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Signatures of quantum phase transitions in the dynamic response of fluxonium qubit chains
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We evaluate the microwave admittance of a one-dimensional chain of fluxonium qubits coupled by shared
inductors. Despite its simplicity, this system exhibits a rich phase diagram. A critical applied magnetic flux
separates a homogeneous ground state from a phase with a ground state exhibiting inhomogeneous persistent
currents. Depending on the parameters of the array, the phase transition may be a conventional continuous one, or
of a commensurate-incommensurate nature. Furthermore, quantum fluctuations affect the transition and possibly
lead to the presence of gapless “floating phases.” The signatures of the soft modes accompanying the transitions
appear as a characteristic frequency dependence of the dissipative part of admittance.
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I. INTRODUCTION

Vortices of persistent current in superconductors have been
viewed for a long time as a testing ground for various
models of classical and quantum phase transitions. This is
due to relatively strong interactions between vortices coupled
with a high degree of control over the vortex arrays. For
example, intervortex interactions in the presence of a periodic
external potential (created experimentally by modulation of the
superconducting film thickness [1]) made vortices a convenient
target for investigation of commensurability transitions [2,3].
Theoretical studies of the effects of randomness on vortex
structure and vortex dynamics have led to the notion of collec-
tive pinning [4,5], with importance stretching well beyond the
physics of superconductivity [6]. Later, the discovery of high-
temperature superconductors triggered studies of the vortex
lattice melting transition and glassy behavior [7,8] in layered
superconductors as well as structural transitions of vortices
interacting with columnar defects [9]. Because vortices in
continuous superconductors have normal cores, vortex motion
is dissipative [10] and much of the above-mentioned work used
classical statistical mechanics to address collective phenomena
in vortex arrays [11].

The effects of quantum fluctuations of vortices in continu-
ous films become important only close to the supeconductor-
insulator transition, which requires special tuning of the
films’ normal-state resistance [12]. In arrays of Josephson
junctions, however, vortices do not have cores, allowing
for the study of quantum fluctuations. An array of small
superconducting islands connected by Josephson junctions,
where the island charging energies were sufficiently large for
quantum effects to be important [13], was used in attempts
to observe a quantum Kosterlitz-Thouless (KT) transition
[14] and Mott transition [15] in a 1D array. While these
works advanced the nanofabrication techniques needed to
produce highly regular arrays of small Josephson junctions,
the measurement results were ambiguous. The current-voltage
(I -V ) characteristics gave inconclusive evidence for a KT
transition in single-line 1D arrays [14,16,17]. The observations
of Ref. [15] were later interpreted to be consistent with a purely
classical commensurability transition rather than the quantum
Mott transition [18]. The suppression of quantum effects in
these experiments stemmed from the low inductance of the

continuous superconducting wires, which were necessary to
make the Josephson junction arrays.

We should note, also, that in the majority of experiments
the evidence for the various classical and quantum tran-
sitions mentioned above was based on signatures in I -V
characteristics. This method is limited to addressing highly
averaged quantities, and relies on substantial deviations of the
investigated system from equilibrium (needed, for example, to
overcome the static pinning of vortices).

Recent developments in superconducting qubit techniques
offer the possibility of overcoming the described limitations of
previous experimental studies of many-body physics of vor-
tices. Typical superconducting qubit experiments address the
superconducting system using microwaves [19]. The system is
only weakly perturbed by the microwave excitation; hence, this
spectroscopic approach allows one to probe the system close
to equilibrium. On the circuit element side, the development
of the fluxonium qubit [20], which combines a Josephson
junction with a superinductor [21] (i.e., an element exhibiting
high inductance and low capacitance), opens avenues for
studying quantum effects in superconducting arrays.

In this work, we study theoretically a one-dimensional array
consisting of superinductors and a chain of small Josephson
junctions as shown in Fig. 1. Two parameters characterize such
an array: the ratios of the Josephson (EJ ) and inductive (EL)
energies (see Sec. II), combined into a characteristic length

� = 2
√

EJ /EL, (1)

and the ratio EC/EJ of charging and Josephson energies,
which controls the quantum fluctuations. Despite its simplicity,
this model allows for a variety of phase transitions of a
classical or quantum nature (depending on the ratio EC/EJ )
as a function of the applied magnetic flux φe per plaquette of
the array.

Classically, for fixed � > 1, there is a critical magnetic
field φ∗

e at which the system undergoes a transition from
a homogeneous state with no persistent currents through
the inductors to a state with static persistent currents. As a
function of the characteristic length �, Eq. (1), we discuss
two regimes, cf. Fig. 1(b): a “type-I” regime (1 < � �

√
2)

featuring a second-order transition to a state of staggered
persistent currents as shown in Fig. 2(a), and a “type-II”
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FIG. 1. (Color online) (a) Quantum circuit of coupled fluxonium
qubits threaded by an external flux φe. (b) Phase diagram for the
classical ground state; cf. Refs. [22,23] for the phase diagram of
similar classical models. At inductances L such that 1 < � �

√
2,

the system is in the “type-I” regime that features a single Ising
transition from a homogeneous phase into a phase of staggered
persistent currents. For large L or � � 1 (“type-II” regime), the
system, as a function of external flux φe, develops subsequent phases
of commensurate lattices of vortices or kinks. The rational numbers
describe the kink density in the node flux configurations {φj }.
Darker shaded regions contain phases with higher denominators that
complete the devil’s staircase. The line separating the homogeneous
and inhomogeneous phases is given by Eq. (9) in the type-I and by
Eq. (30) in the type-II regime.

regime (� � 1), in which the transition takes place by the
sequential (first-order) introduction of localized vortices of
persistent currents in the lattice plaquettes, Fig. 2(b). These
vortices correspond to kinks, meaning discontinuous jumps
of height 2π , in the node phase (or node flux) φj , see
Fig. 1(a). Repulsive interactions between kinks lead to a
series of pinned commensurate phases with increasing φe. In
the presence of quantum fluctuations, the number of kinks

FIG. 2. (Color online) (a) Staggered persistent currents charac-
terize the high-field (φe > φ∗

e ) ordered phase in the type-I regime.
(b) A vortex of static persistent currents decaying over the length �,
stable in the type-II regime.

fluctuates and the initial transition at φ∗
e turns into a KT

transition. This is followed by commensurate-incommensurate
transitions between classical pinned phases and quantum
liquid phases of floating crystalline cells of a kink lattice.

Each of the phases carries a “fingerprint” in the microwave
absorption spectrum, as the nature of low-energy excitations
is sensitive to the types of phases and the transitions between
them. The microwave spectra also carry information about
the crossover from classical to quantum critical behavior in
the vicinity of the transition. Yet another advantage of the
spectroscopic approach is that it is a linear response to a weak
perturbation. In this work, we will highlight the signatures
of phase transitions that can be measured using microwave
photons.

The paper is organized as follows: In Sec. II, we formulate
the mathematical model for the circuit under consideration.
We also introduce and discuss two methods, capacitative and
inductive, for coupling the circuit to an external resonator, and
give general forms for the radiation absorption rate in the two
cases.

In Sec. III, we describe the type-I regime, with � comparable
to a lattice spacing. In this limit, the low-energy excitations
are gapped plasmon oscillations, where the node phases φj

undergo small fluctuations. The plasmon excitations soften
at the critical magnetic flux φ∗

e , leading to a quantum Ising
transition between a phase with the magnetic fluxes φj = 0
(cf. Fig. 1) everywhere and a staggered phase φj = (−1)j φ̄,
with order parameter φ̄.

Section IV discusses the type-II (� � 1) regime. Here,
the low-energy excitations are associated with the addition
or removal of kinks. As the magnetic field is increased from
φe = 0, the cost of creating a kink is reduced, leading to a
visible peak in the absorption spectrum below the plasmon
continuum. At a critical field, this energy cost vanishes, leading
to a proliferation of kinks and the formation of a series
of gapped and gapless crystalline phases of kinks. Each of
these has an observable signature in the excitation spectrum
for adding or removing kinks. Finally, quantum effects such
as broadening of peaks in the excitation spectrum and the
appearance of phases of incommensurate quantum liquids are
discussed.

A discussion of our analysis and its results is presented in
Sec. V.

II. MODEL

A. Lagrangian

The circuit in Fig. 1(a) is described by the Lagrangian

L[φ,φ̇] = �
2

2EC

N−1∑
j=0

(φ̇j − φ̇j−1)2 − V [φ], (2)

where EC = (2e)2/C with C the Josephson junction capac-
itance, and we formally set φj+N ≡ φj , assuming periodic
boundary conditions. The potential in (2) takes the form

V [φ] =
N−1∑
j=0

{
EL

2
φ2

j − EJ [cos(θj − φe) − 1]

}
, (3)
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where EL = �2
0/(4π2L), L is the inductance of the inductors,

and φe = 2π�/�0 with � denoting the magnetic flux per
plaquette and �0 = h/2e being the flux quantum. Further-
more, we define θj = φj − φj−1, the phase difference across
the Josephson junction between nodes j − 1 and j , which in
the following we denote as link j .

The potential V [φ] is not invariant under φj → φj + 2π ,
as would be expected for a superconducting system. This is
because we neglect the phase slip processes that allow the
inductors to relax to the true ground state of the system.
Superinductors such as those used in a fluxonium qubit are
engineered so that this is a valid approximation [21].

At large C, the physics is dominated by the (meta)stable
configurations {φj } that minimize the static potential V [φ].
The magnetic flux φe and the characteristic length scale �,
defined in Eq. (1), are the only parameters in this “classical”
regime. Throughout our theoretical analysis, we assume the
limit of large systems, � � N . Note that, due to the inductive
potential, a configuration with local flux φj is physically
distinct from a state with flux φj + 2πn with integer n �= 0.
In the ground state, each variable φj will thus take values
between −π and π . Furthermore, minimal configurations {φj }
necessarily satisfy

∑
j φj = 0, which physically corresponds

to current conservation.

B. Response functions in absorption spectroscopy

By coupling the circuit in Fig. 1(a) to microwaves, sig-
natures of the various phases and phase transition become
observable in absorption spectroscopy. Additional interest in
such experiments may arise because of well-defined peaks
in the absorption spectrum below the plasma gap. We suggest
two, in a certain way complementary, schemes of coupling [19]
the circuit to a microwave resonator: (a) inductive coupling and
(b) capacitive coupling, see Fig. 3.

FIG. 3. (Color online) Schematical antenna setups for absorption
spectroscopy: (a) capacitive coupling and (b) inductive coupling to a
microwave resonator.

1. Capacitive coupling

In the situation of Fig. 3(a), we add an antenna capacitively
coupled to two neighboring nodes ja − 1 and ja , which will
couple the microwave mode to the Josephson junction at link
ja .

The Hamiltonian for the the microwave mode (with creation
and annihilation operators b† and b) and its coupling to the
circuit takes the form

HC = �ωRb†b + gC(b + b†)Nja
. (4)

Herein, ωR is the frequency of the microwave mode and gC is
the coupling constant, which is determined by the impedance
of the microwave mode and the coupling capacitance [19].
Nja

= i∂/∂θja
is the Cooper pair number operator for the

antenna Josephson junction at link ja .
Using Fermi’s golden rule, the absorption rate for driven

radiation with frequencies ω incident on the antenna has the
general form

αC(ω) = 2πg2
C

�

∑
m

|〈m|Nja
|0〉|2 δ(ω − ωm) (5)

with the sum being over the excited states |m〉 with energy
�ωm relative to the ground state.

2. Inductive coupling

For the inductive scheme, Fig. 3(b), we add inductances
LA into the former “ground line” such that the system
remains translationally symmetric. The antennas themselves
may couple inductively to one or several of these inductances.
Here we suppose it solely couples to one link, say ja .

The inductances LA should be chosen small such that the
length

�A = 2
√

L/LA (6)

is not only large itself (in comparison with unity) but also
�A � � (implying ELA

� EJ ), where � is the characteristic
length defined in Eq. (1). In this limit, as far as the ground
state and excitation energies are concerned, the inductances
LA merely lead to a renormalized characteristic length �eff =
�/

√
1 + (�/�A)2. With good accuracy, we may thus set �eff � �

and ignore the effects of the inductances LA in the analysis of
the model (2).

Using inductively coupled antennas, the microwave modes
(described by b and b†) effectively couple to the Josephson
phase differences θj instead of Cooper pair numbers Nj , cf.
Eq. (4). Currents induced by the antenna at link ja decay only
over the (large) distance �A, Eq. (6). This leads to the following
form of the absorption rate:

αL(ω) = 2πg2
L

�

∑
m

|〈m|θ̄ja
|0〉|2δ(ω − ωm) (7)

with

θ̄ja
= 1

N

∑
k

θ̂k exp(ikja)

1 + �2
A sin2(k/2)

� 1

�A

∑
j

e−2|j−ja |/�Aθj , (8)

where k = 2πn/N with n = 0,1, . . . ,N − 1 and θ̂k =∑
j θj exp(−ikj ) is the Fourier transform of θj . The last
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approximation is valid in the long-wavelength limit. The
coupling constant gL in Eq. (7) is determined by the impedance
of the microwave mode and the coupling inductances.

In contrast to the capacitive coupling, which locally couples
the microwave mode to one Josephson link, the inductive
scheme has a much longer range �A, Eq. (6). We will specify
the spectral absorption rates for the capacitively coupled
antenna, αC(ω), and the inductively coupled antenna, αL(ω),
for the type-I regime in Sec. III and type-II regime in Sec. IV.
In the following, we will use units in which � = 1.

III. TYPE-I REGIME: MANIFESTATION OF A QUANTUM
ISING TRANSITION

For 1 < � �
√

2, as one increases the external flux φe,
the system undergoes a second-order phase transition from a
low-flux homogeneous configuration φj ≡ 0, corresponding to
zero persistent current through the inductors, into a staggered
order φj = φ̄(−1)j with an alternating persistent current
through the inductors; see Fig. 2(a). This state is classically
connected to the state with kink density ρ = 1/2 at larger
� in the type-II regime, cf. the phase diagram in Fig. 1(b).
In this type-I regime, close to φ∗

e , the relevant low-energy
excitations are plasmons, quantized small fluctuations in φj .
Mean-field theory, which assumes that these fluctuations are
small, predicts that the transition happens at the critical flux
φ∗

e given by

cos φ∗
e = −1/�2 for 1 < � �

√
2. (9)

Technically, it is more convenient to work with the field θj =
φj − φj−1, which represents the phase differences over the
Josephson links. For φe > φ∗

e , the field θj fluctuates around
the ordered configuration θj = 2φ̄(−1)j .

A. Mean-field theory

For φe < φ∗
e , mean-field theory for the phase differences θj

gives the plasmon spectrum:

εk = 1

2

√
ECEL

√
1

sin2(k/2)
+ �2 cos φe, (10)

where, in the continuum approximation, the wave numbers are
k = 0, . . . ,2π . The lowest energy states occur for momentum
k = π . For momenta k close to π , the spectrum is simplified to

εk � γ

√
1 + ECEL

16γ 2
(k − π )2. (11)

Herein,

γ = 1

2

√
ECEL

√
1 + �2 cos φe

� √
ECEJ sin φ∗

e |φe − φ∗
e |1/2, φe < φ∗

e , (12)

is the plasmon gap with the second line showing that
mean-field theory predicts the gap closing as a square root as
φe → φ∗

e . At the transition, the softened low-energy plasmon
modes have a linear dispersion relation εk = u|k − π |, where

u = 1
4

√
ECEL (13)

is the sound velocity.

On the ordered side, for φe > φ∗
e , plasmons describe the

fluctuations of the order parameter φ̄. A similar mean-field
theory calculation yields for momenta k with |k − π | � 1 a
soft-mode dispersion relation of the same form as (11), with
the gap larger by a factor of

√
2,

γ = 1√
2

√
ECEL

√
1 + �2 cos φe, φe > φ∗

e , (14)

but otherwise behaves as a function of φe − φ∗
e in the same

way as the gap (12) on the disordered side.
In absorption spectroscopy, microwave photons excite

plasmons so that we expect manifestations of the critical point
at φe = φ∗

e in the spectral absorption rate αC(ω), Eq. (5), or
αL(ω), Eq. (7), for capacitive or inductive coupling to the
microwave resonator. Specifically, we may write the Cooper
pair number operatorNj and its conjugate, the phase difference
θj = φj − φj−1, in terms of the plasmon modes,

Nj =
∫

dk

2π

√
εk

2EC

(ak + a
†
k)eikj , (15)

θj = i

∫
dk

2π

√
EC

2εk

(ak − a
†
k)eikj , (16)

where ak is the annihilation operator for a plasmon at wave
number k. Inserting Eq. (15) into Eqs. (5), we find that at
φe < φ∗

e the spectral absorption rate from the ground state is
given by

αC(ω) = πg2
C

EC

ω�(ω) (17)

for the capacitively coupled antenna, where

�(ω) =
∫

dk

2π
δ(ω − εk) (18)

is the plasmon density of states. For inductive coupling,
inserting Eq. (16) into Eq. (7), we find

αL(ω) � πg2
LEC

�2
A

�(ω)

ω
(19)

for the softest plasmons with momentum k near π , i.e.,
|k − π | � 1. Comparing Eqs. (17) and (19), we infer that
the inductive-coupling scheme leads to stronger response at
low energies ω < EC/�A and thus to higher-contrast results
close to the transition at φ∗

e .
The plasmon spectrum (11) implies the density of states

�(ω) � 1

πu

ω�(ω − γ )√
ω2 − γ 2

, (20)

where � denotes the Heaviside step function. In the frequency
region ω − γ � γ , the absorption rate features a square-root
singularity,

�(ω) � (γ /2)1/2

πu

�(ω − γ )√
ω − γ

. (21)

At the critical field φ∗
e , where the gap closes, γ = 0, the Van

Hove singularity disappears and Eq. (20) becomes

�(ω) � 1

πu
, φe = φ∗

e , (22)

as plasmons have become soft acoustic modes.
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B. Fluctuation regime

Mean-field theory is valid as long as fluctuations are
small. Close to the critical flux φ∗

e , plasmon fluctuations
become significant as the modes at k ∼ π soften. Introducing
ϑj = (−1)j θj , we thus write an effective theory for the “slow”
field ϑj , keeping only the quadratic leading order in “discrete
gradients” ϑj − ϑj−1 so that 16

∑
j φ2

j � ∑
j [4ϑ2

j + (ϑj −
ϑj−1)2]. The Euclidean action then reads

S =EJ

2

∫ β/2

−β/2
dτ

∑
j

{
(∂τϑj )2

ECEJ

+ 1

4�2
(ϑj − ϑj−1)2

+ 1

�2
ϑ2

j − 2 cos[ϑj − φe(−1)j ]

}
(23)

with β → ∞ at zero temperature. Outside a Ginzburg region
close to the critical field φ∗

e , one can treat the action (23) in the
saddle-point approximation and the mean-field results from
the preceding section become accurate.

In order to determine the Ginzburg region, we expand the
cosine-potential to fourth order in ϑj and then employ a contin-
uum approximation, j → x and ϑj − ϑj−1 → ∂xϑ . Rescaling
coordinates and fields so that they become dimensionless and
so the prefactors of the quadratic terms are 1/2, we find that
close to φ∗

e the prefactor of the ϑ4 term is small if

|φe − φ∗
e | � 1

12�

√
EC/EJ

sin φ∗
e

. (24)

For external fluxes φe satisfying Eq. (24), the mean-field results
of the preceding sections are valid.

Very close to φ∗
e , this Ginzburg criterion breaks down as

quantum fluctuations become strong. The quantum critical
behavior, which is due to the nonlinearity of the Josephson
current-phase relationship, leads to an excitation spectrum that
is considerably different from mean-field theory and should
correspond to a (1 + 1)-dimensional quantum Ising chain [24].
As a result, e.g., the gap γ in the plasmon spectrum, cf.
Eq. (12), is expected to close at φ∗

e as

γ ∼ �
1
2
(
E3

J EC

) 1
4 sin(φ∗

e ) |φe − φ∗
e |, (25)

i.e., with critical exponent ν = 1 instead of ν = 1/2 in the
mean-field prediction (12). Furthermore, the ϑ2 term in the
action (23) will become renormalized, effectively shifting the
critical flux φ∗

e to a higher value inside the Ginzburg region. At
criticality, φe = φ∗

e , the system is a liquid with spectrum εk =
u(k − π ) and plasmon density of states of the form of Eq. (22),
but in the fluctuation regime, the renormalized sound velocity u

has to be considered an effective phenomenological parameter.
While parameters entering the observable quantities αC(ω)
and αL(ω), Eqs. (17) and (19), will be effective ones, the
qualitative threshold behavior should still be described in terms
of Eqs. (21) and (22).

Observability of quantum critical behavior requires the
system size N to be larger than the correlation length at the
boundaries of the quantum critical region as given by Eq. (24).
This leads to the condition

N � �−1/2(EJ /EC)1/4. (26)

For typical parameters [25] for EJ and EC (and � ∼ 1 in the
type-I regime), the right-hand side of this estimate is of order
unity.

IV. TYPE-II REGIME: KINKS AND QUANTUM
PHASE SLIPS

Here we consider the limit � � 1, corresponding to large
inductances L. This regime is realizable with superinductors
as demonstrated in fluxonium qubits [20,21]. The most
interesting physical effects are due to the proliferation of kinks
in the node phases φj corresponding to current vortices as
shown in Fig. 2(b). These vortices pick up currents over many
plaquettes of the order of � and therefore are stable already at
small external fluxes φe. Thus, phase transitions associated
with kink proliferation preempt the instability driven by
fluctuations of plasmons, which remain gapped for all external
magnetic fluxes φe. As a result, the ground state and excitations
are fundamentally different from the type-I regime.

We begin with the study of the phase diagram and the
absorption spectrum in the “classical” limit. By “classical,”
we mean that the capacitances are large enough (and hence
EC is small enough) to make effects due to spontaneous
quantum phase slips negligible but still allow for induced phase
slips by microwave absorption. Quantum effects due to finite
capacitances alter the classical picture and excitation spectrum
and will be investigated in Sec. IV C.

A. Classical ground state

The classical phase diagram in Fig. 1(b) is obtained by
finding the configurations {φj } of node fluxes that minimize
the potential V [φ], Eq. (3), cf. Refs. [22,23]. They are found
from solving the set of equations given by

0 = 1

EJ

∂V

∂φj

= 4

�2
φj − [sin(φj+1 − φj − φe)

− sin(φj − φj−1 − φe)]. (27)

Summation over j of Eq. (27) yields the constraint
∑

j φj = 0,
which corresponds to zero net current to ground.

At zero external flux φe, the ground state of the system
is given by the homogeneous configuration φj ≡ 0, which
remains a local minimum of V [φ] for nonzero φe as long as
cos φ∗

e > −1/�2. In the limit of large � � 1, Eq. (27) admits
nontrivial solutions already at small φe � 1 that contain kinks
[26], static local configurations of φj with a jump of the order
of 2π across one link. In order to study such soliton solutions,
we employ Villain’s approximation [27], in which we expand
sin(θj − φe) � θj − φe − 2πn with integer n such that θj −
φe − 2πn is small.

For a single kink, with one jump of ∼2π over the link
between sites j0 − 1 and j0 and θj = φj − φj−1 � �−1 for all
j �= j0, Villain’s approach yields the configuration

φkink
j = −πsgn

(
j + 1

2

)
exp

( − 2
∣∣j + 1

2

∣∣/�
)
, (28)

assuming that j0 = 0. From Eq. (28), we see that �, Eq. (1),
determines the scale of the width of a kink. Inserting typical
fluxonium values, this width is � ∼ 6 [25], which sets the
smallest system size necessary to observe the physics under
discussion.
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As the external flux φe is increased, we may expect the
kink solution φkink

j , Eq. (28), to become more favorable
than the homogeneous configuration φj ≡ 0 because of the
Josephson junction’s preference for finite flux gradients at
finite φe, cf. Eq. (3). In fact, for the difference � = V [φkink

j ] −
V [0] between the potential energies of the single kink and
homogeneous configuration we find

� = 2πEJ (φ∗
e − φe), (29)

where

φ∗
e = π

�
(30)

is the critical external flux in the type-II regime, � � 2, cf.
Fig. 1(b). At flux φ∗

e , configurations {φj } with kinks become
energetically favorable over the homogeneous configuration.
The critical flux φ∗

e is analogous to the critical magnetic
field Hc1 in type-II superconductors, when vortices begin
proliferating [28]. Its smallness in 1/� reflects that the vortex
is able to pick up currents over the (large) length scale �, cf.
Fig. 2(b).

For φe > φ∗
e , the density of kinks in the ground state grows

continuously as a function of φe. Each kink, when nucleating
individually, brings an energy gain of � = 2πEJ (φ∗

e − φe).
On the other hand, this individual gain has to be balanced with
the interaction energy between two kinks. For the repulsive
potential for two kinks at links i and j we find

Jij = 4π2EJ

�
exp

(
− 2|i − j |

�

)
, (31)

which decays only at large distances on the scale of �, Eq. (1).
The competition between kink-kink repulsion Jij , Eq. (31),

and the single-kink energy �, Eq. (29), which plays the role of
a chemical potential, completely determines the ground state
as a function of the external flux φe at � � 1. This interplay
may be effectively described in terms of a classical spin chain
model. Specifically, we associate with each Josephson link j

a pseudospin that distinguishes whether there is a kink across
it (“spin-up”) or not (“spin-down”), see Fig. 4. The effective

FIG. 4. (Color online) (a) Node flux φj configuration for a
commensurate kink density ρ = 1/8 at � = 3. (b) The same state
represented in the effective spin ladder model for the coupled
Josephson links. Links with upward oriented spin feature a kink in
φj .

spin Hamiltonian then has the form

Hcl = �
∑

j

nj + 1

2

∑
i �=j

Jijninj , (32)

where nj = (σ z
j + 1)/2 and we introduce Pauli matrices σx

j ,
σ

y

j , and σ z
j .

The ground states of an Ising chain with infinite-range
convex interaction potentials were systematically studied as
a function of the “chemical potential” � by Bak and Bruinsma
[29] and Aubry [3]. In the language of our model, they showed
that in the limit of very large systems N → ∞, the kink density
ρ = 〈nj 〉 depends on φe in the form of a devil’s staircase [30]:
This means that ρ only takes values in the rational numbers
and rises monotonically and continuously with φe such that
for each rational q/p � 1/2, there is a finite interval in φe in
which ρ(φe) ≡ q/p. For our effective model (32), this interval
has the width

�φe(p) � 2πp

�3 sinh2(p/�)
. (33)

Figure 5(a) illustrates the devil’s staircase for fixed �, showing
as a function of φe the kink density up to commensurability
order p = 17.

A ground state configuration {φj } with kink density ρ =
q/p is periodic [31], φj+p = φj . For example the ground
state configuration for ρ = 1/3 is · · · ↑↓↓↑↓↓↑↓↓ · · · , with
“primitive cell” ↑↓↓. For the nonunit fraction ρ = 2/5, a
primitive cell contains a nontrivial basis: ↑↓↑↓↓.

Figure 5(a) also illustrates that close to φ∗
e , the dependence

of the kink density on φe appears smooth so that we may try

FIG. 5. (Color online) (a) Kink density ρ = q/p for the classical
ground state as a function of the external flux φe (for � = 5 fixed).
The plot shows all densities with periodicity p � 17; higher-order
commensurate phases are hidden behind the vertical dashed lines.
The dashed curve is obtained in the continuum approximation (34).
(b) Classical excitation levels by adding (red, falling) or removing
(blue, rising) a kink. For fixed φe, the lines mark the frequencies
at which the spectral function exhibits a δ peak. The upper (lower)
dashed curve shows the minimal energy for adding (removing) a
kink in the continuum approximation; cf. Eqs. (44) and (52). For
excitations close to φ∗

e , see Fig. 6.
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to effectively describe it using a continuum approximation.
Physically such a description seems reasonable because close
to φ∗

e , kinks are sparse such that the large distances between
neighboring kinks “wash out” the discrete structure of the
underlying lattice. Thus, close to φ∗

e , the ground-state density
ρ of the classical model (32) is related to the external flux φe

by

φe(ρ) = π

�

[
coth

(
1

�ρ

)
+ 1

�ρ sinh2[1/(�ρ)]

]
. (34)

Solving this relation for ρ leads to the dashed curve in
Fig. 5(a). For φe − φ∗

e � φ∗
e , Eq. (34) would predict the

relation ρ � φe/2π , which in particular implies ρ = 1/2 at
half flux quantum, φe = π , corresponding to the staggered
order. However, discreteness effects are visibly superposed on
the continuum model, mostly due to large intervals in φe that
hold the same kink density, cf. Eq. (33).

Very close to φ∗
e such that ln[2φ∗

e /(φe − φ∗
e )] � 1, we

explicitly find the dependence

ρ � 2

�

{
ln

[
2φ∗

e

φe − φ∗
e

ln

(
2φ∗

e

φe − φ∗
e

)]}−1

, (35)

which in particular shows that at φe → φ∗
e the kink density

grows with infinite slope.
The transitions between the various commensurate phases

of the model (32) are first order [3]. At zero temperature,
quantum fluctuations due to the capacitative term in Eq. (2)
facilitate equilibration and prevent hysteresis effects if φe

is varied sufficiently slowly in an experiment. Realistic
capacitive energies EC ∼ EJ lead to extended phases of
incommensurate order, phases of “floating primitive cells,”
around the transitions which we will discuss in Sec. IV C.

B. Classical absorption spectrum

In the regime of kink proliferation, the elementary excita-
tions by photon absorption are the creation of an additional
kink or the annihilation of a kink already in existence in the
ground state. The typical energy scale associated with such
excitations is given by EJ /� ∼ √

EJ EL. This scale could
possibly already be below the plasmon gap ∼√

ECEJ if
EL � EC . At the critical flux φ∗

e , Eq. (30), when the first kinks
nucleate in the ground state, the spectrum for kink excitations
extends to zero energy. Here, and in the vicinity of φ∗

e , these are
therefore the relevant low-energy excitations. On either side
of φe = φ∗

e , the energies correspond to isolated low-frequency
absorption peaks, see Fig. 6.

In this section, we discuss the “classical” absorption
spectrum; i.e., we neglect spontaneous creation/annihilation
of kinks due to quantum phase slips and only allow for such
processes in the context of photon absorption. We discuss how
quantum effects alter this picture in Sec. IV C.

1. Capacitive vs inductive coupling

In a setup with a single capacitively-coupled antenna at
link ja [Fig. 3(a)], the system may be excited by locally
introducing a kink at the link ja of the antenna. In a single
absorption act associated with kink creation or annihilation at
link ja , the system responds by boosting the phase difference

FIG. 6. (Color online) Classical absorption spectrum close to the
critical flux φ∗

e . (a) Photon absorption spectrum as a function of
external flux φe. Red solid lines correspond to excitations associated
with the addition of a kink, blue dashed lines to removing a kink.
(b.1) At φe < φ∗

e , cf. Fig. 1(b), there is only one δ peak in the
spectral function �(ω), corresponding to introducing a kink into
the homogeneous ground state. (b.2) For φe > φ∗

e , inhomogeneous
broadening leads to a quasiband of excitations related to kink creation,
which for large energies turns into a series of δ peaks. The lowest
excitation is a single peak (for unit-fraction densities ρ = 1/p)
corresponding to the annihilation of a kink.

θja
over the jath Josephson junction from 0 to 2π or vice versa,

whereas phase differences at other links acquire negligible
changes � 1/�. For this reason, we may estimate the matrix
element in the absorption rate αC(ω), Eq. (5), in the limit of a
single fluxonium qubit [32], where the energy difference ε(ja)
between the excited and the ground state is determined by the
external flux φe and the effective potential a kink at ja feels in
the presence of kinks at other sites.

The matrix element entering Eq. (5) is then given by∣∣〈θja
= 2π

∣∣Nja

∣∣θja
= 0〉∣∣ ∼ �/EC. (36)

Herein, the parameter

� = 8√
π

(
E3

J EC

)1/4
exp(−8

√
EJ /EC), (37)

with dimensions of energy, is the amplitude of a quantum phase
slip [33]. In determining matrix elements and absorption rates,
we assume the typical limit EJ � EC � EL � � and ω � �

for microwave frequencies ω.
As a result, we obtain for the absorption rate in the case of

capacitive coupling

αC(ω) = 2πg̃2
C

(
�

EC

)2

δ(ω − ε(ja)) (38)

with g̃C ∼ gC . It features a single peak at frequency ε(ja),
which corresponds to the energy cost for adding or removing a
kink from the ground state at link ja . The spectrum of energies
ε(j ) is determined in Secs. IV B 2 and IV B 3, see also Fig. 5(b).

The inductive coupling setup [Fig. 3(b)], as discussed in
Sec. II B 2, couples the single antenna to links over the long
range of �A. For realistic situations, we may assume that �A is
much larger than the length �, the relevant scale for the statics
of kinks. This allows the insertion of kinks at any link over a
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long range. If the antenna is situated at ja , the absorption rate
αL(ω), Eq. (7), becomes

αL(ω) = 2πg̃2
L

�2
A

(
�

ω

)2 ∑
j

e−2|j−ja |/�A δ(ω − ε(j )), (39)

where g̃L ∼ gL, as the matrix element in Eq. (7) is given by

|〈θj = 2π |θj |θj = 0〉| ∼ �/ε(j ). (40)

For practical situations, because of the long range, it should
therefore be sufficient to restrict ourselves to kink densities
ρ = q/p with p � �A. In this case, the quantum phase slip
due to photon absorption may happen at any link within a
ground-state primitive cell, and the absorption rate is simply
written as

αL(ω) = 2πg̃2
L

�A

(
�

ω

)2

[�+(ω) + �−(ω)], (41)

where �+(ω) and �−(ω) are the spectral functions associated
with the creation and annihilation, respectively, of a kink. We
determine them in Secs. IV B 2 and IV B 3.

2. Absorption-induced addition of kinks

In this and the next section, we discuss the spectral function
for excitations by adding or removing kinks. We focus mostly
on the situation close to the critical flux φ∗

e . Figure 6 shows
the photon absorption spectrum as a function of the external
magnetic flux φe.

For external magnetic fluxes below the critical value φ∗
e ,

Eq. (30), the ground state is homogeneous, φj ≡ 0, and photon
absorption can only result in kink creation. The energy cost of
a single kink is equal to �, Eq. (29), so that we find

�+(ω) = δ(ω − 2πEJ (φ∗
e − φe)) for φe < φ∗

e . (42)

The absorption frequency decreases linearly as a function of
φe until it reaches 0 at the transition field φ∗

e .
For φe > φ∗

e , the ground state of the system carries a
commensurate kink density ρ = q/p. Because of kink-kink
repulsion, the energy costs for adding another kink at a
particular site j is smallest if this link is put in the middle
between two existing kinks, which are separated by a length
of either the ceiling or floor integer of ρ−1 [31].

Let us consider a magnetic flux slightly above φ∗
e . Here,

kinks are sparse so that the discreteness of the lattice and
peculiarities related to higher-order commensurate densities
ρ = q/p with q �= 1 are less important, at least for low-energy
additional kinks. Since also, according to Eq. (33), most of the
φe space is filled by unit fractions ρ = 1/p, we focus at first
on excitations by (low-energy) additional kinks to such ground
states. Without loss of generality, we may assume that the
additional kink is introduced at link j = 0. Then assuming a
ground-state kink at j with j = 1, . . . ,p − 1 and for simplicity
p even, the additional kink costs the energy

ε+
p (j ) = � + 4π2EJ

�

cosh[(2j − p)/�]

sinh(p/�)
. (43)

Herein, the ground-state density ρ = 1/p as a function of φe

is found from inverting Eq. (34). For a given φe, the lowest

frequency at which a photon may create a kink is given by

ε+
min = εp(p/2) = � + 4π2EJ

� sinh(p/�)
, (44)

which corresponds to adding a kink exactly in the center of the
primitive cell of the kink lattice. For φe close above φ∗

e , using
Eq. (35), we find

ε+
min � 8π2EJ

�

√
φe − φ∗

e

2φ∗
e ln[2φ∗

e /(φe − φ∗
e )]

. (45)

Thus, at the transition at φ∗
e , the gap (44) closes essentially as

a square-root law. The absorption gap ε+
min as a function of φe

is plotted as a dashed line in Fig. 5(b) and also as the lower
band edge in Fig. 6(a).

Adding a kink in the proximity of the center of the primitive
cell is energetically least costly. Since (for p even) ε+

p (j ) =
ε+
p (−j ), each excitation level is doubly degenerate within one

primitive cell. For small j − p/2 � �, we expand Eq. (43)
and find

ε+
p (j ) � ε+

min + 8π2EJ

�3

(j − p/2)2

sinh(p/�)
. (46)

The accumulation of absorption levels close ε+
min turns into the

usual Van Hove singularity in the continuum approximation,
which is valid for the low lying absorption levels close to φ∗

e .
Explicitly, for frequencies ω slightly above the energy gap,
ω − ε+

min � ε+
min, the spectral function for photon absorption

associated with kink creation reads

�+(ω) �
√

� sinh(p/�)

2π (p/�)
√

2EJ

�(ω − ε+
min)√

ω − ε+
min

(47)

for φe > φ∗
e . [We recall that by Eqs. (34) and (44) p is a

function of φe.] Close to φ∗
e ,

�+(ω) �
√

2

ε+
min ln[2φ∗

e /(φe − φ∗
e )]

�(ω − ε+
min)√

(ω/ε+
min) − 1

(48)

with ε+
min given by Eq. (45).

Equation (48) is valid for frequencies ω between ε+
min and,

roughly, 2ε+
min. Integrating over this interval shows that the

fraction of available kink-addition states with energies between
ε+

min and ∼2ε+
min is of order 2/ ln[2φ∗

e /(φe − φ∗
e )]. Close but not

too close to φ∗
e , this can already represent a significant fraction

of all available excited states associated with one additional
kink. We also note that in the same limit close to φ∗

e , the
level spacing |ε+

p (j ) − ε+
p (j − 1)| remains smaller than the

characteristic energy ε+
min for the lowest (�/2) ln � levels. In

terms of energy, this corresponds to all states with energies
smaller than (�/2)ε+

min. Both observations indicate that as
φe → φ∗

e the low-energy excitation spectrum associated with
the addition of a kink is suitably described by the continuum
model (47) and (48) over a wide range as compared to the
characteristic scale ε+

min.
At larger energies, however, the continuum approximation

underlying Eq. (47) eventually breaks down, even close to
φ∗

e . Specifically, adding a kink right next to an existing kink
determines a highest energy level

ε+
max = ε+

p (1) � 4π2EJ

�
. (49)
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The energy difference ε+
p (1) − ε+

p (2) between this highest
absorption level and the second highest, in which the additional
kink is placed on a next-nearest link, is of order EJ /�2 and
to leading order independent of φe − φ∗

e , cf. Fig. 5(b). This
invalidates any approach neglecting the discrete structure of
the underlying lattice for finite �. The absorption spectrum
at higher energies can then only be described in terms of a
sequence of individual δ-function peaks,

�+(ω) = 1

p

∑
j

δ(ω − ε+
p (j )), (50)

cf. Fig. 6(b.2). Note that the spectral weight of an individual
peak of Eq. (50) decreases linearly with 1/p, i.e., upon ap-
proaching the critical flux φ∗

e from above, as 2/{� ln[2φ∗
e /(φe −

φ∗
e )]}. In particular, the peaks in Eq. (50) are much less “bright”

than the single peak on the homogeneous side, φe < φ∗
e , in

Eq. (42).
Let us finally discuss the situation of external fluxes away

from the transition point, φe − φ∗
e � φ∗

e . For such external
fluxes, the phase diagram for φe is dominated by phases with
densities ρ = q/p where p is small. According to Eq. (33),
the phase with a ground state kink density of, e.g., ρ = 1/3
extends over an interval of length �φe(3) � 2π/3�, which is
almost as large as the interval of the homogeneous phase at
φe < φ∗

e . For finite �, this clearly invalidates the continuum
approach entirely, and one can only work with the discrete
formula for the absorption spectrum (50). As illustrated in
Fig. 5(b), the absorption spectrum for the larger unit-fraction
kink densities, which dominate the phase diagram on the φe

axis, contains fewer discrete δ peaks, which on the other hand
are individually brighter than the peaks close to φ∗

e .
Within an interval in φe of constant kink density, the

excitation energies fall linearly as a function of φe, as a higher
magnetic flux favors additional kinks, cf. Fig. 5(b). As a result,
transitions between the commensurate phases are detectable
by jumps of the excitation frequencies seen in absorption
spectroscopy.

3. Absorption-induced annihilation of kinks

For external magnetic fluxes above the critical flux, φe >

φ∗
e , the ground state carries a finite density ρ of kinks whose

annihilation constitutes another excitation in the context of
photon absorption. In fact, excited states due to annihilation of
a single kink are classically the energetically lowest excitations
of the system.

We again first consider a sparse unit-fraction density ρ =
1/p at external flux slightly above φ∗

e . In this situation, the
energy cost to annihilate a kink is

ε−
p = −� − 4π2EJ

�

2

exp(2p/�) − 1
. (51)

Close to φ∗
e , using Eq. (35), we may write the dependence on

φe explicitly,

ε− � 2πEJ (φe − φ∗
e )

(
1 − 2

ln[2φ∗
e /(φe − φ∗

e )]

)
, (52)

which is valid as long as ln[2φ∗
e /(φe − φ∗

e )] � 1. Note that
in contrast to the minimal energy to add a kink, Eq. (48), the

energy for removing a kink depends on φe − φ∗
e in the leading

order as a linear function.
The spectral function then reduces to a single δ peak,

�−(ω) = 1

p
δ(ω − ε−

p ) for φe > φ∗
e . (53)

The spectral weight becomes small close to φ∗
e , where p is

large. This is in complete analogy with the fate of the individual
δ peaks in the spectral function �+(ω) for absorption-induced
kink creation, cf. the discussion of Eq. (50). Observing this
peak with a capacitively coupled antenna that affects the
system locally thus seems much more difficult than with an
inductively coupled antenna, which is able to excite remote
links.

For φe much larger than φ∗
e , the ground-state density

becomes larger and effects due to the discreteness of the lattice
become important also for the spectral function �−(ω). In
particular, kink densities that are not unit fractions and feature
more complicated primitive cells of the commensurate order
may lead to a kink-annihilation spectrum with more than one
peak. For instance, for the rational density ρ = 3/7, a primitive
cell is given by ↑↓↑↓↑↓↓. Here, removing the second kink
is energetically less costly than removing the first or third,
resulting in two δ peaks in �−(ω) with the lower one being
half as “bright” as the upper one, cf. Fig. 5(b) for different
examples of this phenomenon (ρ = 3/17 and ρ = 3/16).

In conclusion of this section, the classical absorption spec-
trum shows clear signatures of the phase transitions between
the various phases of commensurate kink configurations and,
in particular, the transition at φ∗

e , at which the first kinks enter
the system, cf. Fig. 6. The lowest excitations on the left side
but essentially also on the right side of φ∗

e are single δ peaks.

C. Quantum effects

1. Quantum phase slips

The capacitative term in the Lagrangian, Eq. (2), introduces
quantum fluctuations into the system. Besides plasmons,
which below the gap of order

√
ECEJ are frozen, these

quantum fluctuations notably become manifest in the form
of quantum phase slips [33], which change phase differences
across any of the Josephson junctions by 2π . This corresponds
to the spontaneous creation or annihilation of kinks. For � � 1,
the necessary adjustments � �−1 of fluxes φj neighboring the
location of the kink only make minor contributions to the action
of the total quantum phase slip [34]. The phase slip amplitude
�, which has already been introduced in Eq. (37), measures
the coupling strength between the configuration with a kink at
a given link and the one without. Including this coupling, the
effective quantum Hamiltonian in the kink-dominated type-II
regime � � 1 is

H = Hcl + �

2

∑
j

σ x
j , (54)

where Hcl is the classical nonlocal Ising Hamiltonian, Eq. (32).
The quantum phase slips thus enter in the form of an effective
transverse field. As a result, in the fluxonium limit � � 1, the
circuit Fig. 1(a) constitutes a realization of a quantum Ising
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model with nonlocal interactions [30]. We remind the reader
that the energy scales typically obey EJ � EL � �.

2. Low-frequency peaks

The lowest excitations in the classical absorption spectrum
in the vicinity of φ∗

e are single peaks, cf. Fig. 6 and Eq. (42).
Quantum fluctuations broaden these peaks. Not too close to
φ∗

e , this effect is perturbative and the peaks should still be
observable in the realistic quantum regime.

For φe < φ∗
e , according to the classical analysis in Sec. IV

B 2, the lowest excitation corresponds to introducing a single
kink into the homogeneous ground state. The excited state
then has energy �, Eq. (29), and is N -fold degenerate since
the kink could have been excited on any of the N links in the
system. As we include quantum effects due to the σx term in
the Hamiltonian (54), this kink, assumed at link i, effectively
hops through the system: In second order in �, the kink either
is first annihilated and then nucleates at a (different) link j or
vice versa. In the first process, the effective hopping parameter
is given by �2/�, in the second by −�2/(� + Vij ) because
in the intermediate state the system holds two virtual kinks
affected by the mutual repulsion Vij , Eq. (31). As a result,
hopping is effective over distances

�̃ = � ln(1/d), (55)

where d = �/(4π2EJ /�). The single-kink states thus reorga-
nize into plane waves and the single excitation peak in Fig. 6(b)
is broadened into a band. For |i − j | � �̃, the two hopping
processes interfere destructively.

If �2 � �̃�2, we may use perturbation theory to find
the effective quantum spectrum. To second order in �, the
spectrum of excited states with a single kink is

εq =� + �2

4�

{
� ln(1 + d−1) − 1

+ π�

(
sin[�̃q/2]

sinh(π�q/2)
+ {q ↔ 2π − q}

)}
(56)

with the wave number q = 0, . . . ,2π . In terms of φe, Eq. (56)
remains valid as long as |φe − φ∗

e | � �̃1/2�/EJ . As φe → φ∗
e ,

quantum fluctuations lead to drastically different low-energy
physics. In the classical limit, � → 0, the spectrum reduces to
a single peak at �, cf. Eq. (42).

The bandwidth of the dispersive part in Eq. (56) is of order
��2/�. However, because the dispersive part is exponentially
suppressed for momenta 1/� < q < 2π − 1/�, the band is
mostly flat with most states accumulated at the lower band
edge. For instance, a simple estimate using Eq. (56) shows
that more than half of the states have an energy less than

�ε = π��2

2�
e−π2�/4 (57)

away from εq=π . The first term in braces in Eq. (56) represents
a global renormalization ∝ �2 of the classical single-kink
excited level, due to interaction with virtually created and
annihilated kinks.

For φe > φ∗
e , the lowest energy single-kink excitation is the

annihilation of an existing kink in the ground state (assumed
unit fraction for simplicity), cf. Fig. 6(b.2) and Eq. (53). At

nonzero �, the induced hopping of kinks makes their positions
subject to quantum uncertainty. As a result, the effective
potential a single kink feels in the many-body background
becomes fluctuating. The variance of this effective potential
then determines the width of the broadened excitation peak for
annihilation of a single kink.

Perturbation theory in � yields a small broadening of the
peak at ε−, Eq. (52), with width

�ε− ∼ �1/2�. (58)

Note the linear dependence on the quantum amplitude, in
contrast to the broadening of the kink excitation spectrum
at φe < φ∗

e , cf. Eq. (57). The estimate (58) is valid for small
� and for φe sufficiently far away from the critical value φ∗

e ,
specifically as long as

� � EJ

�3/2

(φe − φ∗
e )1/2

ln1/2[2φ∗
e /(φe − φ∗

e )]
, (59)

close to φ∗
e , and � � EJ /�3/2 for φe → π . If this inequality is

not satisfied, especially close to φ∗
e , effects of the then strong

effective hopping are more drastic and the single peak for
kink annihilation fades away into the spectrum of a strongly
correlated quantum liquid, cf. the next section. Away from
φ∗

e , however, the peak should remain intact, owing to the
exponential smallness of �, Eq. (37).

3. Quantum phase diagram

Quantum Ising models beyond nearest neighbors, i.e.,
Hamiltonians of the form of Eq. (54), have recently [35,36]
been studied theoretically for power-law interactions, e.g., in
the context of Rydberg atoms [35] and experimentally using
trapped ions [37]. Applying the theoretical results to our model
(54), we predict the phase diagram as a function of external
flux φe for fixed � � 1 and � to be the one shown in Fig. 7.

Below a critical flux φ∗
e , the system is, as in the classical

limit, in a homogeneous phase with gapped excitation spec-
trum, cf. Sec. IV C 2, but then undergoes a Kosterlitz-Thouless
(KT) transition into a gapless phase of “floating” kinks. This
phase is a Luttinger liquid and the excitation spectrum for
adding or removing kinks is analogous to the spectrum of
adding or removing spinless fermions in a one-dimensional
system with strong repulsion. Upon further increasing φe,
the system undergoes a commensurate-incommensurate (CIC)

FIG. 7. (Color online) Sketched quantum phase diagram, cf.
Ref. [35], as a function of the external flux φe for fixed � = 5.
Quantum phase slips, in this illustration with amplitude � ∼ 0.1EJ ,
melt all commensurate kink densities ρ = q/p with p > 6, leading
to extended incommensurate Luttinger liquid (LL) phases, for which
the spectral function has the form of Eq. (60). For general �, Eq. (61)
determines the maximum p such that classical commensurate phases
ρ = q/p survive the quantum fluctuations.
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transition into a “pinned” phase featuring a rational kink
density ρ = q/p and a gapped excitation spectrum as in
Fig. 5(b). Quantum effects broaden the “classical” peaks
according to Eq. (56). After another CIC transition, the system
becomes again a Luttinger liquid. An (even) number of CIC
transitions (depending on �) may follow before the system
undergoes a second KT transition from a liquid into another
gapped homogeneous phase, which in a final quantum Ising
(QI) transition turns into the staggered order corresponding to
kink density ρ = 1/2.

Let us have a closer look into the phases that feature a finite
kink density. For this purpose, let us consider a classical ground
state with kink density ρ = q/p and estimate its stability to
quantum fluctuations. Whereas the adjacent ground state for
increasing (decreasing) φe has only one extra (fewer) kink,
practically all the kinks need to be rearranged in order to
minimize the potential energy [31]. We can interpret this
state as the original state of period p with the addition of
p defects, in analogy to the two domain walls introduced in
an antiferromagnet by flipping one spin [35,38]. For the kink
density ρ = 1/2, this analogy is perfect.

The quantum σx term introduces effective hopping of the
defects by virtual quasisimultaneous adding and removing of
kinks, similar to the single-kink hopping discussed in Sec. IV C
2. The classical energies of the virtually occupied intermediate
states are of order EJ /�, cf. Fig. 5(b), giving a hopping
amplitude t ∼ �2�/EJ . The kinetic energy gain from such
hopping of p defects, which is ∼pt , then lowers the energy of
the states with defects relative to the original period-p ground
state and, as a result, takes away a strip of width ∼pt/2πEJ

from both ends of the interval the period-p ground state has
classically occupied in φe. In Fig. 7, e.g., the ρ = 1/5 phase
had to cede almost one half of its classical interval in φe, cf.
Eq. (33), to the strips to its left and its right.

In these strips, because of the mobility of the kinks, the
commensurate configuration has melted and been replaced
by an incommensurate state of floating “defective” primitive
cells. This state is gapless and physically described by a
Luttinger liquid. Creation of a kink at a link j is here analogous
to injecting a spinless electron at a site x into a (strongly
coupled) quantum wire [39]. Therefore, using the well-known
Luttinger liquid results, we find for absorption at low energies
the spectral function

�±(ω) ∝ ω
1
2 (K+K−1−2). (60)

Within the incommensurate phase, the Luttinger parameter
K varies [36] as a function of φe. At the CIC transition
involving a commensurate kink density ρ = q/p, it takes
the value K = 1/p2, cf. Refs. [35,39]. If the width of the
incommensurate strip exceeds the width of the interval of the
classically commensurate state, i.e., if

sinh(p/�) �
√

2πEJ

�2�
, (61)

the classical state with period p is entirely unstable and merges
into an incommensurate phase of floating defects between two
commensurate phases of shorter period p. The estimate (61)
shows explicitly that classical ground states of kink densities
with smaller denominator p are more immune to quantum

fluctuations. In fact, the classical phase ρ = 1/3, the “most
immune” pinned phase, would be destroyed entirely only if
� were so large that it would also destabilize the Luttinger
liquid into a gapped homogeneous quantum paramagnet [35].
Based on typical fluxonium parameters [25], we predict that
classical phases of pinned densities ρ = q/p with p � 10
survive also in the presence the quantum fluctuations and
systems of size larger than 10 would be needed to observe
signatures of Luttinger liquid physics such as an absorption
spectrum according to Eq. (60).

Upon decreasing of the external flux to a critical value
φ∗

e , the lowest-φe incommensurate phase destabilizes into
a homogeneous phase in a KT transition [35]. We note
that the value of the critical flux φ∗

e , because of quantum
fluctuations, will be slightly larger than the classical value from
Eq. (30). Close to this transition, theory [35] predicts a critical
K = K∗ = 1/8. As the external flux φe approaches half a
flux quantum, the system undergoes a similar KT transition
from the rightmost (see Fig. 7) incommensurate phase (with
the same K∗) into a homogeneous quantum paramagnet.
Eventually, there is a quantum Ising transition [35,36] to the
antiferromagnet-like p = 2 phase in the vicinity of φe = π .

V. SUMMARY AND DISCUSSION

A. Summary

The model circuit, Fig. 1(a), we have discussed has a
surprisingly rich equilibrium phase diagram, cf. Figs. 1(b)
and 7, despite its relatively simple structure. This arises due
to the combination of the nonlinear properties of Joseph-
son junctions and the long-range interactions introduced by
the coupling to a common ground. As a function of the
circuit parameters � = 2

√
EJ /EL, EC/EJ , and the external

field φe, the model exhibits equilibrium phase transitions of
the Kosterlitz-Thouless, commensurate-incommensurate, and
Ising classes. We have shown that circuit QED realizations
of this model enable access to low-energy excitations. In
particular, they allow to identify the quantum phase transitions
in linear response by the absorption of microwaves using a
capacitively (C) or inductively (L) coupled antenna. Here we
summarize our predictions for the absorption rate αC/L(ω) in
the various characteristic regimes of parameters, particularly
� and φe.

1. Type-I regime: 1 < � �
√

2

In this limit, the elementary excitations of the system are
plasmons. The absorption rates αC(ω) and αL(ω) are given by
Eq. (17) and (19), respectively, with the density of states of
plasmon excitations given by Eq. (20). At the critical external
flux φe = φ∗

e , classically given by Eq. (9), the spectrum is
gapless with a uniform density of states [Eq. (22)]. In the
proximity of φ∗

e , where the Ginzburg criterion (24) is violated
and quantum fluctuations are strong, the gap in the plasmon
spectrum grows linearly as a function of the distance to φ∗

e ,
[Eq. (25)], while outside the Ginzburg region, the classical
square root dependence on the external flux [Eqs. (12) and
(14)] sets in.
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2. Type-II regime: � � 1

This regime, with EJ � EL, is closer to the the parameters
realized in fluxonium qubits [20]. The ground state and
excitation spectrum at large flux, φe > φ∗

e with φ∗
e given

by Eq. (30), are significantly different from the small-flux
regime, φe < φ∗

e , where the ground state is homogeneous.
The elementary excitations are associated with the addition
or removal of localized kinks (or vortices).

The absorption spectrum is different for the capacitive
[Eq. (38)] or inductive [Eq. (41)] coupling of the antenna,
the former adding or removing kinks locally, the latter over an
extended range. In the realistic quantum picture, the lowest
excited states in the regime φe < φ∗

e appear above a gap
of order � ∝ φ∗

e − φe and form a very flat quantum band
[Eq. (56)]. The band slightly broadens the classical peak in
the absorption rate [Eq. (42) and Fig. 6(b.1)]. As φe → φ∗

e , the
gap closes and, upon undergoing a Kosterlitz-Thouless (KT)
transition at φ∗

e , the system enters the phase of a “floating”
crystal of kinks. The excitation spectrum here at φe > φ∗

e

is of Luttinger-liquid type and at low energies is given by
Eq. (60).

As φe is increased further, depending on the strength of
quantum fluctuations (phase slips), the system undergoes a
commensurate-incommensurate (CIC) transition, after which
the ground state carries a pinned classical kink density. Here,
the excitation spectrum is essentially the classical spectrum
of Figs. 5(b) and 6(b.2), where quantum fluctuations slightly
broaden the δ peaks according to Eq. (58). The classical
spectral function for kink addition is given by Eq. (48), for
φe not too far from φ∗

e , and in general by Eq. (50). For kink
annihilation, the spectral function is displayed in Eq. (53). For
kink densities ρ = q/p with q = 1 or q = 2, which dominate
the phase diagram, there is only a single peak in the absorption
spectrum related to kink annihilation, which is the lowest
excitation energy of the system, cf. Eq. (51) and Figs. 5(b)
and 6(b.2).

As the external flux is further increased, classical and
floating phases alternate as schematically indicated in
Fig. 7.

B. Discussion

In our theoretical analysis, we built on the availability
of a “superinductance” such as in fluxonium qubits [20]
when envisioning experimental realizations. As a result,
the type-II regime of small EL could be reached without
considering the effects of additional parasitic capacitances
to ground that would be unavoidable in a realization using
ordinary electromagnetic inductance. Such additional parasitic
capacitances would suppress quantum fluctuations and thus
enhance the classical behavior of the system. In the type-I
regime, it decreases the effective EC for the low-energy

plasmon modes, narrowing the quantum critical region for the
Ising transition. In the type-II regime, capacitance to ground
decreases the quantum phase slip rate � [34], which helps to
stabilize the classical pinned phases.

Throughout, we have used periodic boundary conditions for
theoretical convenience. Realistically, it is easier to create an
array with open boundary conditions and so for small system
sizes there will be edge effects. These will extend over a length
∼�, Eq. (1), as this is the scale for interactions in the system.
Yet for large systems whose size significantly exceeds at least
the length �, our results should be directly applicable. We have
also assumed the temperature is zero. Both finite temperature
and the finite size of the system prevent the formation of long-
range order and in principle mean that there will not be a true
phase transition. However, the equilibrium state and spectrum
will retain signatures of the infinite system behavior on short
enough length and time scales.

We note that there is an intermediate regime � ∼ 2, where
the classical model has an incomplete staircase of first-order
transitions, cf. Fig. 1(b) and Refs. [22,23]. In this parameter
region, the type-II regime commensurate and incommensurate
phases of finite kink density for φe > φ∗

e turn into the
single Ising phase of the type-I regime. The classical theory
[22,23] predicts a sequence of “superdegenerate” [22,23]
and multicritical points as the transition at φ∗

e changes from
first order at large � to second order in the type-I regime.
The construction of an effective model for this region that
also allows one to analytically study the effect of quantum
fluctuations appears difficult. However, the study of the
ground states and excitations may be amenable to numerical
techniques such as quantum Monte Carlo as the problem is
bosonic.

In the type-II regime at large �, the low-energy behavior
is well described in terms of localized kinks. Using the
locally coupled capacitative antenna configuration, kinks can
be selectively introduced or removed on individual sites. If
multiple kinks are introduced, they will interact over the large
length scale � according the Hamiltonian (32). This introduces
the possibility of investigating the many-body nonequilibrium
physics of the system. In the presence of dissipation, it may
be possible to create a model system with a driven-dissipative
steady state of interacting kinks, an interesting addition to the
set of nonequilibrium many-body models that can be simulated
with circuit QED systems [40].
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Transitions in the Two-Dimensional Limit, Phys. Today 51(11),
39 (1998).

[13] R. Fazio and H. van der Zant, Quantum phase transitions and
vortex dynamics in superconducting networks, Phys. Rep. 355,
235 (2001).

[14] E. Chow, P. Delsing, and D. B. Haviland, Length-Scale De-
pendence of the Superconductor-to-Insulator Quantum Phase
Transition in One Dimension, Phys. Rev. Lett. 81, 204
(1998).

[15] A. van Oudenaarden and J. E. Mooij, One-Dimensional Mott
Insulator Formed by Quantum Vortices in Josephson Junction
Arrays, Phys. Rev. Lett. 76, 4947 (1996); A. van Oudenaarden,
B. van Leeuwen, M. P. M. Robbens, and J. E. Mooij, One-
dimensional Mott localization of quantum vortices in Josephson-
junction arrays, Phys. Rev. B 57, 11684 (1998).

[16] D. B. Haviland, K. Andersson, and P. Ågren, Superconducting
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