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Visualization of viscous and quantum flows of liquid 4He due to an oscillating cylinder of
rectangular cross section

D. Duda, P. Švančara, M. La Mantia,* M. Rotter, and L. Skrbek
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic

(Received 19 June 2015; published 25 August 2015)

The motions of micrometer-sized solid deuterium particles in liquid 4He, at temperatures between
approximately 1.2 and 3 K, are visualized in the proximity of an oscillating cylinder of rectangular cross section
(3 mm high and 10 mm wide). The cylinder is oscillating vertically, perpendicularly to its cross-section width,
at frequencies between 0.05 and 1.25 Hz, and amplitudes of 5 and 10 mm, resulting in Reynolds numbers Re up
to 105. The aim of the reported experiments is to investigate systematically the macroscopic vortical structures
shed at the cylinder sharp edges, by tracking the deuterium particles. We find that large-scale, millimeter-sized
vortices are generated in the surrounding fluid by the oscillating cylinder, both in viscous He I and superfluid
He II. An estimate of the strength of the shed vortical structures reveals that, for Re > 104, the corresponding
magnitudes are approximately equal in He I and He II if, in He II, the kinematic viscosity is suitably defined.
For Re < 104, the strength of the large-scale vortices is smaller in He II than in He I. Although the outcome
is partly affected by the larger scatter of the He I data and possibly also by the much larger heat conductivity
of superfluid 4He, we argue that the fundamental physical reason for observing this difference is that, at these
Reynolds numbers, the experimentally probed length scales in He II are smaller than the average distance between
quantized vortices—the quantum length scale of the flow. The result strongly suggests that, similarly to thermal
counterflow, both viscous and quantum features can be observed in mechanically driven flows of He II, depending
on the length scales at which the quantum flow is probed.
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I. INTRODUCTION

Quantum turbulence [1,2], often defined as the most general
form of motion of quantum fluids displaying superfluidity,
such as superfluid 4He, is the focus of an active and challenging
line of scientific research that combines quantum physics with
fluid mechanics. Below the superfluid transition temperature
Tλ ≈ 2.17 K and above approximately 1 K, at the saturated
vapor pressure, superfluid 4He, also known as He II, displays
the two-fluid behavior and, on the phenomenological level,
can be viewed as consisting of two interpenetrating fluids,
whose density ratio depends on temperature. The viscous
normal component, which carries the entire entropy content
of the quantum fluid, represents the gas of thermal excitations,
while the superfluid component is assumed inviscid and its
circulation is quantized in units of the quantum of circulation
κ = h/m = 9.97 × 10−8 m2/s [3], where h is the Planck
constant and m denotes the mass of the 4He atom.

Quantized vortices—line singularities within the
superfluid—can consequently exist in He II and are
usually arranged in a tangle, whose dynamical behavior is
an essential ingredient of quantum turbulence. The existence
of such vortices constitutes indeed one of the most notable
differences between quantum and viscous flows, as the
strength of the vortices occurring in the latter is not quantized
but can vary continuously.

In the past few years, deeper understanding of the two-fluid
hydrodynamics of He II has been achieved by visualizing
the motions of relatively small particles seeding the flows
of interest, see, e.g., the recent review by Guo et al. [4].
The particles, suspended in the fluid, reflect the light of an
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appropriate source, for example, a laser sheet, and their time-
dependent positions are captured, e.g., by a digital camera. The
just outlined experimental method allows therefore the study
of the particle dynamics within the fluid and consequently
reveals the underlying flow-induced physics.

Fundamental results in the investigation of two-fluid flows
of He II have been obtained by tracking solid hydrogen and
deuterium particles of micrometer size. Their motions are com-
plex, as particles interact with both the normal and superfluid
velocity fields simultaneously, the corresponding dynamics
being additionally influenced by that of quantized vortices. In
other words, from the observed particle motions it is possible
to shed light on the behavior of superfluid 4He flows but, at
present, it is generally difficult to discern the contributions
to the particle dynamics originating independently from the
two postulated flow fields. Nevertheless, the application of
visualization techniques to He II flows, seeded with these
particles, resulted in the discovery of nonclassical velocity
statistics in thermal counterflow [5–7], among other results,
such as observations of quantized vortex reconnections [8]
and of forced (mechanically driven) flows past a circular
cylinder [9]. Recently, we have reported the crossover between
viscous and quantum features in the particle velocity and
acceleration distributions, obtained in thermal counterflow,
probed simultaneously at various length scales, larger and
smaller than the quantum length scale of the flow, determined
by the averaged distance between quantized vortices [10,11].

Flows of He II due to oscillating structures (which are
widely used in quantum turbulence research since the dis-
covery of superfluidity, see, e.g., Refs. [12,13] and references
therein) have not been extensively investigated by visualization
methods to date. This is despite the fact that the latter
techniques, as already testified by supporting experiments
performed in Prague [14,15] and by the qualitative results
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of Luzuriaga et al. [16,17], appear adequate to analyze such
important flows of liquid 4He, in order, for example, to clarify
the mechanisms of vortex generation at the oscillator edges.
The present work aims at giving a meaningful contribution
to this promising line of scientific enquiry by visualizing
the flow in the proximity of a cylinder of rectangular cross
section, oscillating in the quiescent liquid. Such a shape of
the oscillator was specifically chosen due to its similarity to
the shape of quartz tuning forks, the most common oscillators
presently employed in quantum turbulence studies [12,18], and
to enhance the possibility of observing large-scale vortices,
compared to a circular cross section.

More generally, the paper reports a systematic visualization
study of the occurrence of macroscopic vortices in quantum
flows, which, to the best of our knowledge, was not performed
previously, although large-scale vortical structures in flows
of superfluid 4He have been already visualized, in the form
of vortex rings, by Murakami et al. [19], for a mechanically
generated flow, and by Stamm et al. [20], for a thermally
driven jet flow; see also the influential work by Zhang and Van
Sciver [21] on thermal counterflow past a circular cylinder.

In the field of fluid dynamics, investigations of viscous
flows past cylinders, which are relevant to that reported here,
constitute one of the most popular research topics, see, e.g.,
the review by Williamson [22]. More specifically, these studies
are often focused on establishing relations, if any, between the
observed vortical wakes and the flow-induced forces acting on
the bluff bodies, as it is customary for similar investigations on
oscillating wings [23,24]. Studies on cylinders of rectangular
cross section accelerating in a quiescent viscous fluid are,
however, scarce, compared to those on circular cylinders, and
the present work can also be seen as belonging to the former
field of research, which includes the investigations performed
by Taneda and Honji [25], on the unsteady flow past a flat
plate, by Tao and Thiagarajan [26], on the flow generated by
an oscillating sharp-edged cylinder, and by Phan et al. [27],
on vibrating cantilevers.

Two nondimensional parameters are frequently used in
the literature to characterize oscillatory viscous flows in the
proximity of bodies having the same geometry [28]. The
Keleugan-Carpenter number KC is defined as

KC = 2πa

D
, (1)

where a denotes the oscillation amplitude and D is a
characteristic dimension of the body (which, in the case of a
circular cylinder, can be the diameter). KC indicates therefore
how large the imposed body oscillations are, compared to its
size. The Stokes number β can be seen as a measure of the
motion unsteadiness and is usually written as

β = f D2

ν
, (2)

where f denotes the oscillation frequency, in hertz, and ν

is the fluid kinematic viscosity. Besides, β is proportional to
the squared ratio of the characteristic dimension D and the
viscous penetration depth δ, which can be written as

√
ν/ω

and is assumed to be the thickness of the layer close to the
moving object where viscous effects are important (ω = 2πf

indicates the angular oscillation frequency, in s−1). Note also

that, as discussed below, the kinematic viscosity of He II
cannot be defined unequivocally and that, additionally, various
definitions of effective kinematic viscosity have been proposed
for He II flows, see, e.g., Refs. [29,30].

The product of KC and β represents the Reynolds number
Re, that is,

Re = ωaD

ν
= aD

δ2
, (3)

where ωa can be understood as the velocity amplitude in
the case of harmonic oscillations. As mentioned above, we
have to bear in mind that the just introduced nondimensional
numbers can only be used to compare oscillations of objects
having the same geometry. In other words, results obtained
for oscillating circular cylinders cannot be straightforwardly
extended to wings or cylinders of rectangular cross section.
Additional parameters should be added to characterize and
compare the corresponding flows, such as the thickness to
width ratio [26] or the wing section shape [23,24].

II. EXPERIMENTAL APPARATUS

We use the cryogenic visualization setup described in our
previous publications, see Ref. [11] and references therein; its
main component is a low-loss, custom-built cryostat with an
optical tail, which constitutes our experimental volume. The
latter is approximately 300 mm long and has a square cross
section of 50 mm sides. An optical port, of 25 mm diameter,
is placed on each of the four tail sides, at 100 mm from the
tail bottom. The temperature of the 4He bath is regulated
by controlling the pumping rate of the helium vapor (the
corresponding pressure is used for deducing the temperature,
based on the saturated-vapor-pressure curve).

A purpose-made seeding system generates the solid deu-
terium particles. They are obtained by mixing helium and
deuterium gasses at room temperature, in a volume ratio of
approximately 100 to 1, respectively, and by suitably injecting
the mixture into the liquid, as gaseous deuterium solidifies
during the injection, at about 19 K [31]. The particle diameter
is usually smaller than 10 μm, see Ref. [10] for typical particle
size distributions, and their density is 200 kg/m3 [32], i.e.,
solid deuterium is appreciably denser than liquid 4He. The
illumination of the flow field is provided by a continuous-wave,
solid-state laser, whose power does not exceed 0.1 W during
the experiments [33]. A thin laser sheet, less than 1 mm thick, is
obtained using adequate cylindrical optics (the sheet leaves the
experimental volume through the optical port opposite to the
one through which it goes inside). A CMOS camera, situated
perpendicularly to the laser sheet, is sharply focused, by the
means of a macro lens, on a 34.1 mm (1200 px) wide and
21.4 mm (800 px) high field of view, placed as far as possible
from the flow boundaries, in order to collect the illuminated
particle positions (three optical ports are therefore presently
employed, two, on opposite sides of the tail, for the laser and
one for the camera).

The moving obstacle (see the left panel of Fig. 1) has a
rectangular cross section 3 mm high and 10 mm wide, and
is 30 mm long (the laser sheet illuminates the middle part
of the cylinder length, which is in the horizontal direction).
The cylinder is made of transparent plexiglass in order to
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FIG. 1. (Color online) (Left) Picture of the 30 mm long plexiglass
cylinder of rectangular cross section (3 mm high and 10 mm wide)
and of the bottom part of its brass support. The cylinder section facing
the camera and the bottom part of the support are painted in black to
reduce possible laser-induced reflections. (Right) Picture of the step
motor and of the crank mechanism, connected, on top of the cryostat,
to the stainless steel shaft firmly linked to the top part of the cylinder
support.

avoid the generation of thermal counterflow at the obstacle
surface, as it was reported to happen for the heated surface
of a circular cylinder made of metal [33]. The obstacle is
supported vertically at one of its ends (the one further away
from the camera) in such a way that the walls of the cylinder
are parallel to those of the cryostat optical tail. The upper part
of the brass support is firmly connected to a stainless steel
shaft, of 5 mm diameter, which allows the transmission of the
imposed motion.

The shaft exits the low-temperature volume of the cryostat
through a narrow channel, sealed, on both ends, by rubber
o-rings against the shaft. An overpressure of gaseous helium
in this channel ensures that the cryostat is insulated from
any room-temperature air leakage. The shaft is connected to
a computer-controlled motor placed on top of the cryostat.
A purpose-made crank mechanism (see the right panel of
Fig. 1) transmits the rotational motion generated by the
step motor to the vertical shaft connected to the rectangular
cylinder, enabling therefore the cylinder vertical oscillations.
The imposed motion is a quasiharmonic one due to the crank
mechanism, i.e., it cannot be expressed as a simple sine or
cosine function but it is very similar to a harmonic motion.
Additionally, it is ensured that the cylinder is always visible by
the camera when it reaches the lowest position of its oscillating
cycle (the same does not apply to the cylinder uppermost
position).

III. EXPERIMENTAL PROTOCOL AND
DATA PROCESSING

The cylinder oscillates in liquid 4He at temperatures
between approximately 1.2 and 3 K, at the saturated vapor
pressure. The vertical oscillations, perpendicular to the cylin-
der cross-section width, have frequencies between 0.05 and
1.25 Hz, and amplitudes of 5 and 10 mm, resulting in Reynolds
numbers up to 105 (the characteristic obstacle size D is set to
the cylinder width, i.e., D = 10 mm).

Above Tλ, liquid 4He is called He I and behaves as a viscous
fluid, characterized by extremely low values of kinematic
viscosity, about three orders of magnitude smaller than those of
air, tabulated, together with other fluid properties, in Ref. [3]. It
is therefore straightforward to calculate the (viscous) Reynolds
number Re from Eq. (3).

The kinematic viscosity of He II cannot be defined
unequivocally. Here, we use two different definitions of ν,
reported in the literature, which are generally assumed to be
valid depending on whether the probed length scale exceeds
or is of the order of the average distance between quantized
vortices, i.e., if the flows of the two components of He II can be
considered locked together by the action of the mutual friction
force.

The first definition we use is often employed to characterize
forced flows of He II, see, e.g., Refs. [9,34], as it is similar to
that customary for viscous fluids. The kinematic viscosity ν is
set equal to μn/ρ, where μn denotes the normal component
dynamic viscosity and ρ is the total density of the fluid,
which are also tabulated in Ref. [3]. The relevant (viscouslike)
Reynolds number is consequently calculated as

Ren = ρωaD

μn

. (4)

The second definition of ν we employ here to characterize
the obtained He II data follows from the recent work by
L’vov et al. [30] (see below the related discussion). We
accordingly decided to use the value ν = κ/6 for computing
the corresponding (superfluid) Reynolds number as

Reκ = 6ωaD

κ
, (5)

where κ/6 = 1.66 × 10−8 m2/s.
In each experimental condition, defined by temperature T ,

frequency f , and amplitude a, 2000 images are captured by the
camera, at 100 fps. The 20-s-long movies are taken in such a
way that residual flows, due, for example, to particle injection
in He I, are minimized and that enough particles are visible
in the field of view, i.e., the cylinder motion is imposed for at
least 45 s before collecting images.

Once the movies are stored, the first step of the data
processing procedure is to mask the over-lighted obstacle, to
reduce the related noise, by using a custom-made computer
program. The images are subsequently cropped in order to
eliminate the out-of-focus edges of the cryostat window. The
resulting images are 21.4 mm (800 px) wide and 16.0 mm
(600 px) high, for a = 5 mm, and 21.4 mm (800 px)
wide and 21.4 mm (800 px) high, for a = 10 mm. Particle
positions and trajectories are then computed by using an
open-source tracking algorithm [35] and the corresponding
particle velocities are obtained linearly from the particle
positions by the means of another code, developed by us [7,36].

In order to take advantage of the periodic character of the
imposed motion and to enhance the statistical quality of our
data, the calculated particle tracks are phase averaged. More
specifically, data obtained within the same phase interval of
the periodic motion are merged in such a way that particle
trajectories, which depend on time, become function of the
phase interval too (note that the initial phase of the motion is
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FIG. 2. (Color online) Particle trajectories, with at least five points, obtained within the 15◦ phase interval centered at the lowest position
of the cylinder oscillatory motion; frequency f = 0.5 Hz and amplitude a = 5 mm; 21.4 mm wide and 16.0 mm high field of view. (Left)
He II, temperature T = 1.24 K, Reynolds numbers Ren = 11 717, Eq. (4), and Reκ = 9428, Eq. (5). (Right) He I, T = 2.18 K and Reynolds
number Re = 9092, Eq. (3). The grey rectangles indicate the cylinder, at the lowest position of the cycle, while the white rectangles denote the
corresponding mask used for data processing. See the text for further details on the three definitions of the Reynolds number.

not the same in all the collected movies and that usually each
movie contains more than one cycle of oscillations).

IV. RESULTS

Figure 2 displays typical particle trajectories obtained
following the procedure just outlined, within the 15◦ phase
interval centered at the lowest position of the oscillating
cycle, at frequency f = 0.5 Hz and amplitude a = 5 mm.
Pairs of macroscopic fluid vortices of size comparable to the
cylinder width can be inferred from the observed trajectories
of deuterium particles, both in He I (right) and He II
(left). The vortical structures seem to be similar to those
observed in the proximity of flat plates accelerating in viscous
fluids [25]. However, as discussed below, the large-scale
vortices generated in He II appear to be more evident than
the vortical structures shed in He I.

It was chosen to keep for further processing only trajectories
with at least five points, consistently with our previous studies,
see Ref. [11] and references therein. This led, for specific
experimental conditions, i.e., for each processed movie, to a
total number of track points equal to at least 6300 and up to
approximately 162 000.

A. Vortex strength

Unsteady flows of viscous fluids can often be characterized
by the vorticity, as reported, e.g., in Refs. [26,27]. This (local)
quantity can be seen as a measure of the vortex strength in
the flow field of interest and is calculated from the spatial
derivatives of the fluid velocity as

� = ∇ × v, (6)

where � indicates the flow vorticity vector and v denotes the
fluid velocity vector. The vorticity cannot consequently be
computed in our case, due to the fact that the fluid velocity is

not known everywhere at a given time, as shown, for example,
in Fig. 2.

In order to quantify the magnitude of the shed vortices, we
introduce the parameter θ , which is loosely related to the flow
vorticity and is defined as

θ (r,ϕ) = 1

M

M∑
i=1

[(ri − r) × vi]z
|ri − r|2 , (7)

where r denotes the position where θ is calculated, on a chosen
mesh that covers adequately the field of view; similarly, ϕ is
the phase of the oscillatory motion at which the computation
is performed; ri , vi , and φi indicate the position, velocity, and
phase of the ith particle, respectively, within the spatial region
of radius RM , centered in r, and in the phase interval equal
to 2, centered in ϕ. M is the total number of considered
trajectory points and the subscript z denotes that only the
out-of-plane component of the vector [(ri − r) × vi] is used
to obtain the (scalar) parameter θ .

We ought to emphasize at this point that we see a single
velocity field, that of the visualized particles. As mentioned
above, the contributions to the particle dynamics originating
independently from the two postulated flow fields of He II are
at present difficult to separate, as the used deuterium particles,
which are not tracers (i.e., fluid particles), generally interact
simultaneously with both velocity fields and their motions are
additionally influenced by those of quantized vortices.

The rectangular mesh having one point every 10 px in both
directions was found to give results independent on the mesh
size. The radius RM was set to 5 mm, which corresponds to the
approximate diameter of the visualized vortices, and the phase
parameter  was chosen to be equal to 7.5◦, as this allows to
observe adequately the generated vortical structures, see again
Fig. 2.

Note that the term |ri − r|2 in the denominator of Eq. (7)
is introduced to account for the fact that both the number of
included trajectory points and the relevant vector product scale
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FIG. 3. (Color online) Maps of the θ (r,ϕ) parameter for (clockwise, from the top left panel) phase ϕ = 90◦ ± 7.5◦ (a), 150◦ ± 7.5◦

(b), 210◦ ± 7.5◦ (c), 270◦ ± 7.5◦ (d), 330◦ ± 7.5◦ (e), and 30◦ ± 7.5◦ (f). Temperature T = 1.24 K, frequency f = 0.5 Hz, and amplitude
a = 5 mm. The grey rectangles indicate the cylinder positions, in the middle of the considered phase intervals, while the white rectangles
denote the corresponding masks used for data processing. The green arrows between the panels show the direction of motion, e.g., in panel
(a) the cylinder is at the lowest position of the cycle, see also the left panel of Fig. 2.

linearly with the magnitude of r. The parameter θ (r,ϕ) has
consequently the same dimensions as the vorticity, i.e., s−1,
and can be seen as a measure of the vortex strength. Besides,
it can be derived that, in the limits RM → 0 and  → 0, for
a large enough number of fluid particles, θ (r,ϕ) would indeed
represent the flow vorticity.

In Fig. 3, maps of the θ (r,ϕ) parameter are shown, at
T = 1.24 K, f = 0.5 Hz, and a = 5 mm, for various phase
intervals. The macroscopic vortex pairs shed at the cylinder
edges during the cycle are clearly visible. The same applies
to Fig. 4, where, additionally, it can be seen that, as the
imposed oscillation frequency increases, the magnitude of the
generated vortices also increases. Similar results are obtained
at a = 10 mm and in He I, as displayed in Fig. 5. However, as
mentioned above, the vortical structures observed in He I are
less clearly defined than those seen in He II.

B. Behavior of 〈θ2〉
In order to quantify how the magnitude of the shed

vortices depends on the experimental conditions, which are
temperature T , frequency f , and amplitude a, we compute, for
each processed movie, 〈θ2〉, i.e., the ensemble average of θ2,
because the positive parameter 〈θ2〉 retains useful quantitative
information that allow the comparison of the visualized flow
fields. It can be interpreted as the square of the average
flow vorticity �, coarse-grained over the area of radius RM ,
within the phase interval 2, the latter being two characteristic
parameters of the studied periodic flows.

While we do not observe any clear temperature dependence
of 〈θ2〉 in He II, in He I it appears to be an increasing function
of T . This difference is probably influenced by the larger
data scatter in He I, compared to that in He II, especially
at low oscillation frequencies. Moreover, as discussed below,
this could also be due to other reasons, such as the different
heat conductivities of He I and He II.

The qualitative behavior shown in Fig. 4 is indeed con-
firmed quantitatively, as the parameter 〈θ2〉 increases with the
oscillation frequency, in the range of investigated parameters.
In other words, it is not surprising that, as the motion strength
increases, the magnitude of the shed vortices also increases.

As it is customary in fluid dynamics, we present here our
results on the vortex strength as a function of relevant Reynolds
numbers, although we do not observe any strong oscillation
amplitude dependence of the data. In the case of He I, we
chose the (viscous) Reynolds number, as defined in Eq. (3).

FIG. 4. (Color online) Maps of the θ (r,ϕ) parameter, calculated
at the lowest position of the oscillatory motion; amplitude a = 5 mm.
(a) Frequency f = 0.1 Hz, temperature T = 1.26 K, Reynolds
numbers Ren = 2443 and Reκ = 1886; (b) f = 0.2 Hz, T = 1.26 K,
Ren = 4885, and Reκ = 3771; (c) f = 0.5 Hz and T = 1.24 K, see
also the left panel of Fig. 2; (d) f = 1 Hz, T = 1.24, Ren = 23 434,
and Reκ = 18 855. Legend as in Fig. 3.
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FIG. 5. (Color online) Maps of the θ (r,ϕ) parameter, calculated
at the lowest position of the oscillatory motion; frequency f =
0.5 Hz. (a) He II, amplitude a = 5 mm and temperature T = 1.24
K, see also the left panel of Fig. 2; (b) He I, a = 5 mm and
T = 2.18 K, see also the right panel of Fig. 2; (c) He II, a = 10 mm,
T = 1.40 K, Reynolds numbers Ren = 29 973 and Reκ = 18 855; (d)
He I, a = 10 mm, T = 2.18 K, and Reynolds number Re = 18 184.
Legend as in Fig. 3.

The corresponding Re range for our data lies approximately
between 800 and 37 000 and the viscous penetration depth δ

range, see again Eq. (3), is between about 0.25 mm, at the
smallest Re, and 0.05 mm, being therefore always larger than
our typical particle size, smaller than 0.01 mm.

For our He II data, the first (viscouslike) definition of
Reynolds number we employ, see Eq. (4), leads to 900 <

Ren < 83 000 in the considered experimental conditions,
which corresponds to δ ranging between approximately 0.23
and 0.04 mm, respectively.

Figure 6 displays the parameter 〈θ2〉 as a function of these
Reynolds numbers. The standard deviation σ of θ2, normalized
by 〈θ2〉, is plotted, as a function of Re and Ren, in the inset
of Fig. 6, for the sake of clarity. It can be seen that σ can
be up to eight times larger than the ensemble average of θ2,
that is, the data scatter cannot be neglected here. The He II
data points shown in the main panel of Fig. 6 collapse to
an increasing curve of the Reynolds number Ren. Similarly,
despite the larger scatter, the He I data points also display the
tendency to collapse, but to another curve. The existence of
these two separate curves, which is also consistent with the
θ (r,ϕ) results reported above, is a puzzling outcome and we
will attempt to provide possible physical explanations in the
following section.

The second (superfluid) definition of Reynolds number
we use here to characterize the obtained He II data, see
Eq. (5), follows, as mentioned above, from the recent study
by L’vov et al. [30] and, more generally, from the concept of
effective kinematic viscosity νeff , introduced by Vinen [37].
It is assumed that the energy decay rate ε of the flow is
proportional to the square of the quantized vortex length L

FIG. 6. (Color online) Parameter 〈θ2〉 as a function of the
Reynolds numbers Re and Ren. Red triangles: He I. Open black
squares: He II. (Inset) Normalized standard deviation σ of θ2 as a
function of Re and Ren; symbols as in the main panel.

per unit volume, also known as the vortex line density, i.e.,

ε = νeff(κL)2. (8)

Although Eq. (8) lacks a rigorous theoretical justification,
being mainly motivated by the analogy with the classical
relation linking ε with the flow average vorticity, ε = ν�2, it
has been successfully used to describe various He II flows.
For example, as recently discussed by Varga et al. [38],
mechanically generated flows of He II can, on large enough
scales, be viewed as flows of a single-component fluid
possessing an effective kinematic viscosity, which one can
deduce from either temporal decay [39,40] or steady-state
data [29]. Within the temperature range of the present study,
νeff is weakly temperature dependent and its numerical value
is known within a factor of 5 [29]. On the other hand, the fluid
kinematic viscosity ν in He I, above the superfluid transition,
is known and tabulated in Ref. [3] with sufficient accuracy. In

FIG. 7. (Color online) Parameter 〈θ2〉 as a function of the
Reynolds numbers Re and Reκ . Red triangles: He I, as in Fig. 6.
Open black squares: He II. (Inset) Normalized standard deviation σ

of θ 2 as a function of Re and Reκ ; symbols as in the main panel.
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Ref. [30], L’vov et al. derived that in He I, just above Tλ, the
fluid kinematic viscosity ν can be set equal to approximately
κ/6. Taking into account that the fluid kinematic viscosity
ought to smoothly follow the temperature dependence of ν

in He I across Tλ, we decided to use the value ν = κ/6
for calculating the relevant (superfluid) Reynolds number
in He II, see Eq. (5). We find that, in the present case,
900 < Reκ < 48 000, corresponding to the δ range between
about 0.23 and 0.05 mm, respectively. The behavior of 〈θ2〉 as
a function of Re and Reκ is shown in Fig. 7 and is qualitatively
similar to that displayed in Fig. 6.

V. DISCUSSION

The most striking outcome reported above, see Figs. 6 and 7,
is that the parameter 〈θ2〉 appears to behave differently in He
I and He II, as a function of the Reynolds number, being
therefore in contrast with the common assumption that forced
flows of He II, at large enough length scales, are similar to
viscous flows of comparable magnitude, as discussed, e.g., by
Van Sciver et al. [9,34].

First of all, we note that particle velocity distributions in
thermal counterflow are characterized by tails wider than in
viscous flows, see, e.g., Ref. [10]. However, the present He II
data do not display a larger scatter, in comparison with the He
I data, as shown in the insets of Figs. 6 and 7. The behavior can
be partly explained by the fact that, for some movies, the total
number of trajectory points might not be sufficient to perform
meaningful statistical calculations. In order to check this, we
decided to keep only movies that, once processed, resulted in
at least 40 000 trajectory points. The corresponding outcome
is shown in Fig. 8, where we additionally averaged the data
points obtained at the same Reynolds numbers, Re and Reκ .
The resulting 〈θ2〉 behavior is similar to that displayed in Fig. 7,

FIG. 8. (Color online) Parameter 〈θ2〉 as a function of the
Reynolds numbers Re and Reκ . Red triangles: He I. Open black
squares: He II. Each experimental condition is represented by at least
40 000 track points. At each Reynolds number the corresponding
average of the obtained 〈θ2〉 values is plotted; the shown error bars
denote the standard deviation of the 〈θ2〉 values obtained at that
Reynolds number. (Inset) Normalized standard deviation σ of θ2 as
a function of Re and Reκ ; symbols as in the main panel.

with a smaller scatter, σ being in this case up to five times larger
than 〈θ2〉, instead than up to eight times.

If the data shown in Fig. 6 are filtered in the same fashion,
that is, if data sets that represent less than 40 000 trajectory
points are removed, the corresponding 〈θ2〉 trends do not
change appreciably. Note, however, that, for given values of
temperature T , frequency f and amplitude a, Ren > Reκ ,
as μn/ρ is smaller than κ/6, in the range of investigated
parameters. In other words, the collapse of the two curves,
at large Reynolds numbers, is less evident if Ren is used to
characterize the He II data.

The existence of two distinct branches, at Reynolds num-
bers smaller than approximately 104, but not above this value,
although influenced by the relatively large data scatter, calls
therefore for plausible physical explanations, not related to the
used data processing procedure. Let us then speculate what
physical aspects might lead to the observed result.

One of the most relevant differences between He I and
He II is the fact that the heat conductivity of He II is about
106 times larger than that of He I [3], i.e., heat dissipates
in He II at a much faster rate than in He I. If we take into
account the parasitic heat to the experimental volume, due to
the oscillating obstacle and to the laser sheet, we may say that,
in He I, this heat is dissipated at a much slower rate than in
He II, resulting in parasitic flows that might partly mask the
macroscopic vortices shed at the cylinder edges, especially
at the lowest frequencies. We estimate that the mechanical
power due to the obstacle oscillations is of the order of 1 mW,
roughly the same as the laser power absorbed by the cylinder,
as previously calculated in Ref. [33]. It follows therefore that
both phenomena may affect the resulting behavior of the liquid,
especially He I, as in He II (where dissipation of the parasitic
heat is very effective) particle trajectories appear not to be
appreciably influenced by the laser heat input, in the absence
of other flows, i.e., during free fall.

Another reason that might contribute to explain the obtained
two curves at low Reynolds numbers is related to the fact that,
as mentioned above, we have to date implicitly assumed that
the probed length scale d is, in He II, of the same order as the
average distance � between quantized vortices (the quantum
length scale). The probed length scale d can be viewed, both
in He I and He II, as the average distance traveled by a particle
between two consecutive frames. If we assume, for the sake of
simplicity, that the average particle velocity is of the order of
the imposed cylinder velocity, we find that d can be estimated
as d ≈ ωa/100 (the movies were taken at 100 fps).

On the other hand, following, e.g., Eq. (8), we can write
that the average vorticity due to the flow of He II is

� ≈ κL = κ

�2
. (9)

If we additionally assume that �2 ≈ 〈θ2〉, an expression for
estimating the average distance between quantized vortices is
obtained as

� ≈
(

κ2

〈θ2〉
)1/4

. (10)

In order to compare the He I and He II data, let us now
estimate a relevant flow length scale in viscous He I. It is natural
to use the Kolmogorov scale and, by assuming �2 ≈ 〈θ2〉, we
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FIG. 9. (Color online) Ratio R between the probed length scale
d and the flow scale s as a function of the Reynolds numbers Re and
Reκ . Red triangles: He I, with s = η, the Kolmogorov length scale,
Eq. (11). Open black squares: He II, with s = �, the quantum length
scale, Eq. (10). Open blue circles: He II, with s = � calculated in
the same fashion as η, i.e., ν is replaced by κ/6 in Eq. (11). Each
experimental condition is represented by at least 40 000 track points.
At each Reynolds number, the corresponding average of the obtained
R values is plotted; the shown error bars denote the standard deviation
of the R values obtained at that Reynolds number. See the text for
further details on the used scales.

arrive at

η =
(

ν3

ε

)1/4

≈
(

ν2

〈θ2〉
)1/4

, (11)

where ε ≈ ν〈θ2〉 is the energy dissipation rate, see again
Eq. (8).

We can now define the ratio R = d/s, where s = � (He II)
and s = η (He I). We find that, in the range of investigated
parameters, 0.01 mm < d < 0.48 mm and 0.09 mm <

η < 0.16 mm, for the He I data, and that 0.01 mm < d <

0.63 mm and 0.21 mm < � < 0.59 mm, for the He II data
(each experimental condition is represented by at least 40 000
trajectory points and our particles are typically smaller than
0.01 mm).

The resulting ratio R is plotted in Fig. 9 as a function
of Re and Reκ . It is apparent that we are actually probing
length scales larger than the relevant flow scale only at
Reynolds numbers larger than about 104. In other words, the
two branches displayed in Fig. 8 might possibly be due to
the fact that, at Reynolds numbers smaller than 104, we are
investigating scales smaller than the dissipative flow scale,
in He I, and the quantum length scale, in He II. While in
He I, below the Kolmogorov length scale, the fluid motion
is dissipated into heat by the action of the finite viscosity,
quantum flows of He II may exist all the way down to the Å
scale—the size of the cores of quantized vortices. We may say
that quantum restrictions on the superfluid motion could be
the reason why, for Reynolds numbers smaller than 104, the
parameter 〈θ2〉 behaves differently in He I and He II.

The outcome can also be seen as a further experimental
support of the concept of effective kinematic viscosity of He
II, as we simply set the kinematic viscosity of He II equal to

that of He I just above Tλ, which is 1.66 × 10−8 m2/s. Indeed,
if ν is substituted by κ/6 in Eq. (11), we obtain values of R

closer to the viscous values, especially at Reynolds numbers
larger than 104. Additionally, we may argue that, in the present
case, the average flow vorticity might not solely result from
the action of quantized vortices, as postulated in Eq. (8).

To summarize, we have identified and discussed three
possible reasons why the parameter 〈θ2〉 at low Reynolds
numbers behaves differently in He I and He II, namely the
data scatter, different heat conductivities of He I and He II,
and the fact that the probed length scales are smaller than the
Kolmogorov scale, in He I, and the quantum length scale, in
He II.

VI. CONCLUSIONS

The behavior of macroscopic, millimeter-sized vortical
structures, generated by a sharp-edged body oscillating in
liquid 4He, was studied by visualizing the dynamics of
micrometer-sized particles seeding the fluid. A cylinder of
rectangular cross section (3 mm high and 10 mm wide)
performed quasiharmonic oscillations in the liquid, at various
frequencies (ranging between 0.05 and 1.25 Hz) and ampli-
tudes (5 and 10 mm), at temperatures between about 1.2 and
3 K, resulting in Reynolds numbers up to 105. Consequently, in
the present experiments, a direct comparison between similar,
mechanically driven flows of He I, a viscous Newtonian fluid,
and He II, a liquid displaying superfluidity, was carried out.

First of all, our visualization study confirms the existence
of large vortical structures shed by the oscillating body, which
appear similar in viscous He I and superfluid He II. Although
this result is not surprising (for example, as already mentioned,
visualization of macroscopic vortex rings was reported by
Murakami et al. [19] in 1987 and by Stamm et al. [20] in 1994),
our investigation represents, to the best of our knowledge, the
first systematic visualization study of quantum flows due to an
oscillating object. We note, additionally, that in viscous fluids
vortices are shed by accelerating plates at similar Re as the
minimum Reynolds numbers investigated here, as reported by
Taneda and Honji [25].

In order to characterize the magnitude of the shed vortices,
we introduced the parameter 〈θ2〉, which is loosely related
to the flow vorticity and can be interpreted as the square of
the vorticity magnitude, characteristic for a particular phase
interval of the harmonic motion, coarse-grained over a suitable
circular area. At Reynolds numbers lower than approximately
104, a noticeable difference between the investigated He I
and He II flows is observed. More precisely, after thorough
studies of the quality of the data sets and of the robustness
of the processing procedure, we found that the probed length
scales are, at these low Reynolds number, smaller than the
quantum (dissipative) scale of the flow, determined, in He II,
by the average distance between quantized vortices and, in He
I, by the Kolmogorov dissipative scale. For Reynolds numbers
larger than 104, the effect vanishes and He II behaves similarly
to He I, as it is expected for mechanically driven flows of
superfluid 4He at length scales exceeding the average distance
between quantized vortices. This suggests that, similarly
to thermal counterflow [10,11], both viscous and quantum
features can be observed in mechanically driven flows of He
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II, depending on the length scales at which the quantum flow
is probed.

Note, however, that the observed effect might also be
influenced by the much larger thermal conductivity of He
II, compared to that of He I, leading to different dissipation
mechanisms of the parasitic energy input. Additionally, the
obtained 〈θ2〉 values are affected by the data scatter, which
cannot be neglected here. In order to clarify the reported
behavior, future studies should therefore be devoted to increase
the data set size, as this will likely lead to less uncertainty in the
evaluation of the various physical quantities of interest, such
as the introduced 〈θ2〉 parameter. Nevertheless, the employed
visualization technique appears capable of providing mean-
ingful physical insight into the investigated problem and, in

particular, seems suitable to study the occurrence of cavitation
in the proximity of fast oscillating objects, such as quartz
tuning forks [14], or the detailed mechanisms of shedding
and subsequent dynamics of large-scale vortical structures in
superfluid He II.
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Skrbek, Phys. Rev. E 81, 066316 (2010).

[16] E. Zemma and J. Luzuriaga, J. Low Temp. Phys. 173, 71 (2013).
[17] E. Zemma, M. Tsubota, and J. Luzuriaga, J. Low Temp. Phys.

179, 310 (2015).
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