magnetization
flips. (c) With SC proximity effect to region II in hybrid device Fig.
1, σ12 shows plateau transition 1 → 1/2 → 0 → 1/2 → 1 in the
hysteresis loop. The half-integer plateau in σ12 manifests the N = 1
TSC. (d)–(j) The edge transport configuration at A, B, C, D, C′, B′,
and A′ in (c). There is no backscattering for N = ±2 TSC in (d), (j),
and Majorana backscattering for N = ±1 TSC in (e), (i). Red and
blue arrows represent (c ± c†) CMEMs, respectively. NSC: normal,
topologically trivial SC.

B. Edge transport and half-plateau

To identify the N = 1 TSC in the QAH-SC hybrid system,
one can probe the neutral Majorana nature of CMEM or
trap the vortex core zero mode. Several methods have been
proposed to measure the Majorana fermions [8,41–46]. Here,
we base our discussion on a recent proposal studying the
CMEM backscattering [46]. The basic setup is shown in Fig. 1,
consisting of a magnetic TI in proximity with a grounded top
SC layer in region II and two current leads at the corners. When
the magnetic domains of magnetic TI are aligned in the same
direction, the magnetic TI is in a QAH state with a single chiral
edge state propagating along the sample boundary. During
the flipping of the magnetic domains at the coercive field, λ

decreases and the magnetic TI enters the NI with a zero-plateau
in Hall conductance σxy over a finite range of magnetic field
[37–39], as shown in Fig. 3(b). Either perpendicular or in-plane
external magnetic field could induce such plateau transition
[39]. When the SC proximity effect is sufficiently strong, the
superconducting region II experiences the BdG Chern number
variation N = −2 → −1 → 0 → 1 → 2 as λ decreases in

the hysteresis loop [dashed line in Fig. 3(a)]. Therefore,
the transport setup Fig. 1 is a QAH/NI-TSC/NSC-QAH/NI
junction. As we will discuss in details below, the edge transport
features of the junction uniquely convey the topological
properties of the SC in region II.

The QAH edge state can be viewed as two CMEMs since a
C = 1 QAH state is topologically equivalent to a N = 2 TSC.
Therefore, in the case of QAHC=1-TSCN=2-QAHC=1 junction
[Fig. 3(j)], the edge current will be perfectly transmitted. By
contrast, if the junction is QAHC=1-TSCN=1-QAHC=1 [Fig.
3(i)], the chiral edge state in the QAH region separates into two
CMEMs at the TSC boundary [8,43]. One CMEM is perfectly
transmitted, while the other is totally reflected. The edge trans-
port of the junction is governed by the generalized Landauer-
Büttiker formalism, which includes the contributions from
both the normal scattering and Andreev scattering [47,48]. The
general relationship between current and voltage on leads 1 and
2 shown in Fig. 1 is I1 = (e2/h)[(1 − R + RA)(V1 − V 0

sc) −
(T ′ − T ′

A)(V2 − V 0
sc)], and I2 = (e2/h)[(1 − R′ + R′

A)(V2 −
V 0

sc) − (T − TA)(V1 − V 0
sc)]. Here V 0

sc = 0 is the voltage of
the grounded SC layer, I1 and I2 are currents flowing into
leads 1 and 2, respectively. R, T , RA, and TA are the normal
reflection, normal transmission, Andreev reflection, and An-
dreev transmission probabilities, respectively, for an electron
injected from the left, while R′, T ′, R′

A, and T ′
A are for an

electron coming from the right. The two-terminal conductance
is then defined as σ12 ≡ I/(V1 − V2) = (I1 − I2)/2(V1 − V2).
For the QAHC=1-TSCN=1-QAHC=1 junction in Fig. 3(i), the
probabilities of normal scattering and Andreev scattering are
equal [46], and we have R = RA = T = TA = R′ = R′

A =
T ′ = T ′

A = 1/4, resulting in a half-quantized conductance:

σ12 = e2

h
(T + RA) = e2

2h
. (5)

Moreover, since the SC layer is not floating but grounded,
the quantized net incoming current ISC = (V1 + V2)e2/h will
be flowing from the SC layer to ground. Here we point out
that the supercurrent due to the phase fluctuation of SC order
parameter may give a small correction to conductance, which
scales as (�/L)3, where � is the width of CMEM, and L is
the size of SC. For an estimation, � ∼ 0.5 μm, therefore such
correction is negligible for L > 50 μm. In contrast, the N = 2
TSC junction in Fig. 3(j) exhibits a quantized conductance
σ12 = e2/h [46].

The entire plateau transition of σ12 in the hybrid junction
device is shown in Fig. 3(c). In correspondence to the QAH
plateau transition of σxy in Fig. 3(b), σ12 also exhibits plateaus
quantized at e2/h and 0 when region II is N = ±2 TSC and
N = 0 NSC, respectively. In addition, an intermediate half-
quantized plateau at e2/2h could occur at the coercivity under
the condition |�| + |m0| > |λ| > |m0|, which is a unique
signature of the N = ±1 TSC in region II. We emphasize
that a plateau usually indicates a stable phase instead of
a fine-tuned state. The size of backscattering region is not
necessarily mesoscopic. In fact, the size L of the TSC region
sets a temperature scale kBTint ∼ vM/L, above which the
interference effect vanishes due to thermal averaging, where
vM is the Fermi velocity of CMEM. For an estimation,
L ∼ 200 μm, vM ∼ 2.0 eV Å, Tint ∼ 10 mK. Therefore,
the half-plateau is robust at large L and finite temperature
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FIG. 4. (Color online) (a) The point contact configuration of two
SC islands with SC phases φ1 and φ2, across which the reflection
and transmission amplitudes of the CMEMs are r and t . (b) The
conductance σ ′

12 as a function of τ for different coupling strengths ξ .
A dc current flows between a1 and a2, an ac voltage between them is
measured, with frequency f = 2eVsc/h.

T > Tint. The plateau transitions and corresponding edge
transport configuration in the hysteresis loop are illustrated in
Figs. 3(c)–3(j). In particular, four 1/2-plateaus occur around
the critical magnetic fields ±H ∗

1 and ±H ∗
2 shown in Fig. 3(c).

C. Point contact

Another useful transport configuration is a point contact
formed by two SC islands that allow the transmission of
CMEMs, as shown in Fig. 4(a). A voltage Vsc is ap-
plied onto island TSC1, while TSC2 is grounded. If either
TSC1 or TSC2 is a N = 2 TSC, the edge current will
be perfectly transmitted. Nontrivial physics occurs when
both TSC1 and TSC2 are N = 1 TSC. An incident edge
electron from b1 splits into two CMEMs, one is perfectly
transmitted along the edge, while the other is scattered at the
point contact with transmission amplitude t , which depends
on the phase difference δφ ≡ φ1 − φ2 of two TSCs (see
Appendix B). The I -V relation in this geometry is I1 =
(e2/h)[(1 − R + RA)(V1 − Vsc) − (T ′ − T ′

A)V2], and I2 =
(e2/h)[(1 − R′ + R′

A)V2 − (T − TA)(V1 − Vsc)], where R =
RA = R′ = R′

A = r2/4, T = T ′ = (1 + t)2/4, TA = T ′
A =

(1 − t)2/4, r is reflection amplitude and r2 + t2 = 1. There-
fore, I = e2(1 + t)(V1 − V2 − Vsc)/2h. Note that the current
is proportional to the tunneling amplitude t , not the tunneling
probability. If Vsc = 0, we have σ12 = (1 + t)e2/2h, which
directly measures t of the neutral CMEMs. A finite Vsc leads
to a time-dependent δφ, which in turn affects t . A simple
tunneling model for the CMEM is (also see Appendix B)

Htunnel = iσz∂x − κ(x) sin(δφ/2 − φ0)σy, (6)

where κ(x) is nonzero in a finite interval, and the basis
is the CMEMs (γ1,γ2) shown in Fig. 4(a). The transmis-
sion amplitude t at zero-energy in this model is t(δφ) =
1/ cosh[ξ sin(δφ/2 − φ0)], where ξ = ∫

dxκ(x)/2. Within
this model, t is purely real. With a fixed Vsc across the
point contact, δφ varies linearly with time τ with a slope
dδφ/dτ = 2eVsc/�. We can define a new conductance

σ ′
12 ≡ I

V1 − V2 − Vsc
= e2

2h
[1 + t(δφ)], (7)

which is a periodic function in time with the Josephson
junction frequency f = 2eVsc/h. Figure 4(b) shows σ ′

12 as a
function of time for different values of ξ . The time oscillation

shape of σ ′
12 are different for a weakly coupled point contact

(small ξ ) and a strongly coupled one (large ξ ). However,
σ ′

12 always oscillates between e2/2h and e2/h, since there
is always at least one perfectly transmitted CMEM, which is
also a unique feature of the N = 1 TSC state.

D. Temperature dependence

We further consider the temperature dependence of the
above CMEM transmission (see Appendix D). It is straightfor-
ward to see by a dimensional counting that t(δφ) in the above
free Majorana fermion model is marginal, therefore it remains
constant at low temperature T . When the leading four-fermion
interaction (irrelevant) is included, the tunneling amplitude
acquires a weak temperature dependence. For Vsc = 0, in this
case σ ′

12 = σ12, the renormalization group analysis gives a
power-law correction δt ∼ −λ2

pT 6 to t , where λp is the bare
fermion interaction strength. The conductance σ ′

12 ∝ (1 + t)
will therefore decrease as T increases. This perturbative
result is no longer valid above a characteristic temperature
of Tc ∼ λ

−1/3
p , when the correction δt is comparable to t . For

higher temperature Tc < T � |�|, t will flow toward 0, and
the two TSC islands will behave like a single connected TSC
analogous to that shown in Fig. 1. In this regime, one can
formulate a similar point-contact tunneling model between
the left and right edges of the new TSC as in Eq. (6), but with
an additional vortex tunneling through the bulk TSC. At high
temperature, the leading contribution to t then comes from the
vortex tunneling, which leads to t ∼ λ2

σ T −7/4, where λσ is the
bare vortex tunneling strength. Therefore, the half-quantized
plateau in σ12 remains robust in the high-temperature regime
Tc < T � |�|.

IV. DISCUSSION AND EXPERIMENTAL REALIZATION

Finally, we discuss the feasibility of our proposals. Exper-
imentally, to observe the N = ±1 chiral TSC and all of the
four half-quantized conductance plateaus, a good proximity
effect between SC and magnetic TI is necessary. Moreover, the
critical field H⊥

c of SC should be larger than the coercivity H ∗
1,2

in magnetic TI. From Refs. [38,39], the estimated H ∗
1 ∼ 0.05

T and H ∗
2 ∼ 0.2 T. The candidate SC materials are Nb and

NbSe2. The bulk Nb is a type I SC with Tsc = 9.6 K and
H⊥

c ∼ 0.2 T, while a thin film Nb becomes a type II SC
with upper critical field H⊥

c2 ∼ 1 T. NbSe2 is a type II SC
and shows good proximity effect with Bi2Se3 [49] even at
4.2 K and 0.4 T, where the proximity effect induced SC
gap is � ∼ 0.5 meV. The width of the CMEM � can be
estimated as vF /� ∼ 0.52 μm, where the Fermi velocity
vF ∼ 2.6 eV Å [31]. For a typical junction voltage Vsc ∼ 1 μV,
f ∼ 0.48 GHz, which is easily accessible in experiments.

V. CONCLUSION

In summary, we propose to realize the N = ±1 chiral TSC
in a magnetic TI near the QAH plateau transition via the
proximity effect to an s-wave SC. We show that inequivalent
SC pairing amplitude on top and bottom surfaces in doped
magnetic TIs will optimize the N = ±1 chiral TSC phases.
Several edge transport measurements have been proposed to
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identify such N = 1 TSC in the QAH-SC hybrid system.
In particular, the conductance could be quantized into a
half-integer plateau at the coercive field in this hybrid system,
as a unique signature of the neutral CMEM backscattering.
We emphasize that such an experiment can work at reasonable
temperature and does not depend on the interference effect of
CMEM. We hope the theoretical work here can aid the search
for chiral TSC phases in hybrid systems.

ACKNOWLEDGMENTS

We thank David Goldhaber-Gordon and Andre Broido
for useful comments on the draft. This work is supported
by the US Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering,
under Contract No. DE-AC02-76SF00515 and in part by
FAME, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and
DARPA.

APPENDIX A: PHASE DIAGRAM UNDER COMPLEX
α = �2/�1

In the paper we have only considered the case α = �2/�1

is real. In general, in the absence of time reversal symmetry (as
is in our model), α = |α|eiφα is complex. Correspondingly, the
phase diagram will be modified quantitatively, but the topology
of the phase boundaries remains unchanged compared to those
shown in Fig. 2 of the paper.

By a proper choice of basis we can always set �1 = �

real. As an illustrative example, we consider here the case
|α| = 1, namely α = �2/�1 = eiφα . Via a unitary trans-
formation (ct

k↑,ct
k↓,cb

k↑,cb
k↓) → (ct

k↑,ct
k↓,eiφα/2cb

k↑,eiφα/2cb
k↓),

�2 is transformed into a real number �′
2 = �1 = �, while

the hybridization m(k) between the top and bottom SS
becomes a complex number e−iφα/2m(k). Therefore, we
can always set two of the three parameters �1, �2,
and m0 to real numbers. Diagonalizing the BdG Hamil-
tonian HBdG yields the energy spectrum E2 = k2 + [λ ±√

[m(k) sin(φα/2) ± �]2 + m(k)2 cos2 (φα/2)]
2
. The phase

boundaries are given by the gap closing of the energy spectrum:

λ ±
√

[m0 sin(φα/2) ± �]2 + m2
0 cos2 (φα/2) = 0, (A1)

namely, the following hyperbolas:

λ2 − [� ± m0 sin(φα/2)]2 = m2
0 cos2 (φα/2). (A2)

The phase diagram is shown in Fig. 5. As one can see,
the topology of the phase diagram does not change much.
In particular, when φα = 0 and π , the phase diagram is as
indicated in Figs. 2(b) and 3(a) of the paper, respectively.

APPENDIX B: DERIVATION OF THE EFFECTIVE
TUNNELING HAMILTONIAN

Without loss of generality, consider the case |�| > λ −
m0 > 0. The QAH has Chern number C = 1 and the SC in
region II has BdG Chern number N = 1, both of which come
from the lower block H−(k) of the BdG Hamiltonian HBdG.

0

m0 sin φα
2

m0 cos φα
2

m0-m0 λ
λ

Δ

N=2 TSC

N=1 TSC

N=1 TSC

N=-1 TSC

N=-1 TSC

N=-2 TSC

N=0 NSC

FIG. 5. The phase diagram for �2 = eiφα �1 and μ = 0. When
φα = 0, the N = ±1 TSC phases disappear, while when φα = π ,
the phase spaces of N = 1 and N = −1 TSC touch each other, as
indicated in Figs. 2(b) and 3(a) of the main text, respectively.

When the pairing amplitude of the superconductor is � =
|�|eiφ = �1 = −�2 with a phase φ, H−(k) can be rewritten as

H−(k) =
(

h′
+(k) 0
0 −h′∗

−(−k)

)
, (B1)

h′
±(k) =

(
m(k) − λ ± |�| −ikx ± ky

ikx ± ky −m(k) + λ ∓ |�|
)

, (B2)

under the following new basis 1√
2
(e−iφ/2ck↓ + eiφ/2c

†
−k↑,

e−iφ/2ck↑ + eiφ/2c
†
−k↓,−e−iφ/2ck↓ + eiφ/2c

†
−k↑,−e−iφ/2ck↑ +

eiφ/2c
†
−k↓), where we have used the notation

ck↑ = ct
k↑ − cb

k↑√
2

, (B3)

and

ck↓ = ct
k↓ + cb

k↓√
2

. (B4)

The Majorana edge state between the QAH (where |�| = 0)
and the TSC (where |�| > λ − m0 > 0) is given by h′

+(k).
As shown in Fig. 4 of the paper, the lower TSC1 and

the upper TSC2 have superconducting phases φ1 and φ2,
respectively. For simplicity, we shall approximate m(k) as m0,
which does not change the topological physics. If the upper
edge of the lower TSC1 is set as y = 0, the Hamiltonian of the
corresponding Majorana edge state can be derived as

H1 =
∫

dx iγ1(x)∂xγ1(x), (B5)

where

γ1(x) = e−iφ1/2c1(x) + eiφ1/2c
†
1(x)√

2
, (B6)

c1(x) =
∫ ∞

−∞
e(|�|�(−y)+m0−λ)y

× [eiπ/4c↑(x,y) + e−iπ/4c↓(x,y)]dy, (B7)

with �(y) defined as the Heaviside function. Similarly, the
lower edge of the upper TSC2 at y = y0 > 0 has a low-energy

064520-5
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Hamiltonian,

H2 = −
∫

dx iγ2(x)∂xγ2(x), (B8)

where

γ2(x) = e−iφ2/2c2(x) + eiφ2/2c
†
2(x)√

2
, (B9)

c2(x) =
∫ ∞

−∞
e(λ−m0−|�|�(y−y0))y[e−iπ/4c↑(x,y)

+ eiπ/4c↓(x,y)]dy. (B10)

We shall assume the point contact extends in the interval 0 <

x < L, and the two edges have a nonzero hopping and pairing
term:

HI = −
∫ L

0
dx[Jhc

†
1(x)c2(x)

+ Jp(�∗
1 + �∗

2)c1(x)c2(x) + H.c.], (B11)

where �1,2 = |�|eiφ1,2 . When projected into the low-energy
Hilbert space of γ1 and γ2 via the substitutions

c1 → eiφ1/2γ1/
√

2, c2 → eiφ2/2γ2/
√

2, (B12)

this term becomes

HI = 2
∫ L

0
dx iκ(x) sin

(
δφ

2
− φ0

)
γ1(x)γ2(x)

= 2
∫ L

0
dx iλ(x)γ1(x)γ2(x), (B13)

where

δφ = φ1 − φ2, (B14)

κ(x) = |Jh/2 + iIm(Jp)|, (B15)

φ0 = arg[Jh + i2Im(Jp)]. (B16)

For simplicity we have defined

λ(x) ≡ κ(x) sin

(
δφ

2
− φ0

)
. (B17)

The total tunneling Hamiltonian is then Htunnel = H1 + H2 +
HI as given in Eq. (6) of the paper. The eigenwavefunction
ψ = (η1,η2)T at energy E can then be obtained by solving the
following Shrödinger equation:(

i∂x iλ(x)
−iλ(x) −i∂x

)(
η1

η2

)
= E

(
η1

η2

)
. (B18)

The solution for a wave incident from x = −∞ with momen-
tum k is E = k, and

(η1(x),η2(x))

=

⎧⎪⎪⎨
⎪⎪⎩

(
e−ikx, λ sinh(

√
λ2−k2L)

G[L] eikx
)

(x � 0)(G[L−x]
G[L] , λ sinh[

√
λ2−k2(L−x)]
G[L]

)
(0 < x � L)(√

λ2−k2e−ikx

G[L] ,0
)

(x > L)

, (B19)

where function G[x] = √
λ2 − k2 cosh(

√
λ2 − k2x) −

ik sinh(
√

λ2 − k2x). At low energies k � λ, the wave
function can be approximately written as

(η1(x), η2(x))

= 1

cosh λL

(
cosh

[∫ ∞

x

λ(x ′)dx ′
]
, sinh

[∫ ∞

x

λ(x ′)dx ′
])

,

(B20)

from which the transmission and reflection amplitudes can be
extracted out as

t = 1

cosh
(∫

dxλ(x)
) = 1

cosh [ξ sin(δφ/2 − φ0)]
, (B21)

r = tanh

(∫
dxλ(x)

)
= tanh [ξ sin(δφ/2 − φ0)], (B22)

where ξ = ∫
dxκ(x). Note that t is always real and positive

at low energies. For scattering at a finite energy E = k, the
transmission amplitude t is generally complex.

APPENDIX C: S-MATRIX AND CONDUCTANCE IN
GENERAL JOSEPHSON JUNCTION SETUP

Here we formulate the scattering matrix of edge states in
the setup of Fig. 4(a), and derive the conductance σ ′

12. The
edge fermions at four ends of the sample are denoted by a1,2

and b1,2 as shown in Fig. 4(a). With transmission coefficient t

and reflection coefficient r at the point contact, the scattering
matrix S due to the point contact is⎛

⎜⎜⎜⎜⎝
a1,k + a

†
1,−k

a1,k − a
†
1,−k

a2,k + a
†
2,−k

a2,k − a
†
2,−k

⎞
⎟⎟⎟⎟⎠ = S

⎛
⎜⎜⎜⎜⎝

b1,k + b
†
1,−k

b1,k − b
†
1,−k

b2,k + b
†
2,−k

b2,k − b
†
2,−k

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

r 0 t 0

0 0 0 1

t∗ 0 −r∗ 0

0 1 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

b1,k + b
†
1,−k

b1,k − b
†
1,−k

b2,k + b
†
2,−k

b2,k − b
†
2,−k

⎞
⎟⎟⎟⎟⎠.

(C1)

Upon basis transformation from Majorana fermions to charged
fermions on QAH edges, we have⎛
⎜⎜⎝

a1,k

a
†
1,−k
a2,k

a
†
2,−k

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎝

r r t + 1 t − 1
r r t − 1 t + 1

t∗ + 1 t∗ − 1 −r∗ −r∗
t∗ − 1 t∗ + 1 −r∗ −r∗

⎞
⎟⎠

⎛
⎜⎜⎝

b1,k

b
†
1,−k
b2,k

b
†
2,−k

⎞
⎟⎟⎠,

(C2)

based on which the normal, Andreev transmission, and
reflection probabilities are given as T = |t + 1|2/4, TA =
|t − 1|2/4, and R = RA = |r|2/4, respectively. According to
the generalized Landauer-Büttiker formula, the conductance
defined in the main text is

σ ′
12 = 1 + Re(t)

2

e2

h
. (C3)
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Note that the conductance σ ′
12 merely depends on the real

part of Majorana transmission coefficient t , physically it
is due to the fact that charged fermions are treated as
combinations of Majorana fermions with transmissions t and
perfect transmission 1.

APPENDIX D: TEMPERATURE DEPENDENCE AND
RENORMALIZATION GROUP ANALYSIS

In this section we analyze the temperature dependence of
Majorana transmission coefficient t by renormalization group
technique in detail [50,51]. Specifically, we focus on its real
part Re(t), since it is directly related to the conductance σ12.
Our starting point is the action for the model in Eq. (6) of the
paper,

S0 =
∫

dτ

∫
dx[γ1i(∂τ + ∂x)γ1 + γ2i(∂τ − ∂x)γ2

+ 2ξδ(x) sin(δφ/2 − φ0)iγ1γ2]. (D1)

Since the Majorana tunneling occurs locally at x = 0, the
scaling dimension of the tunneling strength ξ vanishes; i.e.,
[ξ ] = 0. Therefore, ξ is invariant when the temperature T of
the system changes, and so does the transmission coefficient t .

The temperature dependence of t comes from higher
irrelevant terms at the point contact. The leading irrelevant
term is a four-fermion interaction of the following form:

Hp =
∫

dxλpδ(x)γ1∂xγ1γ2∂xγ2. (D2)

It represents the tunneling of one pair of Majorana fermions
from one edge to the other. The scaling dimension of λp is
[λp] = −3, hence it is irrelevant and scales as λeff

p ∼ λpT 3

when T → 0. Increasing the temperature T will enhance the
effective interaction strength λp, which affects the transmis-
sion coefficient t .

The contribution of Hp to the transmission coefficient t

can be calculated perturbatively as follows. Suppose both ξ

and λp are small, so that perturbation theory can be used.
We shall regard HI = 2iξδ(x) sin(δφ/2 − φ0)γ1γ2 and Hp

given above as the perturbation. Consider an in-state |i〉 =
γ1,−k|�〉 of Majorana fermion γ1, and a transmitted out-state
|f 〉 = γ1,−k′ |�〉, where |�〉 is the system ground state. The
transmission coefficient t is then given by

t ≈ 〈f |Tτ e
−i

∫ ∞
−∞(HI +Hp)dτ |i〉, (D3)

where Tτ stands for the time ordering. The zero-order t (0) is
simply δkk′ . The first-order contribution t (1) is

t (1) = 〈f | − i

∫
(HI + Hp)dτ |i〉. (D4)

Since HI is odd in γ1 and γ2, its first-order contribution
vanishes. The second term of Hp is purely imaginary and
therefore does not contribute to the conductance σ ′

12. The
second-order correction is

t (2) ∼ −1

2
〈f |Tτ

∫
(HI + Hp)(τ )(HI + Hp)(τ ′)dτdτ ′|i〉.

(D5)
The H 2

I term gives a constant contribution ∼−ξ 2 sin2(δφ/2 −
φ0), in agreement with calculations in Appendix B. The cross
term HIHp vanishes because it is odd in γ1 and γ2. The H 2

p

term results in a temperature-dependent correction to the real
part of transmission coefficient t as

δRe(t) ∼ −δkk′
(
λeff

p

)2 = −δkk′λ2
pT 6. (D6)

Therefore, the transmission coefficient t generically decreases
as temperature T increases. When the temperature T is above
a characteristic temperature Tc ∼ λ

−1/3
p , the interaction λp at

the point contact dominates, so that t becomes small and r

becomes large. In this case, the above perturbative treatment is
no longer valid. However, this case can be effectively viewed
as a breaking up of original Majorana edge states γ1 and γ2 and
a remerging of them into two new Majorana edge states ψ1 and
ψ2 on the left and right of the point contact, and of the two TSCs
merging into a single TSC. In the temperature range Tc �
T � |�|, we can do a perturbation calculation about the high
temperature fixed point before the superconducting phase is
destroyed.

This scenario is very similar with our setup in Fig.
1(a), except that the two edges are brought together at the
point contact. Since the region between the edges in this
case is a SC, there are both fermion tunnelings and vortex
tunnelings between edges [52]. The effective action for this
point contact is

S ′ =
∫

dτ

∫
dy[ψ1i(∂τ + vm∂y)ψ1 + ψ2i(∂τ − vm∂y)ψ2

+ λψδ(y)iψ1ψ2 + λσ δ(y)σ1σ2], (D7)

where σ1 and σ2 are the vortex operators on edges with a scaling
dimension [σ1] = [σ2] = 1/16. Dimension counting renders
[λψ ] = 0 and [λσ ] = 7/8, so the vortex-vortex tunneling is the
most relevant. Therefore, at a high temperature T , the vortex-
vortex tunneling term gives the temperature dependence of
transmission coefficient t :

t ∼ λ2
σ T −7/4. (D8)

The power-law relation is valid above a characteristic tempera-
ture T ′

c ∼ λ
8/7
σ , provided the SC gap |�| is much higher. In fact,

this confirms the robustness of the half-quantized plateau. For
in the setup with reasonable finite temperature, the edges are
far away from each other, so the tunneling strengths including
λσ are sufficiently tiny, resulting in an extremely low T ′

c .

[1] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[2] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[4] G. E. Volovik, Sov. Phys. JETP 67, 1804 (1988).

[5] X.-L. Qi, T. L. Hughes, S. Raghu, and S.-C. Zhang, Phys. Rev.
Lett. 102, 187001 (2009).

[6] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[7] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).

064520-7

http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://www.jetp.ac.ru/cgi-bin/e/index/e/67/9/p1804?a=list
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevLett.102.187001
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.100.096407


JING WANG, QUAN ZHOU, BIAO LIAN, AND SHOU-CHENG ZHANG PHYSICAL REVIEW B 92, 064520 (2015)

[8] L. Fu and C. L. Kane, Phys. Rev. Lett. 102, 216403
(2009).

[9] M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103,
020401 (2009).

[10] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.
Rev. Lett. 104, 040502 (2010).

[11] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[12] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 82,

184516 (2010).
[13] J. Röntynen and T. Ojanen, Phys. Rev. Lett. 114, 236803

(2015).
[14] J. Li et al., arXiv:1501.00999 (2015).
[15] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657

(2003).
[16] S. Raghu, A. Kapitulnik, and S. A. Kivelson, Phys. Rev. Lett.

105, 136401 (2010).
[17] Q. H. Wang, C. Platt, Y. Yang, C. Honerkamp, F. C. Zhang,

W. Hanke, T. M. Rice, and R. Thomale, Europhys. Lett. 104,
17013 (2013).

[18] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[19] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[20] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[21] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[22] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).
[23] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys.

Rev. Lett. 101, 146802 (2008).
[24] R. Li, J. Wang, X. L. Qi, and S. C. Zhang, Nat. Phys. 6, 284

(2010).
[25] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang,

Science 329, 61 (2010).
[26] J. Wang, B. Lian, H. Zhang, Y. Xu, and S.-C. Zhang, Phys. Rev.

Lett. 111, 136801 (2013).
[27] J. Wang, B. Lian, H. Zhang, and S.-C. Zhang, Phys. Rev. Lett.

111, 086803 (2013).
[28] J. Wang, B. Lian, and S.-C. Zhang, arXiv:1409.6715 [Phys. Scr.

(to be published)].
[29] M. Onoda and N. Nagaosa, Phys. Rev. Lett. 90, 206601 (2003).
[30] R. R. Biswas and A. V. Balatsky, Phys. Rev. B 81, 233405

(2010).
[31] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo,

K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X.
Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L.
Lu, X.-C. Ma, and Q.-K. Xue, Science 340, 167 (2013).

[32] J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi,
Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Nat. Phys.
10, 731 (2014).

[33] X. Kou, S.-T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao,
T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T.-K. Lee, W.-L.
Lee, and K. L. Wang, Phys. Rev. Lett. 113, 137201 (2014).

[34] A. J. Bestwick, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and
D. Goldhaber-Gordon, Phys. Rev. Lett. 114, 187201 (2015).

[35] A. Kandala, A. Richardella, S. Kempinger, C.-X. Liu, and
N. Samarth, Nature Commun. 6, 7434 (2015).

[36] C.-Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf,
D. Heiman, S.-C. Zhang, C. Liu, M. H. W. Chan, and J. S.
Moodera, Nat. Mater. 14, 473 (2015).

[37] J. Wang, B. Lian, and S.-C. Zhang, Phys. Rev. B 89, 085106
(2014).

[38] Y. Feng et al., arXiv:1503.04569 [Phys. Rev. Lett. (to be
published)].

[39] X. Kou et al., arXiv:1503.04150 [Nat. Commun. (to be pub-
lished)].

[40] The basis in Eq. (3) is (ctk↑ + cbk↑,ctk↓ − cbk↓,c
†
tk↑ +

c
†
bk↑,c

†
tk↓ − c

†
bk↓)T /

√
2 for H+(k) and (ctk↓ + cb,k↓,ctk↑ −

cbk↑,c
†
tk↓ + c

†
bk↓,c

†
tk↑ − c

†
bk↑)T /

√
2 for H−(k). k ≡ −k.

[41] Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103,
107002 (2009).

[42] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).
[43] A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev.

Lett. 102, 216404 (2009).
[44] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001

(2009).
[45] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[46] S. B. Chung, X.-L. Qi, J. Maciejko, and S.-C. Zhang, Phys. Rev.

B 83, 100512 (2011).
[47] M. P. Anantram and S. Datta, Phys. Rev. B 53, 16390 (1996).
[48] O. Entin-Wohlman, Y. Imry, and A. Aharony, Phys. Rev. B 78,

224510 (2008).
[49] M.-X. Wang, C. Liu, J.-P. Xu, F. Yang, L. Miao, M.-Y. Yao,

C. L. Gao, C. Shen, X. Ma, X. Chen, Z.-A. Xu, Y. Liu, S.-C.
Zhang, D. Qian, J.-F. Jia, and Q.-K. Xue, Science 336, 52 (2012).

[50] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).
[51] C. L. Kane and M. P. A. Fisher, “Edge-state transport”, in

Perspectives in Quantum Hall Effects (Wiley-VCH Verlag
GmbH, New York, 2007), pp. 109–159.

[52] P. Fendley, M. P. A. Fisher, and C. Nayak, Phys. Rev. B 75,
045317 (2007).

064520-8

http://dx.doi.org/10.1103/PhysRevLett.102.216403
http://dx.doi.org/10.1103/PhysRevLett.102.216403
http://dx.doi.org/10.1103/PhysRevLett.102.216403
http://dx.doi.org/10.1103/PhysRevLett.102.216403
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevB.82.184516
http://dx.doi.org/10.1103/PhysRevB.82.184516
http://dx.doi.org/10.1103/PhysRevB.82.184516
http://dx.doi.org/10.1103/PhysRevB.82.184516
http://dx.doi.org/10.1103/PhysRevLett.114.236803
http://dx.doi.org/10.1103/PhysRevLett.114.236803
http://dx.doi.org/10.1103/PhysRevLett.114.236803
http://dx.doi.org/10.1103/PhysRevLett.114.236803
http://arxiv.org/abs/arXiv:1501.00999
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/RevModPhys.75.657
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1103/PhysRevLett.105.136401
http://dx.doi.org/10.1209/0295-5075/104/17013
http://dx.doi.org/10.1209/0295-5075/104/17013
http://dx.doi.org/10.1209/0295-5075/104/17013
http://dx.doi.org/10.1209/0295-5075/104/17013
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevLett.101.146802
http://dx.doi.org/10.1103/PhysRevLett.101.146802
http://dx.doi.org/10.1103/PhysRevLett.101.146802
http://dx.doi.org/10.1103/PhysRevLett.101.146802
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1126/science.1187485
http://dx.doi.org/10.1126/science.1187485
http://dx.doi.org/10.1126/science.1187485
http://dx.doi.org/10.1126/science.1187485
http://dx.doi.org/10.1103/PhysRevLett.111.136801
http://dx.doi.org/10.1103/PhysRevLett.111.136801
http://dx.doi.org/10.1103/PhysRevLett.111.136801
http://dx.doi.org/10.1103/PhysRevLett.111.136801
http://dx.doi.org/10.1103/PhysRevLett.111.086803
http://dx.doi.org/10.1103/PhysRevLett.111.086803
http://dx.doi.org/10.1103/PhysRevLett.111.086803
http://dx.doi.org/10.1103/PhysRevLett.111.086803
http://arxiv.org/abs/arXiv:1409.6715
http://dx.doi.org/10.1103/PhysRevLett.90.206601
http://dx.doi.org/10.1103/PhysRevLett.90.206601
http://dx.doi.org/10.1103/PhysRevLett.90.206601
http://dx.doi.org/10.1103/PhysRevLett.90.206601
http://dx.doi.org/10.1103/PhysRevB.81.233405
http://dx.doi.org/10.1103/PhysRevB.81.233405
http://dx.doi.org/10.1103/PhysRevB.81.233405
http://dx.doi.org/10.1103/PhysRevB.81.233405
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1038/nphys3053
http://dx.doi.org/10.1038/nphys3053
http://dx.doi.org/10.1038/nphys3053
http://dx.doi.org/10.1038/nphys3053
http://dx.doi.org/10.1103/PhysRevLett.113.137201
http://dx.doi.org/10.1103/PhysRevLett.113.137201
http://dx.doi.org/10.1103/PhysRevLett.113.137201
http://dx.doi.org/10.1103/PhysRevLett.113.137201
http://dx.doi.org/10.1103/PhysRevLett.114.187201
http://dx.doi.org/10.1103/PhysRevLett.114.187201
http://dx.doi.org/10.1103/PhysRevLett.114.187201
http://dx.doi.org/10.1103/PhysRevLett.114.187201
http://dx.doi.org/10.1038/ncomms8434
http://dx.doi.org/10.1038/ncomms8434
http://dx.doi.org/10.1038/ncomms8434
http://dx.doi.org/10.1038/ncomms8434
http://dx.doi.org/10.1038/nmat4204
http://dx.doi.org/10.1038/nmat4204
http://dx.doi.org/10.1038/nmat4204
http://dx.doi.org/10.1038/nmat4204
http://dx.doi.org/10.1103/PhysRevB.89.085106
http://dx.doi.org/10.1103/PhysRevB.89.085106
http://dx.doi.org/10.1103/PhysRevB.89.085106
http://dx.doi.org/10.1103/PhysRevB.89.085106
http://arxiv.org/abs/arXiv:1503.04569
http://arxiv.org/abs/arXiv:1503.04150
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevB.83.100512
http://dx.doi.org/10.1103/PhysRevB.83.100512
http://dx.doi.org/10.1103/PhysRevB.83.100512
http://dx.doi.org/10.1103/PhysRevB.83.100512
http://dx.doi.org/10.1103/PhysRevB.53.16390
http://dx.doi.org/10.1103/PhysRevB.53.16390
http://dx.doi.org/10.1103/PhysRevB.53.16390
http://dx.doi.org/10.1103/PhysRevB.53.16390
http://dx.doi.org/10.1103/PhysRevB.78.224510
http://dx.doi.org/10.1103/PhysRevB.78.224510
http://dx.doi.org/10.1103/PhysRevB.78.224510
http://dx.doi.org/10.1103/PhysRevB.78.224510
http://dx.doi.org/10.1126/science.1216466
http://dx.doi.org/10.1126/science.1216466
http://dx.doi.org/10.1126/science.1216466
http://dx.doi.org/10.1126/science.1216466
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.75.045317
http://dx.doi.org/10.1103/PhysRevB.75.045317
http://dx.doi.org/10.1103/PhysRevB.75.045317
http://dx.doi.org/10.1103/PhysRevB.75.045317



