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Influence of the boundary conditions on the current flow pattern along a superconducting wire
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We study the patterns at which the current flow stabilizes in a finite 1D superconducting wire, for various
experimentally reasonable boundary conditions, for small fixed current densities and temperatures close to Tc.
We pay special attention to the possible existence of a stationary regime. If the contacts are superconducting, truly
stationary or normal regimes do not exist, but can be approached as a limit. In the case of weak superconducting
contacts, a rich phase diagram is found, with several periodic regimes that involve two phase slip centers. There
may be a time lag between the phase slips at each of these centers. There is a small parameter region in which this
time lag is continuously tuned by the parameters. For some of these regimes, the density of Cooper pairs does
not have mirror symmetry. If the contacts are normal, the stationary regime is possible. Analysis according to the
Kramer–Watts-Tobin formalism leads to qualitatively the same results as the time-dependent Ginzburg-Landau
model.
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I. INTRODUCTION

When current is driven along a superconducting wire, it
can either flow as normal current, as supercurrent, or as a
combination of both. The various patterns that may be obtained
in space and time were reviewed long ago [1,2], and a new
approach [3], still within the phenomenological framework in
which the superconducting condensate is described by an order
parameter, has been raised in recent years. The results obtained
for 1D wires have been extended to the case of stripes [4–7].

One of the possible patterns is periodic in time, and
a salient feature of the periodic regime is the appearance
of phase slips that occur when the superconducting order
parameter vanishes at some point. Phase slips repeatedly occur
at definite positions, called phase slip centers (PSC). While
early studies (e.g., Refs. [1,2] and references therein) were
mainly interested in wires of effectively infinite length, so
that they extended over many PSC and were insensitive to the
boundary conditions, Ref. [3] focuses on a parameter region in
which there are just a few PSC, if any, since this is the region
that most neatly exhibits the qualitative features of the current
pattern.

For experimentally reasonable temperatures (not unfeasibly
close to the critical temperature), the wires studied in Ref. [3]
have to be short. On the other hand, wires that are too short can-
not be analyzed as in Ref. [3] by means of the time-dependent
Ginzburg-Landau model (TDGL) or its extensions. One of the
most realistic of these extensions, the Kramer–Watts-Tobin
(KWT) model [8–10], is justified provided that there is local
equilibrium, and hence the requirements Dτin � ξ 2(T ) and
Dτin � L2, where D is the diffusion constant, τin is the
inelastic collision time, ξ (T ) is the coherence length, and,
following Ref. [3], we denote by L half the length of the
wire. As a general trend, τin decreases with temperature [11];
for Al τin ∼ 5×10−8 sec and the shortest lengths that can
be dealt by means of KWT are larger than 10 μm, whereas
for Pb or Nb τin ∼ 2×10−11 sec, leading to lengths of the
order of 10−1 μm. Furthermore, KWT is not reliable in the
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analysis of features that last less than τin. Shorter wires [12–14]
can be analyzed by means of the Usadel [15] or similar
equations.

For τin → 0, KWT reduces to TDGL. For realistic situa-
tions TDGL is not quantitatively correct below Tc, but Ref. [3]
states that their essential results, obtained for τin = 0, remain
valid for finite τin. Therefore, since TDGL permits faster
evaluations, since its results can be scaled to arbitrary length,
and since we are mainly interested in qualitative results, we
will conduct most of our study within the TDGL framework,
and then use KWT to recalculate the results that seem to be
the most fragile.

Figure 1 shows the phase diagram for the flow patterns, for
small currents and for temperatures close to Tc, that is obtained
with the method and boundary conditions used in Ref. [3], but
for realistic material parameters. Below the pertinent curve
the sample is in the normal state (N) and all the current is
normal, whereas above the curve there is a stationary regime
(S), in which normal current and supercurrent are both present;
both are functions of position, but none of them depends on
time. The stationary regime was previously found in Ref. [16].
In several cases [10,12,13,17] a stationary regime has been
postulated by excluding time derivatives in the evolution
equations (thus leaving open the question of stability). The
third possibility found in Ref. [3] is the periodic regime, in
which the normal current and the supercurrent are periodic
functions of time, but for realistic material parameters the
periodic regime is strongly disfavored in comparison to the
stationary state [18].

The question arises of why, whereas Fig. 1 or Ref. [16]
suggest that the most frequently encountered superconducting
phase is stationary, emphasis is usually [1,2,10,19,20] placed
on periodic regimes. One reason for this disparity is the small
effective length of the wires considered in references such
as [3,16], or [18]. We argue that the other reason is that
these studies assume that the order parameter vanishes at the
boundaries.

As we will spell out in Sec. II C, the order parameter does
vanish at the boundaries if the “banks” from which the current
is fed are made of magnetic materials. In the present study we
will compare this situation with other possibilities: the banks
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FIG. 1. (Color online) Phase diagram for the current-flow
regimes in the current density–temperature plane, if the order
parameter vanishes at the extremes of the wire and u = 5.79. “S”
denotes stationary regime, “N” denotes exclusively normal current,
and “NS” denotes a region where both regimes are possible and stable,
so that the actual regime depends on history. The blue line is the
stability limit when either the current or the temperature decreases
(i.e., the normal state is stable up to this line), the red line is the
stability limit when they increase (i.e., the stationary regime is stable
down to this line), and the purple line is the stability limit in both
directions. The unit of current density, j0, is defined in Eq. (1).
Following Ref. [3], we have taken a wire of length 2ξ (0); for length
2L, the values of 1 − T/Tc in this diagram have to be multiplied by
[L/ξ (0)]−2 and those of j by [L/ξ (0)]−3.

will be either superconducting, or normal metals that obey
the de Gennes boundary condition. We will also consider the
limiting case of very weak superconductors, and examine in
what sense the stationary regime is approached.

II. ANALYSIS BASED ON TDGL

Following Refs. [3] and [16], we use a minimal model.
The wire will be perfectly 1D and uniform, we will assume
electroneutrality, and superconductivity will be described by
the time-dependent Ginzburg-Landau model. We choose a
gauge with no vector potential, write � = 1 − T/Tc, and
denote by ϕ the electrochemical potential. The unit of length
will be denoted by x0, by t0 the unit of time, by ϕ0 the unit
of voltage, and by j0 the unit of the current density. As in
Ref. [18], we take

x0 = ξ (0), t0 = π�

8kBTc

, ϕ0 = 4kBTc

πe
, j0 = 4σkBTc

πeξ (0)
.

(1)

Here ξ (0) is the coherence length at T = 0, kB is Boltzmann’s
constant, e is the electron charge, and σ is the normal
conductivity.

With this notation, the TDGL equation and Ohm’s law read

ψt + iϕψ = ψxx + �ψ − |ψ |2ψ (2)

and

ϕx = u Im(ψxψ
∗) − j. (3)

Here ψ is the order parameter, with normalization imposed
by Eq. (2), the subscripts denote partial differentiation with

respect to the time t and the arc length x along the wire, and u

is the ratio between the relaxation times of ψ and j [21].
Our model neglects Joule heating and thermal fluctuations.

Joule heating can be neglected provided that the current density
is sufficiently small and/or the wire is sufficiently thin and in
good thermal contact with a heat bath. Thermal fluctuations
are expected to be important near stability limits.

The wire is assumed to extend along −L � x � L.
Equations (2) and (3) are invariant under the transformation
x → Lx, t → L2t , ψ → L−1ψ , ϕ → L−2ϕ, � → L−2�, and
j → L−3j , since each of the terms in Eqs. (2) and (3) is
multiplied by L−3. Therefore, if also the boundary conditions
are invariant under this transformation, we can limit our study
to a single value of L, and the solutions for any other value are
obtained by scaling. We note that L/ξ (T ) is invariant under
this scaling.

A. Banks of same material as the wire

The most common experimental situation is that the banks
and the wire are carved from the same layer. The banks are
located at the extremes of the wire, x = ±L, and are much
wider than the wire, so that the current density in them is
negligible. The banks can therefore be treated as being in
equilibrium, and we obtain from Eq. (2) that |ψ(±L)| = �1/2.
The phase of the order parameter has to obey the Josephson
relation and we therefore require the boundary conditions

ψ(±L,t) = �1/2 exp

[
−i

∫ t

0
ϕ(±L,t ′)dt ′

]
. (4)

The electrochemical potential ϕ is obtained from Eq. (3),
in which we will set u = 5.79, as appropriate for a dirty
superconducting material without magnetic impurities [21,22].

For given values of j and �, Eqs. (2)–(4) were solved
numerically; numerical details are provided in the Appendix.
The evolution of the order parameter ψ and the potential ϕ was
followed until a stationary or periodic regime was attained. j

and/or � were gradually varied, and for each set (j,�) the
initial values of ψ were taken from its final values for a nearby
(j,�) (except in the case of the first set, for which a reasonable
function ψ had to be deduced or guessed). When evolution
leads to a regime that is qualitatively different than the previous
one, it means that a stability boundary has been crossed.

Figure 2 shows the phase diagram that we encounter for
boundary condition (4). In contrast to Fig. 1, the possible
regimes are either purely superconducting (SC), i.e., no normal
current flows along the wire, or periodic. The periodic regime
that we encounter has a single PSC, located at the middle of
the wire, and we denote this regime by P1.

It is clear that a strictly normal regime is incompatible with
the condition (4), since the order parameter cannot vanish close
to x = ±L. Also the stationary regime is implausible: normal
currents would imply dissipation, so that ϕ(L) < ϕ(−L). In
this case condition (4) implies winding that increases with
time, and can only be released if the order parameter vanishes
at some point, so that phase slips are expected.

It should be mentioned that although in the periodic regime
there is a voltage drop along the wire, this problem is not
equivalent to the case of fixed applied voltage studied in,
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FIG. 2. (Color online) Phase diagram if the contacts to the wire
are made of the same superconducting material as the wire. L is
half the length of the wire, the units of length and current density
are defined in Eq. (1), and the y axis is L2/ξ 2(T ) = {L2/[ξ 2(0)Tc]}
(Tc − T ). “SC” stands for exclusively superconducting current, “P1”
stands for periodic regime with one phase slip center at the middle
of the wire, and “P1SC” denotes a region where both regimes are
possible. The dashed gray curve corresponds to the critical current
density jc = 2u(�/3)3/2, that would be obtained in a very long wire
in which the boundaries become irrelevant. The meaning of the other
line colors is the same as in Fig. 1.

e.g., Refs. [23] and [24]. In the present case ϕ(−L) − ϕ(L)
is periodic, rather than constant in time.

If there is no normal current and if the order parameter has
uniform size, then Eqs. (2) and (3) imply that the maximum
current density is jc = 2u(�/3)3/2. jc is called the “critical
current density,” and it is usually stated that the wire is in the

normal state for j > jc. In Fig. 2 we see that the constraint
|ψ(±L)| = �1/2 favors the superconducting regime for small
currents, but inhibits it for large currents.

Since the wire cannot be strictly normal, we investigate in
what sense the normal regime is approached when j rises above
jc. Figure 3 shows the size of the order parameter |ψ(x,t)|
for two current densities above jc. We see that the periodic
regime persists, but phase slips become more frequent for
larger currents, and therefore the order parameter has less time
to recover and remains small. In the studied region (L3j � 40),
increase of L3j does not lead to additional PSC along the wire.

B. Banks of a superconducting material that is weaker
than that of the wire

We consider now the case that the wire and the banks
are made of different superconducting materials, so that
|ψ(±L,t)| �= �1/2. We write |ψ(±L,t)| = r�1/2 and replace
the boundary condition (4) with

ψ(±L,t) = r�1/2 exp

[
−i

∫ t

0
ϕ(±L,t ′)dt ′

]
. (5)

We will especially be interested in the case that r is signifi-
cantly less than 1. A related study with similar assumptions
was carried out in Ref. [25].

In this case we find a surprisingly rich phase diagram.
Figure 4 shows the phase diagram obtained for r = 0.05. In
addition to the regimes SC and P1 already found for r = 1,
we find additional regimes that mediate between them. These
regimes are periodic with two PSC at symmetric positions
with respect to the middle of the wire. Sometimes we found
that both phase slips occur simultaneously and we denote this
regime by P2. We also found cases in which the two phase

FIG. 3. (Color online) Density plot of the absolute value of the order parameter, |ψ(x,t)|, for current densities above the “critical current
density,” jc (the largest uniform supercurrent density that can be carried by an infinitely long wire). In these plots we took ξ (T ) = L, so that
jc = 2.23j0ξ

3(0)/L3. The banks are made of the same material as the wire. According to Fig. 2, both plots correspond to the periodic regime
P1. The color bar is common to both plots and shows the value of L|ψ |.
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FIG. 4. (Color online) Phase diagram if the order parameter at
the contacts is smaller by a factor 0.05 than what it would be if the
banks and the wire were of the same material. “P2” (or “P2′”) stands
for periodic regime with two phase slip centers, “SC” and “P1” have
the same meaning as in Fig. 2, and “P1P2” (or “P1P2′”) denotes a
region where one or two PSC are possible. The dashed gray curves
are the stability lines for r = 0, presented in Fig. 1.

slips are separated in time by half a period, and denote this
regime by P2′. The stabilization time required to pass between
the situations P2 and P2′ is very long [several times 103 t0
for L = ξ (0)]. We did not investigate the stability boundaries
between P2 and P2′ for r = 0.05, but this will be done for
r = 0.2. The upper stability boundary of P1 almost coincides
with the upper stability boundary of the normal regime in
the case ψ(±L) = 0, and the lower boundary of P2 almost
coincides with the lower boundary of the stationary regime.

It should be born in mind that, for given materials, r is
a function of temperature. Therefore, the phase diagrams for
fixed r should not be directly interpreted as phase diagrams
in the current density–temperature plane. As r increases,
the region occupied by the purely superconducting regime
increases, and the topology of the phase diagram can change.
Figure 5 shows the phase diagram for r = 0.2. We note that in
this case there is a region where SC and P1 are both possible
and that the stability boundaries of P2 and P2′ have been
investigated separately.

For L3j � 5.5, the transition between P2 and P2′ in Fig. 5 is
continuous. In this range P2 and P2′ are mediated by a regime
with two PSC, that we denote by P2′′, in which the time lag
changes gradually with decreasing L/ξ (T ) from zero to half a
period. Figure 6 shows density plots of |ψ(x,t)| for L3j = 4,
for L/ξ = 1.73 (P2′ regime) and for L/ξ = 1.8 (P2′′ regime).

Within the framework of TDGL or KWT, we are not aware
of previous reports of situations in a uniform superconduct-
ing wire such that the order parameter obeys |ψ(−L,t)| =
|ψ(L,t)|, but stabilizes in a regime in which |ψ(−x,t)| �=
|ψ(x,t)|. On the other hand, this symmetry breaking has been
encountered using a Usadel analysis [14,17].

It is hard to judge numerically whether situations as the case
L/ξ = 1.8 in Fig. 6 truly correspond to a distinct P2′′ regime,
or are rather encountered due to insufficient stabilization time.
We believe they correspond to a distinct regime, because

FIG. 5. (Color online) Phase diagram for r = 0.2. The colors of
the stability boundaries are as in Fig. 1, and “P2”, “SC”, “P1”, and
“P1P2” have the same meaning as in Fig. 4. Likewise, SCP1 and P1P2′

are regions where two regimes are possible. The stability boundaries
that involve two regimes that both have two PSC are depicted by
dashed lines. The framed region 2 � L3j � 6 and 2.2 � L2/ξ 2(T ) �
4 is shown in an enlarged scale in the inset. Between the red and the
blue dashed lines, P2, P2′, and P1 are possible.

starting from different initial order parameters we obtain the
same time lag between consecutive phase slips.

Since Figs. 4 and 5 show no hysteresis in the transition
between SC and P2, we expect a continuous transition. At first
sight this seems impossible, since in P2 the order parameter
approaches zero at the phase slips, whereas in SC it does not,
so that an infinitesimal change in the current density can lead
to finite differences in the order parameters when a phase slip
occurs. The paradox is resolved by Fig. 7, that shows that
the time between consecutive phase slips diverges when the
SC regime is approached, so that P2 approaches SC almost
everywhere in the xt plane. The inset in the figure shows that
the same effect occurs when the P2 → SC transition is due to
increase of r .

An experimentally accessible quantity is the dc component
of the voltage drop along the wire. Figure 8 shows this
quantity for the same parameters as in Fig. 7, which involve
a hysteresis region.

For the parameters chosen in Figs. 7 and 8 the position of the
PSC in the P2 regime are almost independent of j . Also in the
P2′ regime these positions are almost fixed in most of the stabil-
ity range, but in the case of a continuous transition to P1, very
near the transition, the PSC migrate to the center of the wire,
and thus the P1 regime is obtained and the period is halved.
Also in Ref. [26], which considered banks of the same material
as the wire, and assumed u = 0.5 and no normal current at the
banks, bifurcations with period jumps by a factor of two and
divergence of the period at a critical current were found.

We are now in a position to discuss in what sense the P2
regime approaches the stationary regime in the limit r → 0.
We first note from Fig. 9 that in this limit the PSC approach the
extremes x = ±L of the wire, and that at these PSC the order
parameter ψPSC is bound to the size |ψPSC| � 2rξ 2(0)/Lξ (T ).
Therefore ψ(±L) → 0 for r → 0, as expected, and there are
no phase slips in the interior of the wire.
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FIG. 6. (Color online) Density plots of |ψ(x,t)| for r = 0.2 and L3j = 4. The case L/ξ = 1.73 is in the P2′ regime and the case L/ξ = 1.8
is in the P2′′ regime. The color bars show the value of L|ψ |.

Next, we recall that a peculiar measurable property of
the stationary regime is that the potential felt by Cooper
pairs, −ϕ0t0∂ arg ψ/∂t (that can be probed by means of SIS
junctions, as in Ref. [19]) is independent of position. Quite
generally, we can conclude that if x = x1 and x = x2 are two
points of the wire such that ψ(x1,t) and ψ(x2,t) are periodic
and there is no PSC in the segment x1 � x � x2, then the
time averages of ∂ arg ψ/∂t at x = x1 and at x = x2 have to
be equal. Otherwise, | arg ψ(x1) − arg ψ(x2)| would endlessly
increase, the order parameter would become increasingly
wound up, and this would force phase slips in the segment
x1 � x � x2. Summing up, we conclude that in the P2 regime
the time average of ∂ arg ψ/∂t is uniform in the segment

FIG. 7. Duration of a period, in units of π�L2/8kBTcξ
2(0), as a

function of the current density for the P2 regime (upper curve) and for
the P1 regime (lower curve), for L2� = 6 and r = 0.05. The curves
end where these regimes stop to exist. The gray dashed line indicates
the transition between P2 and SC. The y axis is logarithmic. Inset:
Period in the P2 regime as a function of r , for L2� = 7 and L3j = 24;
at r ≈ 0.34 there is a transition between P2 and SC.

between the PSC, and in the limit r → 0 this property applies
to the entire wire.

In contrast to the stationary regime, in the case of P2 the
potential felt by Cooper pairs is not independent of position
for arbitrary times in the segment between the PSC. Figure 10
shows the potentials felt by Cooper pairs and by normal
electrons between two given points, as functions of time,
during a period. The normal potential peaks shortly after the
phase slips.

C. Banks of a normal metal

In the spirit of a minimal model description, we adopt the
de Gennes boundary condition [27,28]

ψx(±L) = ∓ψ(±L)/b, (6)

FIG. 8. Time average of the voltage drop along the wire, as a
function of the current density, for L2� = 6 and r = 0.05. The arrows
indicate the direction in which the current is varied. The gray dashed
line shows the voltage that would be obtained if the wire were in the
normal state.
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FIG. 9. (Color online) The black dots (left y axis) show the
distance between the phase slip centers and the middle of the wire
in the P2 regime as a function of r , for L2� = 7 and L3j = 24. The
brown squares (right y axis) show the maximum size of the order
parameter at these phase slip centers. The gray line is a guide for the
eye and the brown straight line has slope 2. The staircase appearance
is due to the finite discretization of position.

where b is a length that represents how far Cooper pairs can
survive inside the normal metal. The material parameter b can
assume a wide range of values; the limit b → ∞ corresponds
to an insulator and b → 0 corresponds to a magnetic material.
If the bank is made of a dirty metal or semimetal with
no magnetic impurities, then b = (σ/σN )(�DN/2πkBT )1/2,
where σN and DN are the electric conductivity and the
diffusion constant in the bank. Condition (6) can be justified
microscopically for static situations, and we may expect that
it is still qualitatively correct for small current densities.
Since the supercurrent density is proportional to Im(ψxψ

∗),
condition (6) implies that there is no supercurrent at the
contacts; therefore this condition may also be an appropriate
description of the case in which quasiparticles are injected and
withdrawn from the wire by means of NIS junctions. Also
when the Usadel equations are used, experiments suggest that

FIG. 10. (Color online) Potential differences felt by normal elec-
trons and by Cooper pairs between the points −0.7L and 0.7L, in
units of 4kBTcξ

2(0)/πeL2, for a situation in the P2 regime. The graph
extends over one period, and the origin of time was set when a pair of
phase slips occurs. The parameters used were L2� = 7, L3j = 24,
and r = 0.3. For these parameters the PSC are at ±0.83L.

the pairing angle obeys a boundary condition analogous to
Eq. (6) [12,13]. The scaling with length introduced above has
to be supplemented with b → Lb.

Within a numerical scheme in which position along the
wire is replaced by a computational grid and ψx(±L) are
approximated by finite differences, condition (6) becomes
ψ(±L) = bψ(±L ∓ 
x)/(b + 
x), where 
x is the length
of a segment in the grid. Unlike the previous sections, the order
parameter is not continuous at the boundaries, and the relevant
values in Eq. (6) are those inside the wire. Since there is no
equilibrium in the wire, the rate of change of the phases at the
boundaries is not dictated by the potential, and it is therefore
possible to have ϕ(−L) �= ϕ(L) without phase slips, so that
the stationary regime is not ruled out.

The stability boundary of the normal regime can be found
as in Ref. [3], since the evolution equations and the boundary
conditions are PT-symmetric [3], and all the theorems shown
in Ref. [29] apply here as well. The normal regime is unstable
if Eqs. (2), (3), and (6) have a solution of the form ψ(x,t) =
f (x)e(�−γ )t with Re(γ ) < �. At the bifurcation from N the
nonlinear terms in Eqs. (2) are (3) negligible, and we are left
with the spectral problem

fxx + ixjf = −γf, fx(±L) = ∓f (±L)/b, (7)

where γ is the eigenvalue with the smallest real part. The real
part of this eigenvalue is the largest value of � for which N
can be stable.

Figure 11 is the phase diagram that we found for b = 0.2L.
In comparison with the case b = 0, we see that the boundaries
move to higher temperatures and the Hopf singularity moves
to a lower current density, but the topology is the same as in
the case b = 0, and the stationary regime still exists. For the
purpose of comparison with KWT, that will be studied in the
following section, the length of the wire has been fixed.

FIG. 11. (Color online) Phase diagram in the case of normal
banks with de Gennes parameter b = 0.2L, for a wire of length
2L = 100ξ (0). S stands for the stationary regime and N for the normal
regime. The blue, the red, and the purple lines have the same meaning
as in Fig. 1. The dashed gray curves are the stability lines for b = 0,
presented in Fig. 1. The green line is the stability limit of the stationary
state that is obtained from KWT (Sec. III) with uτ 2

in = 104t2
0 . The

stability limit of the normal regime is obtained from the eigenvalue
with the smallest real part in Eq. (7).
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(a) (b)

FIG. 12. (Color online) Results obtained using the KWT model for uτ 2
in = 104t2

0 , L = 50ξ (0), and r = 0.2. (a) Phase diagram in a small
region, that includes an area where the P2′′ phase is found. (b) Density plot of |ψ(x,t)| for j = 3.2×10−5j0 and 1 − T/Tc = 1.33×10−3.

III. ANALYSIS BASED ON KWT

We now replace Eq. (2) with [8]

(
1 + uτ 2

in|ψ |2)−1/2
(

∂t + iϕ + uτ 2
in

2

∂|ψ |2
∂t

)
ψ

= ψxx + (� − |ψ |2)ψ. (8)

Multiplying Eq. (8) by ψ∗ and taking the real part we obtain,
after some algebra,

(1/2) ∂|ψ |2/∂t

= (
1+uτ 2

in|ψ |2)−1/2
[Re(ψ∗ψxx)+(� − |ψ |2)|ψ |2], (9)

and substituting back, Eq. (8) takes a form that is appropriate
for Euler iterations:

ψt = (
1 + uτ 2

in|ψ |2)1/2
ψxx − iϕψ

+ (
1 + uτ 2

in|ψ |2)−1/2
[� − |ψ |2 − uτ 2

inRe(ψ∗ψxx)]ψ.

(10)

Unlike Eq. (2), Eq. (8) is not invariant under the scaling
transformations with length, and therefore we have to specify
the length of the wire. Here we take 2L = 100ξ (0) and uτ 2

in =
104t2

0 , of the order of magnitude in the cases of Pb or Nb. The
time steps used in our iterations were of the order of 10−2t0.
We limited this section to the study of two situations: the P2′′

region described in the inset of Fig. 5, and the case of a normal
conductor at the boundaries.

Figure 12(a) focuses on a parameter range that contains
the P2′′ phase, for banks that are weaker superconductors than
the wire, and Fig. 12(b) depicts the behavior of the order
parameter in this region. In the case of Fig. 12(b), evolution
was followed during ∼5×106t0 and the time lag between phase
slips at different sides of the wire remained unchanged within
four significant figures.

The phase diagram for normal banks that we obtain using
KWT has been added to Fig. 11. Since for ψ → 0 KWT
reduces to TDGL, the stability limit of the normal regime is
the same as for TDGL, and this also holds for the stability limit
of the stationary state if the transition is continuous.

We now check the applicability of KWT to the example
studied in this section. Noting that ξ 2(0) = Dt0, the conditions
Dτin � ξ 2(T ) and Dτin � L2, required for accuracy of KWT,
are equivalent to τin � t0(1 − T/Tc)−1 and τin � t0L

2/ξ 2(0).
The conditions for marginal applicability of KWT are τin �
t0(1 − T/Tc)−1 and τin � t0L

2/ξ 2(0). Since for Pb or Nb the
ratio τin/t0 is smaller than 102, the first condition is fulfilled
for T > 0.99Tc and the second condition is fulfilled for the
length we chose. We also note that the duration of a period in
Fig. 12 is of the order of 103t0, sufficiently larger than τin to
enable equilibration, so that the use of KWT is justified in the
analysis of these oscillations. It is worth mentioning that in
Fig. 12 uτ 2

in|ψ |2 reaches values of the order of 5, beyond the
limit of applicability of TDGL and of scaling with length.

Figures 11 and 12 support the claim [3] that KWT does not
lead to any surprises within the region we have studied, so that
TDGL provides a valid qualitative description of the patterns
of current flow in a 1D wire.

IV. CONCLUSIONS

We have studied the patterns of current flow along
a one-dimensional superconducting wire, for various
boundary conditions, for current densities smaller than
160σkBTcξ

2(0)/πeL3 and temperatures in the range Tc[1 −
12ξ 2(0)/L2] � T < Tc. Most of our results were obtained
using TDGL. The most relevant obtained features were revised
using the Kramer–Watts-Tobin model, and were found to be
qualitatively valid. In the present analysis we have not taken
fluctuations into account; this can be an important omission in
reduced cross sectional wires near Tc.

064513-7



JORGE BERGER PHYSICAL REVIEW B 92, 064513 (2015)

A stationary regime, in which all observable fields are
independent of time, was previously found under the assump-
tion that the order parameter vanishes at the extremes of a
superconducting wire. Our results clarify to what extent and
in what sense the stationary regime can exist when the order
parameter is not forced to vanish at these boundaries. If the
contacts are normal and the de Gennes boundary condition
is assumed, the stationary regime still exists and the phase
diagram is qualitatively unchanged, even if the de Gennes
length is not negligible in comparison to the length of the
wire. The stationary regime might find applications in cases
in which oscillations would induce disturbances (e.g., back
action from a SQUID).

If the contacts are superconducting, but weaker than the
wire, the phase diagram changes qualitatively, and several
new features arise. The role of the normal regime in Refs. [3]
and [16] is inherited by a periodic regime with one phase
slip center, and the order parameter converges nonuniformly
to zero as the current density increases. Part of the region in
which Refs. [3] and [16] found the stationary regime becomes
now fully superconducting (there is no normal current). The
fully superconducting regime and the periodic regime with
one PSC are mediated by one or several periodic regimes with
two PSC. In the limit that the contacts are made of very poor
superconductors, the regime with two PSC becomes similar to
the stationary state, since the PSC approach the extremes of
the wire, and the time average of the potential felt by Cooper
pairs is uniform between them.

In the regime with two PSC, the two phase slips may
be simultaneous, but there may also be a time lag between
them. When a time lag is present, the solution of the
dynamic equations breaks the symmetry of the equations, and
|ψ(−x,t)| �= |ψ(x,t)|.
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APPENDIX: NUMERICAL SOLUTION
OF THE DYNAMIC EQUATIONS

The wire was discretized into a grid of 27 vertices and time
into steps of 3×10−5t0L

2/ξ 2(0). We started with an arbitrary
function for the order parameter ψ(x); if available, we took a
function obtained from evolution with similar parameters, and
otherwise we usually took ψ ≡ r�1/2.

Derivatives with respect to x were obtained as follows: a
fast Fourier transformation was performed on ψ(x), and the
Fourier transformed function was multiplied by (ik)p, where k

is the reciprocal variable of x and p is the order of the desired
derivative. We then transformed back to x space and obtained
∂pψ/∂xp.

The problem with this method is that it requires that ψ be
periodic with period 2L, and in particular that ψ(−L) = ψ(L).
Since this is not necessarily the case, we start by evaluating
the derivative of ψ ′(x) = ψ(x) − [ψ(L) − ψ(−L)]x/(2L),
which does obey ψ ′(−L) = ψ ′(L), and subsequently add the
derivative of [ψ(L) − ψ(−L)]x/(2L). We are still left with
the problem that the periodic extension of ψ ′ is not smooth at
±L and we cannot evaluate its derivatives at the boundaries.
However, ψxx is not required at the boundaries, and ψx(±L)
enters the problem after multiplication by the length L/26

of a segment, so that ψx(±L) can be evaluated as a finite
difference.

The additional stages of the solution of Eqs. (2)–(4) (or
similar) pose no numerical difficulty: ϕ(x) can be obtained by
trapezoidal integration of Eq. (3) and the evolution of ψ can
be followed by Euler iteration. Likewise, the phases of ψ(±L)
can be updated by subtraction of the product of the time step
times ϕ(±L).
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