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We investigate the disorder dependence of the static density, amplitude, and current correlations within the
attractive Hubbard model supplemented with onsite disorder. It is found that strong disorder favors a decoupling
of density and amplitude correlations due to the formation of superconducting (SC) islands. This emergent
granularity also induces an enhancement of the density correlations on the SC islands whereas amplitude
fluctuations are most pronounced in the “insulating” regions. While density and amplitude correlations are short
ranged at strong disorder, we show that current correlations have a long-range tail due to the formation of
percolative current paths in agreement with the constant behavior expected from the analysis of one-dimensional
models.
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I. INTRODUCTION

More than 50 years ago, Anderson has discussed the
behavior of a superconductor in the presence of strong dis-
order [1]. According to his analysis (and under the restriction
to elastic scattering from nonmagnetic impurities), the BCS
wave function, built from Bloch-type wave functions with
opposite momenta, can be generalized to pairs made from
the exact single-particle wave functions of the disordered
system plus their time-reversed partner. As a result, one would
expect a gradual dependence of the superconducting transition
temperature on the presence of nonmagnetic impurities caused
mainly by a modification of single-electron properties as
density of states, etc. While this picture is certainly correct
for weak disorder, experiments on thin films of strongly
disordered superconductors [2–13] have revealed a much more
interesting behavior than suggested by Ref. [1]. In particular,
the observation of a superconductor-insulator transition (SIT)
with increasing disorder provides evidence for an interesting
interplay between localization of Cooper pairs and long-range
superconducting (SC) order [14]. Moreover, the observation
of a pseudogap in strongly disordered SC films [8–13]
bears some resemblance to similar experimental findings in
high-temperature superconductors [15–17] that may suggest a
common mechanism in some regions of the phase diagram.

Theoretical investigations of disordered superconductors
are either based on bosonic or fermionic approaches. In
case of s-wave superconductivity, the latter typically start
from attractive Hubbard models where disorder is usually
implemented via a shift of onsite energy levels [18–26].
These Hamiltonians then are either treated within a
standard Bogoliubov–de Gennes (BdG) approximation
[19,21–23,25,26] or with more sophisticated approaches such
as Monte Carlo methods [18,20,24]. Bosonic models are then
obtained from a large-U expansion as, e.g., the pseudospin
XY model in a transverse field [27], where the hopping of
Cooper pairs (corresponding to pseudospins aligned in the
XY plane) competes with localization due to random fields
(corresponding to pseudospins aligned in the perpendicular
direction). Further simplifications, as e.g. an Ising model in a
random transverse field, are also introduced since they allow
for analytical treatments [28].

In recent years, both approaches have led to a coherent
picture of the SIT: With increasing disorder, the system
starts to break up into “puddles” with finite SC order
parameter |�| > 0 and intermediate regions with |�| ≈ 0
although the spectral gap remains finite. The order-parameter
distribution shows a universal scaling behavior, in agreement
with experiment, where the relevant scaling variable is the
logarithm of the order-parameter distribution normalized to its
variance [29,30]. The phases of different puddles are weakly
coupled, so that the system bears some resemblance with a
granular superconductor. Upon applying a vector potential,
the system accommodates the phase twist in the regions with
|�| ≈ 0 so that the associated energy, and thus the superfluid
stiffness, are strongly reduced. Moreover, calculations within
the BdG approach of the attractive Hubbard model have
shown that the induced current flows along a quasi-one-
dimensional percolative path or “superconducting backbone”
which connects the puddles [25]. This result has its counterpart
in the analysis of the bosonic approach which has revealed
a regime of broken-replica symmetry where the partition
function is determined by a small number of paths [28]. For
both fermionic and bosonic models, there exists a critical value
for the disorder strength above which the system becomes
insulating. The SIT is characterized by a vanishing of the
superfluid stiffness, however, the single-particle gap persists
across the transition [24].

A still open issue is the nature of the spatial correlations in
such granular SC state arising near the SIT. In the classical
Ginzburg-Landau-Abrikosov-Gorkov theory [31] there is a
single scale ξ0 ∼ vF /�, whose reduction by disorder is mainly
governed by the mean-free path � via ξ ∼ √

ξ0�. On the other
hand, in the vicinity of the Anderson localization transition
the coherence length is also controlled by the localization
length [32,33]. Concerning the disordered attractive Hubbard
model with a fragmented SC ground state as mentioned
above, there is only limited knowledge about amplitude,
density, and current correlations. Previous quantum Monte
Carlo studies [20] yield only limited information on the spatial
dependence of the correlations due to the small (8 × 8) lattice
sizes. On the other hand, investigations of response functions
on larger clusters within the BdG approach where so far
restricted to mean-field studies. In this paper, we evaluate
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the density, amplitude, and current correlations by including
fluctuations on top of the BdG solution, thus generalizing
the approach of Refs. [34,35] to the case with disorder. In
particular, we are interested in the question of how the physics
is governed by different length scales in different channels and
how the formation of SC islands for strong disorder reflects in
the corresponding correlation lengths.

The paper is organized as follows: The model is introduced
in Sec. II where we also outline the computation of correlation
functions on the basis of the BdG ground state. Results
are presented in Sec. III for amplitude, density, and current
correlations. We finally conclude our discussion in Sec. V.

II. FORMALISM

A. BdG equations

Our starting point is the attractive Hubbard model with local
disorder

H =
∑
ijσ

tij c
†
iσ cjσ − |U |

∑
i

ni↑ni↓ +
∑
iσ

Viniσ , (1)

which we solve in mean field using the BdG transformation

ciσ =
∑

k

[ui(k)γk,σ − σv∗
i (k)γ †

k,−σ ],

ωkun(k) =
∑

j

tnjuj (k) +
[
Vn − |U |

2
〈nn〉 − μ

]
un(k)

+�nvn(k), (2)

ωkvn(k) = −
∑

j

t∗nj vj (k) −
[
Vn − |U |

2
〈nn〉 − μ

]
un(k)

+�∗
nun(k) . (3)

For simplicity, only nearest-neighbor hopping tij = −t is
considered in this work. The disorder variables Vi are taken
from a flat, normalized distribution ranging from −V0 to +V0.

In the following, ui(k) and vi(k) are taken to be real. Starting
from an initial distribution of the gap �i and density 〈ni〉
values, we diagonalize the system of equations (2) and (3),
compute the new values (T = 0)

�i = |U |
∑

n

ui(n)v∗
i (n), (4)

〈ni〉 = 2
∑

n

|vi(n)|2, (5)

and iterate the obtained values, say K (including also the
chemical potential), up to a given accuracy δK/K � ε, typi-
cally ε = 10−6. For the disordered systems studied in Sec. III,
clusters with up to 24 × 24 sites have been diagonalized.
We mostly show results with filling n = 0.875, but in some
cases we also discuss the outcomes for smaller filling in
order to avoid the proximity to half-filling, where specific
effects can arise due to the tendency of the system to form a
charge-density-wave (CDW) state as well.

B. Amplitude and charge correlations

We denote correlation functions by

χO,R
nm (ω) = i

∫
dt eiωt 〈T Ôn(t)R̂m(0)〉, (6)

where in the following Ô,R̂ correspond to either amplitude
δAi or density δρi fluctuations

δAi ≡ (δηi + δη
†
i )/

√
2,

δρi ≡
∑

σ

(c†iσ ciσ − 〈c†iσ ciσ 〉),

and we have defined the pair fluctuation operators

δη
†
i ≡ c

†
i↑c

†
i↓ − 〈c†i↑c

†
i↓〉,

δηi ≡ ci↓ci↑ − 〈ci↓ci↑〉.
It is then convenient to define 2 × 2 matrices for the bare

mean-field susceptibility

χ0
ij

=
(

χAA
ij χ

Aρ

ij

χ
ρA

ij χ
ρρ

ij

)
(7)

and the interaction

V =
(−|U | 0

0 −|U |/2

)
, (8)

which can be combined into “large” matrices according to

χ0
ij =

⎛
⎜⎜⎜⎜⎜⎝

χ0
11 χ0

12 . . . χ0
1N

χ0
21 χ0

22 . . . χ0
2N

...
...

. . .
...

χ0
N1 χ0

N2 . . . χ0
NN

⎞
⎟⎟⎟⎟⎟⎠ (9)

and

Vij =

⎛
⎜⎜⎜⎜⎝

V 0 . . . 0

0 V . . . 0
...

...
. . .

...

0 0 . . . V

⎞
⎟⎟⎟⎟⎠. (10)

The random phase approximation (RPA) resummation can
then be written as

χ = χ0 + χ0 V χ,

which is solved by

χ = [1 − χ0 V ]−1χ0. (11)

Note that in this paper we will focus on static correlations.
Since at Gaussian level the coupling between the phase
fluctuations and the density/amplitude ones is proportional
to the frequency [36], they are decoupled in the static limit.
On the other hand, the phase fluctuations enter in a crucial
way in the calculation of the current fluctuations, as will be
outlined in the next subsection.
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C. Current correlations

The current response J α
n (ω) to a vector potential Ax(n,ω)

(which we fix along the x direction of our square lattice) is the
sum of the diamagnetic and paramagnetic contribution [37]

J α
n =

∑
m

[
δα,xδn,mtx(n) + χ

(
jα
n ,jx

m

)]
Ax(m), (12)

where tx(n) = −t
∑

σ 〈c†n,σ cn+xσ + c
†
n+x,σ cnσ 〉 < 0 denotes

the kinetic energy on the bond between sites Rn and Rn + ax

and jα
n = −it

∑
σ (c†n+α,σ cnσ − H.c.) is the operator of the

paramagnetic current flowing from site Rn to Rn+α . Note that
the notation for the current correlation function χ (jα

n ,j
β
m) is

slightly different from the correlations defined in the previous
subsection. At frequency ω = 0, the current only couples to
phase fluctuations δ�i ≡ i(δηi − δη

†
i )/

√
2 via the vertices

�α
nm = χ0(jα

n ,δ�m) and �
α

nm = χ0(δ�n,j
α
m). Thus, the full

(gauge-invariant) current correlation function is then obtained
from

χ
(
jα
n ,jβ

m

) = χ0
(
jα
n ,jβ

m

) + �α
nmVmk[1 − χ0V ]−1

kl �
β

lm, (13)

with χ0 in the second term denoting the bare phase-phase
correlation function and Vmk = −|U |δmk .

For the Fourier transform of the configurational average,
one finally obtains

J α
q = −Dα,x

q Ax(q), (14)

where Dα,x
q = −〈Tx〉δα,x − 〈χq(jα,jx)〉. For J α

q ≡ J x
q and

taking q along the y direction, the limit limqy→0 Dxx
qy

≡ Ds

corresponds to the superfluid stiffness and coincides with the
quantity evaluated in Ref. [25] from an expansion of the
mean-field free energy up to quadratic order in the vector
potential.

III. RESULTS

A. Correlations in the homogeneous system

We start our considerations by a brief resume of the ho-
mogeneous case for which amplitude and density correlations
have been analyzed in Ref. [35] and which are in agreement
with our following finite-cluster analysis. Figure 1 shows
the amplitude χAA(q), density χρρ(q), and mixed χA,ρ(q)
correlation function for filling n = 0.875 and |U |/t = 2
without disorder.

For these parameters, the maximum of the amplitude
correlations is at q = 0 where it can be approximated as

χAA(q) ≈ 1

m2 + cq2
(15)

with the mass m and a parameter c characterizing the
dispersion of excitations. The quantity ξ0 =

√
c/m2 can then

be interpreted as a length scale for the decay of the amplitude
correlations. On the other hand, the density response is
dominated by the contribution at q = Q ≡ (π,π ) and around
this wave vector can be described by

χρρ(q ≈ Q) ≈ 1

m2
Q + cQ(q − Q)2

. (16)

-π -π/2 0 π/2qx -π
-π/2

0
π/2

qy

 2

 4

 6

χρρ(q)

-π -π/2 0 π/2qx -π
-π/2

0
π/2

qy

-1.5

-1

-0.5

χAρ(q)

-π -π/2 0 π/2qx -π
-π/2

0
π/2

qy

 0.2
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χAA(q) (a)

(b)
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FIG. 1. (Color online) Top to bottom: amplitude [χAA(q)], den-
sity [χρρ(q)], and off-diagonal [χAρ(q)] correlation functions in the
superconducting state for parameter |U |/t = 2 and in the clean limit
(V0/t = 0).

In real space, this corresponds to a staggered decay of the
density correlations with length scale ξQ =√

cQ/m2
Q.

The mixed susceptibility χA,ρ(q) is negative (positive)
for densities n < 1 (n > 1) since the anomalous correlations
〈ci↓ci↑〉 are negative with a maximum of their absolute value at
half-filling. Therefore, a positive fluctuation in density δρ for
n < 1 will lower (i.e., enhance the magnitude) the anomalous
correlations.

For the present model, in the absence of disorder and at half-
filling, there is an “accidental” symmetry [38] which allows
the superconducting order to be continuously rotated into the
charge-density-wave (CDW) order at q = Q without energy
change, promoting the charge-density mode to a Goldstone
mode. The enhancement of χρρ(Q) at n = 0.875 is a remainder
of this CDW instability at half-filling which is transferred
to the amplitude correlations via the mixed susceptibility
χA,ρ(q) shown in the bottom panel of Fig. 1. Increasing |U |/t

enhances the CDW correlations so that at some point the
q = Q amplitude correlations also dominate with respect to the
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FIG. 2. (Color online) Distribution of the superconducting gap
parameter �i (displayed on a linear scale by circles) and super-
conducting currents (arrows) computed from Eq. (12) for constant
vector potential Ax and a specific disorder configuration. Parameters
|U |/t = 5,V0/t = 2. The dashed line (blue arrow) indicates the cut
which is analyzed in Fig. 4.

q = 0 response. On the other hand, the CDW correlations are
suppressed in the dilute limit (not shown) so that upon reducing
filling, the maximum density response is first shifted away
from Q along the Brillouin zone boundary and, finally, below
some concentration and depending on the value of |U |/t , the
q = 0 response starts to dominate. A more detailed discussion
on the filling dependence of the amplitude and density response
in the clean case can be found in Ref. [35].

B. Disordered system: Real-space analysis

1. Mean-field solution

For sizable disorder, the density varies on the scale of
the lattice constant and correlates with the strongly spatially
fluctuating disorder potential. Further on, it has been shown
in Refs. [19,21,22,25,26] that for strong disorder the system
disaggregates into SC islands with sizable SC gap �i which are
embedded in regions with �i ≈ 0. Figure 2 shows a map of the
order parameter encoded on the size of the red circles showing
the formation of the superconducting islands. This island
structure leads to a very weak superfluid stiffness. Indeed, upon
applying a transverse vector potential, as done in Ref. [25],
the current flows through an optimum percolative path or
“superconducting backbone” which determines the global
stiffness. The latter not only depends on the volume fraction
of the superconducting island, but also on the connectivity
of these islands to the superconducting backbone. Thus, one
may have a moderate superconducting fraction and a very
small global stiffness if the connectivity is poor. Figure 2
shows an example of the superconducting backbone for
current circulation. Notice that it does not necessarily involve
all significantly superconducting sites. For example, sites
(1,7) and (3,12) in Fig. 2, where �i is large, are left out
which therefore are examples for poorly connected islands.

Whereas connected islands determine the superfluid stiffness,
the disconnected islands dominantly contribute to the subgap
absorption in the optical conductivity [39].

Analyzing the mean-field solutions for several configura-
tions of disorder we find that there is a strong tendency to
form superconducting dimers. For example, for V0/t = 2 ∼ 4
we find that the average number of strongly superconducting
neighbors of a strongly superconducting site is in the range
0.7 ∼ 0.8. Here, a strongly superconducting site is defined as
a site with a local parameter �i � 0.5�max, where �max is the
largest value of �i in the system (which is close to the maximal
value �max = |U |/2). Examples of dimers can be seen in Fig. 2
at sites (1,6)–(1,7),(12,15)–(13,15), and (8,15)–(9,15). One
also observes that dimers can act as seeds of more extended
islands as in sites (14,3)–(14,4).

In previous work [19,21] it has been found that the
preferable sites for the SC islands are those with the Hartree
potential Hi = −|U |〈ni〉 + Vi being close to the chemical
potential μ since this allows for strong particle-hole mixing.
This would imply that the “good” SC sites are already encoded
in the normal state since there exists a strong correlation
between the local Hartree potentials in the SC and normal state.
On the other hand, the correlation between Hi and the size of
�i weakens with increasing disorder, i.e., a small |Hi − μ|
not necessarily correlates with a large �i whereas a large �i

always implies a small |Hi − μ|. A similar conclusion has
been drawn in Ref. [26] where the relation of order-parameter
variations and the shell effect has been investigated.

2. Real-space structure of responses

The largest contribution to the density and amplitude
correlations comes from the diagonal elements χAA

ii and χ
ρρ

ii

that are shown as a logarithmic map in Figs. 3(a) and 3(b),
respectively. Here, the disorder realization is the same as in
Fig. 2 and the local SC gap is shown with circles, whose size
is proportional to the gap magnitude. Figure 3(a) shows also
the nearest-neighbor density-density correlation χ

ρρ

ij encoded
in the size of the bars on the bonds.

One finds that the strong superconducting sites coincide
with sites which have a large charge-density susceptibility.
Also, the dominant nearest-neighbor density correlations χ

ρρ

〈ij〉
are attached to the SC islands and become particularly
enhanced among the sites forming a SC dimer. We find that
the bare local density correlations χ

0,ρρ

ii in the SC state show a
similar structure (not shown) but with smaller absolute value
(∼ 1

20 ).
This rises the “chicken and egg” question if sites are

favorable for superconductivity because they have a large
susceptibility already in the normal state or if the large
susceptibility is due to the local superconducting correlations.
To answer this question, we have computed the charge-
density susceptibility in the absence of superconductivity.
Although there is a tendency for sites with charge-density
susceptibility larger than the average in the normal state to
become superconducting, there is an enormous enhancement
of the charge-density susceptibility on the superconducting
sites. This can be seen in the cut of the local susceptibilities
and order parameter shown in Fig. 4. We see that on the
superconducting sites the local susceptibility can be enhanced
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FIG. 3. (Color online) (a) Distribution of the superconducting
gap parameter �i (circles), the local density correlation function
χ

ρρ

ii (squares), and nearest-neighbor density correlations χ
ρρ

〈ij 〉 (bars
on the bonds). (b) The distribution of the local χAA

ii (squares) and
nearest-neighbor χAA

〈ij 〉 (bars on the bonds) amplitude correlations
together with the SC gap (circles). (c) Magnitude of local off-diagonal
amplitude-density correlations |χρA

ii | (squares) together with the SC
gap (circles). The disorder configuration and parameters are the same
as in Fig. 2. The symbol size for the correlations is displayed on a
logarithmic scale, whereas the SC gap is plotted on a linear scale.

0 5 1 0 1 5
0

0 .1 5

i

Χii
ρρ Sup.

Χii
ρρ Nor.

0 5 1 0 1 5
0

2

4

6

8

x

Χ
iiρρ

t,
i

t

FIG. 4. (Color online) Cut of the order-parameter distribution
(full line, circles) and local density susceptibility χ

ρρ

ii in the
superconducting state (dashed line, squares) and in the normal state
(dotted-dashed line, diamonds). The cut is done along the row with
y = 15 of Fig. 3(b) and is indicated by an arrow in Fig. 2.

by two orders of magnitude. The inset shows a zoom of the
intensity scale showing that the superconducting sites tend to
have a charge-density susceptibility larger than the average in
the normal state but which does not explain the enhancement
seen in the superconducting state. It also shows that on the sites
with small order parameter the charge susceptibility remains
the same in the superconducting and normal states. Clearly, this
behavior is due to the almost incompressible character of the
phase without superconducting correlations which becomes
instead highly compressible in the superconducting state. This
physics is similar to that in the clean half-filled Hubbard model
where a rotation between the two competing states, CDW and
SC, essentially induces a transition from zero to very large
compressibility κ .

The correlation between SC gap and local charge-density
susceptibility is summarized in Fig. 5 which shows the
distribution of (�i,χ

ρρ

ii ) points from 200 samples for the
normal and SC states and two values of disorder at |U |/t = 2.
Here, �i always refers to the value in the SC state whereas
χ

ρρ

ii is evaluated in both normal and SC states. In the normal
state and for weak disorder V/t = 1, one observes a positive
correlation between the local χ

ρρ

ii and the gap �i which
would develop in the SC state. This correlation gets sharper
in the SC state [Fig. 5(b)] but extends over the same range
of χ

ρρ

ii values than in the normal state. In contrast, for larger
disorder V/t = 3 there is almost no correlation between local
charge-density susceptibility and SC gap in the normal state
while this correlation is strongly enhanced in the SC state and
pushed to values of χ

ρρ

ii which are one order of magnitude
larger than in the normal state.

The behavior of the amplitude fluctuations is also very
interesting. We find that local amplitude fluctuations are
significantly enhanced when the SC gap displays strong
variations as a function of disorder strength. This feature is
exemplified in Fig. 6 which, for fixed disorder realization (the
same as used in Figs. 2 and 3), shows the dependence of χAA

ii

on V0 for selected sites. One basically observes two kinds of
behavior. First there are “weak” SC sites, as (1,1) or (10,5),
whose order parameter immediately decreases with the onset
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FIG. 5. (Color online) Plot of the points (�i,χ
ρρ

ii ) (green) for the
normal [left panels (a), (c)] and SC [right panels (b), (d)] system where
�i refers to the value in the SC state. The lines and error bars have
been obtained by collecting data in 10 bins of �. |U |/t = 2,V/t = 1
[upper panels (a), (b)], V/t = 3 [lower panels (c), (d)].

of disorder. Besides, there are “strong” SC sites, as (3,12) or
(12,15) which initially resist disorder and where �i can even
get enhanced with respect to its V0 = 0 value. The drop of �i

on the strong SC sites at a given V0/t is then accompanied by
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FIG. 6. (Color online) Disorder dependence of the SC gap (solid,
black) and of the local amplitude correlations (red, dashed) for
selected sites of the disorder configuration used in Figs. 2 and 3.
|U |/t = 5.

a peak in χAA
ii resembling the behavior close to a second-order

phase transition. However, the order parameter does not vanish
on the disordered site of the transition but acquires a small
finite value due to the proximity effect of other SC islands.
For a given disorder strength, only few sites are close to this
regime and their number decreases with increasing V0/t due to
the decrease of SC islands. There are also few sites, as (10,5),
where the SC order parameter reemerges at a large value of
the disorder strength and stays finite over some range of V0. In
the Appendix, the behavior of �i and χAA

ii for all sites of the
sample is analyzed in more detail.

The present real-space analysis reveals that in the strongly
disordered regime, density correlations are dominant on the
SC islands whereas the amplitude correlations are large in
the other part of the system, i.e., where the SC gap is almost
completely suppressed by disorder. As shown in Fig. 3(c), there
are only few sites with significant off-diagonal correlations
χ

ρ,A

ii . Besides, on the “marginal” sites (3,12) and (6,5),
which are at the transition � → 0, the mixing of amplitude
and density correlations is only observed on some of the
SC sites. Clearly, this decoupling of amplitude and density
correlations will be even more pronounced in the average
momentum-dependent correlations which will be analyzed in
the next subsections.

C. Disordered system: Fourier space analysis

For a particular disorder configuration, the Fourier trans-
form of the correlation functions is given by

χ (q,q′) = 1

N

∑
ij

ei(qRi−q′Rj )χij , (17)

where N denotes the number of lattice sites. Clearly, if χij

only depends on the distance between lattice sites Ri − Rj ,
then χ (q,q′) is diagonal in momenta. In the following, we
perform averages of χij over different disorder realizations up
to nd = 200 for lattice sizes up to 24 × 24. This procedure
restores translational invariance in the correlation functions so
that 〈χ (q,q′)〉conf. ≡ δ(q,q′)χ (q). In Figs. 8 and 10, the error
bars in the compressibility and mass reflect the variance of
χ (q) at q = 0 and Q, respectively. Although it increases with
disorder and |U |/t the mean values exceed the variances for
the “worst” cases by a factor ∼3.

We fit the correlation function χ (q), which is peaked at
q = Q, to the function

χ (q) = λ0 + λ3

1 + 2λ1γ1(q − Q) + 2λ2γ2(q − Q)
(18)

with

γ1(q) = 2 − cos(qx) − cos(qy),

γ2(q) = 1 − cos(qx) cos(qy).

Although Eq. (18) yields a good account of the correlations
over the whole Brillouin zone (BZ), the fit is restricted to
an area of ≈5% of the BZ around the peak at Q in order
to extract the parameters in Eqs. (15) and (16). Expanding
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FIG. 7. (Color online) Average (number of samples = 200) of
Fourier transformed density correlations for parameter |U |/t =
2,V0/t = 3.

Eq. (18) around Q yields

m2 = 1

λ0 + λ3
, (19)

c = λ1 + λ2

(λ0 + λ3)
, (20)

ξ 2 = c/m2 = λ1 + λ2. (21)

In the following, we analyze the momentum structure of
the averaged density, off-diagonal, and amplitude correlations.
The various fitting parameters will be distinguished by (a) the
reference momentum in the expansion, i.e., q = 0 or Q ≡
(π,π ), and (b) a superscript which indicates the correlation
function. For example, ξA

0 will denote the correlation length for
amplitude fluctuations derived from an expansion of χAA(q)
around q = 0.

1. Momentum structure of χρρ(q)

We start with the analysis of the momentum dependence
of the averaged density correlation function which is shown
in Fig. 7 for parameters |U |/t = 2 and V0/t = 3. Disorder
induces an overall suppression of the response as compared to
the clean case in Fig. 1(b). This is most pronounced for the
CDW correlations at q = Q which for V0/t = 3 are reduced by
a factor 1

20 with respect to the clean case correlations. At q = 0,
this reduction is only 1

2 so that in Fig. 7 one observes a relative
enhancement of the zone-center correlations. For |U |/t = 2,
the crossover from dominant CDW to q = 0 correlations
occurs at V/t ≈ 4 whereas for larger values (|U |/t = 5)
χρρ(q) has a minimum at q = 0 up to the largest disorder
investigated. Note that also for smaller filling disorder shifts
the dominant correlations from incommensurate momenta in
the clean case to Q = (π,π ) so that the following analysis is
representative for a wide doping range and disorder values.

Figure 8 shows the parameters (mρ

Q)2 and c
ρ

Q obtained from
the fit to Eq. (18) with Q = (π,π ) as a function of disorder
together with the compressibility κ = χ

ρρ

q=0.
In the strong coupling limit (small 2t/|U |), the clean

case compressibility scales as κ ≈ |U |/8t2 [35]. The en-
hancement of κ with |U |/t can also be observed in Fig. 8
for V0/t = 0 although the parameters |U |/t = 2,5 are rather
in the intermediate coupling regime so that the agreement
with the above estimate is only qualitative. Upon increasing
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FIG. 8. (Color online) Disorder dependence of the fit parameters
(mρ

Q)2 (circles), c
ρ

Q (squares), and ξ
ρ

Q (diamonds) for the staggered
density correlations extracted from Eqs. (18)–(21). The disorder
dependence of the compressibility is shown by the triangles. The
dashed-dotted line in panel (d) indicates the correlation length in the
normal state. In panel (b), the normal state ξ

ρ

Q is numerically identical
to the result in the SC state.

V0/t , there is first a decrease of κ , in agreement with the
results of Refs. [19,21]. At large disorder, one observes a
tendency of the average compressibility κ to saturate to a
value that is weakly dependent on U . Since in this regime
the dominant contribution to κ comes from the (real-space)
diagonal elements χ

ρρ

ii on the SC islands, there exists an
apparent inverse correlation between the number of SC islands
(which decreases with V0/t) and the local compressibility χ

ρρ

ii

(which gets enhanced with increasing V0/t).
We now turn to the analysis of the CDW correlation length

in the disordered SC system. For weak disorder V0/t = 0.5
there is a strong difference in the density distribution obtained
for the two values of |U |/t = 2,5 which we have investigated.
In fact, for |U |/t = 2 we find that the difference in the density
distribution between normal and SC states is small for each
value of the disorder potential V0/t . As a consequence, the
decrease of the CDW correlation length with V0/t [Fig. 8(b)]
is the same in the normal and SC states within the numerical
accuracy. On the other hand, for |U |/t = 5 we find that already
for V0/t = 0.5 sites in the normal state system are either almost
empty or doubly occupied. As already discussed above, the
SC state induces a redistribution of charge density which in
this case leads to a significant rearrangement with a more
homogeneous distribution between n ≈ 0.2 and 1.7. As a
consequence of this effectively less disordered SC state, one
observes in Fig. 8(d) an enhancement of the correlation length
at V0/t = 0.5 from ξ

ρ

Q ≈ 0.3 in the normal state to ξ
ρ

Q ≈ 1 in
the SC system.

The behavior of fit parameters in the SC system, as
shown in Fig. 8, can then be qualitatively understood from
the evolution toward the bimodal charge-density distribution,
where the low- (high-) density peak approaches nL = 0 (nH =
2) with increasing disorder. We also adopt the result from a
strong coupling expansion of χρρ(q) for the homogeneous
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FIG. 9. (Color online) Average (number of samples = 200) of
Fourier transformed amplitude correlations for parameter |U |/t =
2,V0/t = 3.

system [35,40] which for the mass parameter yields

m2
Q = 8t2

|U |
δ2

1 − δ2
(22)

and δ = 1 − n denotes the doping measured from half-filling.
Averaging Eq. (22) over the bimodal distribution yields
〈m2

Q〉 ∼ (δn)2/[1 − (δn)2] with δn = nH − nL. The growth
of δn with V0/t then accounts for the increase of m2

Q with
disorder as shown in Fig. 8.

In the strong coupling clean case, the parameter cQ is given
by [35]

cQ = t2

|U |
1 − 2δ2

1 − δ2
= t2

|U | − m2
Q

8
(23)

and is thus expected to decrease with disorder proportional
to the increase of m2

Q. Within the numerical error, this is in
fact the behavior observed in Fig. 8 and also accounts for the
decrease of the correlation length ξQ with disorder.

2. Momentum structure of amplitude correlations

We proceed by analyzing the amplitude correlations χAA(q)
on top of the BdG solution whose momentum dependence is
reported in Fig. 9 for |U |/t = 2,V0/t = 3.

It turns out that disorder removes the enhancement of
amplitude correlations at Q = (π,π ), which were dominating
in the clean case for this value of |U |/t . An interesting result is
the concomitant enhancement of the q = 0 response by a factor
of ∼ 5

2 which therefore dominates the amplitude correlations
for large disorder. As we have seen in the previous section, the
density correlations are still peaked at Q = (π,π ) for these
parameters which indicates the decoupling of density and
amplitude fluctuations with increasing disorder. Note that in
contrast to the density correlations, the amplitude fluctuations
in the normal state will always be unstable.

The latter are again characterized by the mass (mA
0 ) and cA

0
parameter obtained from the fit of χAA(q) to Eq. (18) around
q = (0,0). Figure 10 reports the fit parameters as a function
of disorder, again for values of the onsite attraction |U |/t = 2
and |U |/t = 5. Note that for the larger interaction |U |/t = 5
and small disorder the correlations show the dominant peak
at Q = (π,π ) for which reason the fit parameters are only
reported for V0/t � 0.5.

The aforementioned enhancement of the q = (0,0) ampli-
tude correlations with V0/t now results in the decrease of
the mass mA

0 with disorder with tendency to saturate at large
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FIG. 10. (Color online) Disorder dependence of the fit parame-
ters (m0A)2 (circles), cA

0 (squares), and ξA
0 =

√
cA

0 /(mA
0 )2 (diamonds,

right inset) as extracted from Eqs. (18)–(21) for |U |/t = 2 (a) and
|U |/t = 5 (b). The left inset reports the average superconducing gap
(circles) and average spectral gap (squares). The right insets also show
the gap autocorrelation length λac (circles) computed from Eqs. (24)
and (25).

V0/t � 2. Also, the parameter c decreases with the disorder
strength so that the resulting correlation length ξA

0 = cA
0 /(mA

0 )2

(right insets to Fig. 10) crucially depends on the relative change
of cA

0 and (mA
0 )2 with V0/t .

For |U |/t = 2, the correlation length is almost constant up
to V0/t = 2.5 and then starts to decrease with disorder. For
larger |U |/t , one even observes an enhancement for small
V0/t so that ξA

0 acquires a maximum around V0/t = 2.5. We
note that this is not an effect of competing CDW order since
the same result is observed in the low-density regime where
such correlations are absent.

In the limit of small V0/t , one can adopt the usual expression
for the correlation length in dirty superconductors given by
ξ0 = √

ξBCSl with the mean-free path l and the correlation
length of the clean system ξBCS ∼ vF /�SC. The behavior of
ξ0(V0) therefore crucially depends on the depletion of the
density of states, which lowers the superconducting �SC gap,
and the reduction of the mean-free path l with disorder. As
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noted in Refs. [19,21], the situation in the strongly disordered
system is more interesting since one has to distinguish between
the average superconducting order parameter 〈�SC〉 and the
spectral gap. As shown in the left insets to Fig. 10, 〈�SC〉
continuously decreases with disorder due to the increase of the
“non-SC” area. On the other hand, the spectral gap first shrinks
with disorder due to the depletion of the density of states but
grows again for strong disorder, signaling the formation of
local boson pairs that get progressively localized as the SIT is
approached. One can then argue that at strong disorder the BCS
correlation length tends to scale as the inverse of the spectral
gap, that acts as a cutoff to the increase of ξ0 associated to
the suppression of the SC order parameter. Alternatively, one
can relate the disorder dependence of the correlation length to
the behavior of the nearest-neighbor amplitude correlations as
shown in the Appendix.

Recently [12], the spatial dependence of the STM spectra
in strongly disordered NbN films has been analyzed in terms
of the autocorrelation function for the order parameter, i.e.,

〈C(R)〉 = 1

N

〈∑
i

(�i − 〈�〉)(�i+R − 〈�〉)
〉
. (24)

By performing an average over several disorder configurations,
we can extract the corresponding correlation length λac from
a fit to the function

F (R) = a0 + a1e−R/λac[1+a2 sin2(2φ)+a3 sin2(4φ)] . (25)

Here, φ is the polar angle related to R which incorporates
anisotropies in the correlations and we restrict the fit to |R| > 2
in order to isolate the long-distance behavior. The resulting
length λac as a function of disorder is shown by circles in
the right inset to Fig. 10 and it is close to the correlation
length ξA

0 extracted from the amplitude correlations. For V0 →
0, one can apply linear-response theory on the disorder and
show that the two lengths coincide. In the strongly disordered
regime, the situation is more complex. We find numerically that
both lengths are close to each other. Notice that for |U |/t =
5 we observe that both λac and ξA

0 increase in the regime
where the separation between the order parameter and the
spectral gap starts to develop, while they collapse in the regime
where the spectral gap tends to increase again. In Monte Carlo
simulations [24], the latter regime corresponds to the SIT,
not captured by the present Bogoliubov–de Gennes approach.
This same tendency is observed in the experimental estimate
of λac given in Ref. [12], done for samples in the so-called
“pseudogap” region of the phase diagram, where the spectral
gap is much larger than Tc.

3. Momentum structure of off-diagonal correlations

Off-diagonal correlations χAρ(q) mix the density and
amplitude sector and are shown in Fig. 1 for the clean case
and in Fig. 11 for the disordered system. Upon coupling
an external field in the density sector H1 = ∑

q λqρ−q, the
correlation function χAρ(q) yields the corresponding response
for the gap amplitude. In particular, for q = 0 a spatially
constant (and positive) λq=0 induces an effective reduction of
the chemical potential. Consider now the clean case where for
the attractive Hubbard model with nearest-neighbor hopping

-π -π/2 0 π/2 πqx
-π

-π/2
0

π/2
π

qy

-0.006

-0.004

χρA(q)

FIG. 11. (Color online) Average of Fourier transformed off-
diagonal correlations χAρ(q) for V0/t = 2.0 and |U |/t = 2.

the gap amplitude as a function of density has a maximum
at half-filling and continuously decreases towards n = 0 and
2. Therefore, off-diagonal correlations are negative for n < 1
(where a positive λ shifts the effective chemical potential away
from half-filling) in agreement with Fig. 1 and positive for
n > 1. Similar arguments can be made for finite momenta. In
particular, the strong enhancement of |χAρ(q)| at q = QCDW

observed in Fig. 1 is due to the strong competition between
CDW and SC correlations close to half-filling.

In the doped system, Fig. 11 reveals a strong suppression
for the off-diagonal correlations due to the spatial separation
of density and amplitude fluctuations as demonstrated in
Sec. III B. Naturally, this is again most pronounced for the
CDW momentum due to the removal of particle-hole symme-
try by disorder. It is worth noting that in the dynamic limit
(q = 0,ω finite) the off-diagonal correlations show instead the
opposite behavior. More specifically, as it has been recently
discussed in Ref. [41], the coupling between the amplitude
and density/phase correlation at finite frequency is strongly
enhanced by disorder, leading to a strong mixing between the
amplitude and phase spectral functions at zero momentum.

IV. CURRENT CORRELATIONS

To conclude our analysis of the SC correlations we shall
discuss now the change in the current-current correlation
function induced upon entering the superconducting state.
In particular, we want to explore the consequences of the
percolative current formation (cf. Fig. 2) on the behavior of the
current correlation function χjj entering the definition (12) of
the superfluid stiffness.

In order to obtain the intrinsic superconducting response,
we have to subtract the contribution which is already present
in the normal state (at finite momenta), and which can be either
diamagnetic or paramagnetic depending on the filling of the
system.

This is illustrated by the dashed line marked with diamonds
in Fig. 12 for the homogeneous nonsuperconducting system.
Clearly, the current response of Eq. (14), Dqy

= −〈Tx〉 +
〈χjj (qy)〉, vanishes at qy = 0 (i.e., the SC stiffness) when the
system is in the normal state, however, it becomes nonzero for
finite momenta.

In particular, at low density [cf. Fig. 12(a)], one recovers the
finite-q diamagnetic response (Dqy

> 0) related to Landau dia-
magnetism in agreement with the transverse current response
of a Fermi liquid [42]. In contrast, larger filling [cf. Fig. 12(b)]
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FIG. 12. (Color online) Transverse current response Dqy
=

−〈Tx〉 + 〈χjj (qy)〉 for the non-SC (blue dashed, diamonds) and the
SC homogeneous system at |U |/t = 5 (red dashed, triangles). The
normal-state response (�SC = 0) is independent of |U |/t . The solid
lines report the difference �Ds(qy) between Dqy

for the SC and
normal systems for |U |/t = 5 (squares) and |U |/t = 2 (circles).
Filling n = 0.325 (a) and n = 0.875 (b).

supports a finite-q paramagnetic current response which would
even diverge at q = (π,π ) for n = 1 (not shown). This feature
is the starting point for the exploration of circulating current
phases as possible candidates for the pseudogap in cuprate
superconductors [43].

As shown by the triangle symbols in Fig. 12, a finite SC
gap shifts up the curves in order to yield a diamagnetic Dqy

independently on doping. In order to extract what is due to
superconductivity we take the difference with respect to the
normal-state response Dnormal

qy
and the corresponding curves

are shown by square symbols (|U |/t = 5) and circles (|U |/t =
2) in Fig. 12 for n = 0.325 and 0.875, respectively. In the
weak coupling limit, the difference �Ds(qy) = DSC

qy
− Dnormal

qy

is always strongly peaked at qy = 0 and the underlying
normal-state response does not influence the curvature of the
peak which determines the SC coherence length. On the other
hand, it turns out that for large filling and strong coupling (cf.
squares in Fig. 12), �Ds(qy) can even acquire a maximum
at the zone boundary. Thus, in this limit the SC diamagnetic
response is largest on short length scales and corresponds to an
oscillatory decay of the SC induced current correlations in real
space.
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FIG. 13. (Color online) Main panel: transverse current correla-
tions �Ds(qy) measured with respect to the normal system for
|U |/t = 2,n = 0.875, and various disorder strengths. Upper left
inset: correlation length extracted from Eq. (26). Upper right inset:
superfluid stiffness.

Figure 13 shows the transverse current response �Ds(qy)
for various disorder strength and interaction |U |/t = 2 with
the normal-state result substracted. The latter has obtained for
the same disorder configurations and by setting �SC

i = 0.
We parametrize the long-wavelength structure as

�Ds(qy) = Ds[1 − (ξDqy)2] (26)

which defines a SC coherence length related to the diamagnetic
response and allows us to extract the stiffness Ds as a function
of disorder. Both quantities are shown in the insets to Fig. 13.

As discussed previously [25] (see also Sec. III B 1), Ds

gets rapidly suppressed with disorder but since the BdG
approach does not capture the SC-insulator transition it does
not vanish even for large V0/t . Also, the coherence length (cf.
left inset to Fig. 13) is strongly suppressed by disorder. Above
V0/t ≈ 2, �D(qy) is essentially independent on the transverse
momentum qy and ξD ≈ 0 within the numerical accuracy.

However, due to the average over disorder configurations,
the above analysis does not capture the long-range current cor-
relations which exist along the percolative path (cf. Sec. III B)
and which we will analyze separately in the following.

First, we identify the superconducting backbone. The
criterion to decide which sites belong to the percolative path
is chosen as follows: For the vector potential A along the x

direction, we determine the maximum current through a bond
jmax
x in the system and select all sites which have currents

larger than αjmax
x . We find that usually a value of α = 1

3 is
appropriate in order to selecting the sites which are visited by
the path. An example is shown in the inset to Fig. 14 where
the squares indicate sites with jx(Rn) > jmax

x /3. Clearly, there
are sites (e.g., in the upper right corner) which are traversed
by a minor current but are left out by the “α = 1

3 ” criterion.
Reducing further the value of α would also include these sites,
however, we note that the following results do not depend
sensitively on the value of α. The effect of a larger (smaller) α

is to add sites with larger (smaller) current to the path which

064512-10



AMPLITUDE, DENSITY, AND CURRENT CORRELATIONS . . . PHYSICAL REVIEW B 92, 064512 (2015)

2 4 6 8 10 12 14

|R
n
-R

m
|

0

0.01

<
 Δ

D
nm

 >

R
n
, R

m
 on the path

only R
n
 on the path

 0

 5

 10

 15

 20

 0  5  10  15  20

FIG. 14. (Color online) Main panel: 〈�Dnm〉 for both sites
(black) and only one Rn (blue) on the percolative path shown
in the inset. The squares indicate sites Rn with jx(Rn) > jmax

x /3.
|U |/t = 2,n = 0.875,V/t = 3.

concomitantly slightly increases (decreases) the long-distance
correlations which are calculated in the following.

We proceed by evaluating the nonlocal stiffness Dn,m

between sites Rn and Rm:

Dxx
nm = [ − δn,mtx(n) − χnm

(
jx
n ,jx

m

)]
(27)

and compute the difference between SC and normal states
�Dnm = DSC

nm − Dnl
nm. Two cases are considered: (a) both sites

Rn and Rm belong to the percolative path and (b) only one of
the sites Rn,Rm is on the path. The result for Dnm in both
cases is shown in Fig. 14 for the particular percolative path
displayed in the inset. The “error bars” indicate the variance
due to the fact that different sites Rn and Rm have the same
distance |Rn − Rm| but different values for Dnm.

As can be seen, the current correlations rapidly decay away
from the percolative path and are practically “zero” for |Rn −
Rm| > 3. On the other hand, correlations on the path stay finite
up to the largest distances available in the system.

Finally, Fig. 15 shows the on- and off-path current correla-
tions averaged over 200 disorder configurations for |U |/t = 2
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FIG. 15. (Color online) Current correlations 〈�Dnm〉 averaged
over 200 samples for disorder strength V/t = 3 and n = 0.875. Full
symbols: |U |/t = 2; open symbols: |U |/t = 5.

and 5, respectively. As for the specific sample shown in Fig. 14,
the off-path correlations get rapidly suppressed while on-path
correlations stay finite up to large |Rn − Rm|. Upon comparing
the on-path correlations between the two |U |/t values one
finds, aside from a reduction by a factor of ≈10, that the
decay of �Dnm with distance for |U |/t = 5 is significantly
smaller than for |U |/t = 2 while still staying finite for the
largest possible separation in the system (≈√

2 × 10 for
a 20 × 20 lattice when the percolative path is along the
diagonal).

The persistence of the current correlations along the
percolative path resembles closely the expected behavior for
a one-dimensional chain, where it simply follows from the
current conservation. This can be easily seen at ω = 0 by
using the following classical phase-only action:

S = 1

2

∑
i

Ji(δ�i)
2, (28)

where Ji are the local (random) stiffnesses (in units of the
temperature T ) and δ�i represents the local phase gradient
δ�i ≡ (θi+1 − θi),θi being the local SC phase. Equation (28)
can be obtained, for example, by expanding at Gaussian
level a classical XY model with random couplings Ji , that
is the prototype model for the phase degrees of freedom
of a superconductor. Equation (28) is also obtained [39] by
mapping [27] at large U the disordered Hubbard model into
the pseudospin model. In this mapping, the superconductivity
corresponds to a spontaneous in-plane magnetization, i.e., to
the usual XY model with a coupling J ∼ t2/U , and disorder
maps into a random out-of-plane field, that leads in turn to the
disorder in the local couplings Ji after a Holstein-Primakoff
expansion around the mean-field solution [39].

The local current Ii for the model (28) can be written, after
minimal coupling substitution δ�i → δ�i − 2Ai in Eq. (28),
as

Ii = 2Ji(δ�i − 2Ai). (29)

In the one-dimensional case, the current conservation implies
that Ii is independent on the site index, i.e., (δ�i − 2Ai) =
c/2Ji , where c is a constant. By summing over the site index
and using the boundary condition

∑
i δ�i = 0, one then gets

c = −4(
∑

i Ai)/
∑

i(1/Ji). Since the superfluid stiffness is
defined as usual [see Eq. (14)] as Ds = −I (q = 0)/A(q = 0),
one also deduces that

Ds = 4

(
1

N

∑
i

1

Ji

)−1

(30)

so that Ii = c = −(1/N )
∑

j DsAj . By comparing this with
Eq. (27) above we then recover that Dij = Ds/N for all pairs of
sites i,j along the chain. It is interesting to note that this result
also implies that the paramagnetic contribution to the current
must cancel out the local diamagnetic term 4Ji of Eq. (29).
This can be seen by computing explicitly the average current
value from Eq. (29) in linear-response theory, in analogy with
the expression (27) introduced above:

〈Ii〉 = −4
∑

j

Ji(δij − XijJj )Aj ≡ −
∑

j

DijAj , (31)
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where Xij = 〈δ�iδ�j 〉 is easily determined from Eq. (28) as

〈δ�iδ�j 〉 =
∫

dλDδ � exp
[− 1

2

∑
k Jk(δ�k)2 + iλ

∑
k δ�k

]
δ�iδ�j∫

dλDδ � exp
[− 1

2

∑
k Jk(δ�k)2 + iλ

∑
k δ�k

] , (32)

where the λ integration accounts for the periodicity constraint.
By making the change of variables δ�k → δ�k − iλ/Jk one
immediately sees that

Xij = δij

Ji

− Ds

NJiJj

(33)

that inserted into Eq. (31) gives Dij ≡ Ds/N , as anticipated
before. We note also that the independence of Dij in Eq. (31)
on both site indexes can be also derived as a consequence of
charge conservation and gauge invariance in one dimension.
Indeed, the independence of Dij on the site index i is a
consequence of a constant current Ii on each site, while the
independence of Dij on the second index j is a consequence
of the fact that at ω = 0 only to the q = 0 component of the
gauge field A leads to a finite response.

Going back to our two-dimensional (2D) system, we clearly
see in Fig. 15 that for a fixed disorder strength the percolative
path becomes more “1D”-like with increasing |U |/t , which
accounts for the crossover to a more constant �Dnm for
|U |/t = 5. Indeed, a larger |U |/t corresponds to a smaller J in
the mapping into the XY -like bosonic model, with an enhanced
influence of disorder and with smaller effective local stiff-
nesses Ji . This in turn is in agreement with the strong reduction
of �Dnm from |U |/t = 2 to |U |/t = 5, as shown in Fig. 15.

V. DISCUSSION AND CONCLUSIONS

As we discussed in the Introduction, it has been now
established in several theoretical models that when the SIT
is approached a granular SC state emerges, with SC puddles
embedded in a non-SC background. Thanks to the enormous
progresses made in the experimental techniques able to probe
the systems in real space, it has been also established that
such an emergent granularity is observed in disordered films
of conventional superconductors, such as, e.g., NbN, InOx , and
TiN [8–13]. It is then crucial to assess how this inhomogeneous
SC state affects the behavior of the amplitude, density, and
current correlations, in order to interpret the results of the
various experimental probes.

In this paper, we analyzed this issue within the fermionic
Hubbard model with onsite disorder. We presented a detailed
study of the correlation functions both in real space, for
a specific disorder configuration, and in momentum space,
after the average over several disorder configurations. The
momentum-space analysis allows us to extract the correlation
length of each physical quantity in close analogy with the
usual approach for homogeneous systems. As a first result,
one then sees that while in the homogeneous case at low
temperature amplitude and current correlation lengths coincide
up to a numerical factor [35], in the presence of strong disorder
this is no more true as can be seen in the summarizing
Fig. 16. By means of a simultaneous analysis of the real-space
correlations we can then disentangle how the properties of the
fragmented SC ground state influence the various correlation

lengths. As we discussed in the paper, these two approaches
give complementary information, that we will summarize
following. In this respect, even though our results are based
on a RPA approximation, they have the advantage to allow
for larger system sizes than Monte Carlo simulations as, e.g.,
those reported in Ref. [20]. The use of large clusters is in
turn crucial to trace back the behavior of different response
functions to the inhomogeneous structure of the ground state
and to perform a momentum-space analysis.

Amplitude and density correlations. We find that in general
the strength of the amplitude response ∼1/(mA

0 )2 increases
with disorder while the charge response ∼1/(mρ

Q)2 gets
suppressed by disorder (cf. Figs. 8 and 10). This is similar
to a previous Monte Carlo study [20] which found that
superconducting correlations are much more robust to disorder
than charge correlations. Here, due to the larger system size,
we could explore in detail the origin of this behavior.

The suppression of the charge response is easily understood
by the tendency of disorder to localize the pairs and render
the system incompressible almost everywhere except in the
superconducting islands. The increase of the superconducting
response is more subtle. For strong disorder, the region
in-between the islands contains “marginal” sites where the
order parameter is small but very susceptible to become large
by small variations of the disorder [see Fig. 3(b) and 6 for
site (3,12)] yielding a large overall pair susceptibility and
resembling the behavior close to a second-order phase tran-
sition. The decoupling of density and amplitude correlations
in real space is reflected in the momentum-space structure of
the susceptibilities. Thus, while in the homogeneous case [35]
the maximum or χρρ(q) at the CDW vector Q = (π,π ) leads
to an enhancement of the amplitude correlations χAA(q) at the
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FIG. 16. (Color online) Summary of results for the various corre-
lation lengths as a function of disorder for |U |/t = 2 and n = 0.875.
At very small disorder, the autocorrelation length λac cannot be
properly defined since the approximated formula (25) does not
reproduce accurately the data [see also C(R) in Fig. 17].
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FIG. 17. (Color online) Comparison between the experimental
estimate (left panel) of the autocorrelation function, defined in
Eq. (24), and the numerical computations (right panel). The experi-
ments data are taken from Ref. [12] and refer to three NbN films at
different disorder level (labeled by the different critical temperatures
Tc). The theoretical data are obtained for |U |/t = 2,n = 0.875,
and disorder values V0/t = 0.5 (solid) and V0/t = 3. (dashed).
Considering that the typical sizes of the SC islands in these NbN
films range between 20–40 nm, and it is one-two lattice spacing in
our simulations, the length scales in the experiments and simulations
are approximately comparable.

same wave vector (see Fig. 1), in the disordered case this effect
disappears (Fig. 9).

The resulting amplitude correlation length ξA
0 , shown in

Figs. 10 and 16, has an interesting disorder dependence. In-
deed, it stays constant or it is even enhanced at intermediate dis-
order levels, before then being ultimately suppressed as the SIT
is approached. In the latter regime, we argued that the decay of
the correlation length is ruled by the behavior of the spectral
gap, which increases as pairs become localized with disorder.

In Fig. 10, we also compared ξA
0 with the autocorrelation

length λac, that can be directly extracted experimentally from
the STM maps of the SC ground state. This has recently
been done for disordered NbN films [12] and we show for
convenience the corresponding data in Fig. 17(a). In this
work, the SC islands are identified by the regions with a
large SC coherence-peak height, that is usually taken [24,29]
to be a measure of the local order parameter �i , i.e., the
local gap solution in the BdG equations. By analyzing the
spatial correlations between good SC sites, the authors of
Ref. [12] found that the autocorrelation length λac becomes
larger as disorder is increased. This is shown in Fig. 17(a)
where we report the experimental data for the autocorrelation
function C(R) defined in Eq. (24) above. A similar trend can
be observed also in our simulations [see Fig. 17(b)], where
C(R) shows first a rapid suppression over a length scale of the
order of the SC island, followed by a long-tail decay that can be
eventually fitted with the approximated formula (25) in order
to extract λac. Since this tail can be thought as the response
of the system to the fluctuations that created the island, we
expect that λac is close to ξA

0 , as indeed we find numerically
(see Figs. 10 and 16).

In contrast to the autocorrelation length, a direct estimate
of the amplitude correlation length ξA

0 from the experiments

is not so straightforward. Indeed, while within a Ginzburg-
Landau approach, where a single length scale exists, ξ0

can be estimated from the upper critical field at T = 0 as
HC2 = �0/(2πξ 2

0 ), at strong disorder this connection is not
obvious. In particular, when the superfluid stiffness Ds is the
lowest-energy scale in the problem one would expect that
Tc ∝ Ds , so that also the upper critical field will scale with Ds ,
as suggested for example by a recent analysis of the microwave
conductivity at finite magnetic field in disordered InOx [44]. In
this sense, even though at intermediate disorder the decrease
of Hc2 measured experimentally [45] can be interpreted as an
increase of ξ0 due to the weakening of the SC order parameter,
as the SIT is approached one should not attribute the vanishing
of Hc2 ∝ Tc to a divergence of ξA

0 discussed above.
Current correlations. The behavior of the current cor-

relations is also strongly influenced by the formation of a
fragmented SC state. Indeed, as already noticed before [25],
the superfluid response is mainly determined by a few
percolative paths that connect the good SC regions. As a
consequence, the decay of the current correlations depends
on the position of the initial and final sites with respect to
this SC “backbone.” If both sites belong to a percolative
path, the current correlations are long ranged (essentially
constant, see Fig. 14), in agreement with what one expects for
a truly one-dimensional system, like e.g. the one-dimensional
XY model. On the other hand, this long-range behavior is
easily missed when the transverse current correlations are
extracted from the response in momentum space after average
over several disorder configuration. Indeed, the current-current
correlation length ξD is rapidly suppressed [cf. inset to Figs. 13
and 16(a)], in analogy with the overall superfluid response.
This behavior has to be contrasted to the one of the amplitude
correlation length ξA

0 , that is strongly suppressed only at the
SIT. On the other hand, the persistence of current correlation
along the percolative paths suggests that the existence of the SC
backbone can be deduced in principle by the measurements of
the space-dependent current susceptibilities, without having
to evaluate explicitly the current pattern at finite applied
field. The experimental study of these issues is of course
challenging, but it should be accomplishable with four-point
atomic force microscopy when the electrode spacing reaches
the nanometer separation. Its observation would certainly
contribute significantly to our understanding of the basic
mechanisms leading to the formation of the inhomogeneous
SC state as the SIT is approached in real systems.
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APPENDIX: DISORDER DEPENDENCE OF LOCAL SC
GAP AND LOCAL CORRELATIONS

Figure 19 reports the disorder dependence of the SC gap
value and local amplitude correlations on each site for the
same disorder configuration and parameters used in Figs. 2
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FIG. 18. (Color online) Top panel: disorder dependence of the
SC gap value for the same disorder configuration used in Figs. 2 and 3.
The site index for the 16 × 16 lattice is obtained from ix + 16(iy − 1).
Lower panel: disorder dependence of the local amplitude correlations
χAA

ii normalized to their maximum value at each site. |U |/t = 5,n =
0.875.

and 3. Note that the amplitude correlations are normalized
to their maximum value at each site. Clearly, the SC order
parameter on the majority of sites drops to a small value
around V0/t ≈ 2 but there are also singular sites where �i

extends up to V0/t ≈ 4 or where �i reemerges at large disorder
values.

In the clean system, the onset of a finite SC gap below
Tc is accompanied by a divergence in the amplitude corre-
lations, both the local and nonlocal ones. The pronounced
enhancement of the amplitude correlations around V0/t ≈ 2
in Fig. 18(b) suggests a similar feature as a function of disorder
with the difference that �i does not vanish but becomes small
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FIG. 19. (Color online) Black (full) steps: probability distribu-
tion P (� < ε) that the order parameter of a given site will fall below
the threshold ε for the first time, upon increasing the disorder with
ε = 0.01t . Red dashed step: probability distribution P (χAA

ii = max)
that the local amplitude correlation of a given site will attain its
maximum value as a function of disorder strength. Blue thin step:
probability distribution P (χAA

〈ij 〉 = max) that the nearest-neighbor
amplitude correlations of a given bond will attain its maximum value
as a function of disorder strength. Left panel: |U |/t = 2; right panel:
|U |/t = 5.

beyond some value of V0. To analyze this feature in more
detail we plot in Fig. 19 the probability density P (� < ε) as
a function of the disorder strength V0. Here, P (� < ε)dV0 is
the probability that the order parameter of a given site will fall
below the threshold ε for the first time when the disorder is
increased from V0 to V0 + dV0. Also shown are the probability
distributions for the maximum in the local [P (χAA

ii = max)]
and nearest-neighbor [P (χAA

〈ij〉 = max)] amplitude correlations
where, for example, P (χAA

ii = max)dV0 is the probability that
χAA

ii for a given site i attains its maximum value as a function
of disorder in the interval V0,V0 + dV0. Clearly, for |U |/t = 5
(right panel of Fig. 19) P (� < 0.01t) has a pronounced peak
around V0/t ≈ 2 . . . 2.5 and one finds that for about 50% of all
sites �i < 0.01t between 1.5 < V0/t < 2.5. Concomitantly,
also the probability distributions for the local and nonlocal
amplitude correlations are peaked at a somewhat lower value
of V0/t ≈ 1.5. For smaller |U |/t = 2, these distributions
are broader and in particular the nearest-neighbor amplitude
correlations are no longer characterized by a significant
enhancement.

This finding offers an alternative perspective for under-
standing the disorder dependence of the amplitude correlation
length ξ0 shown in Fig. 10. Since ξ0 is of the order of
one lattice spacing the nearest-neighbor correlations yield the
dominant contribution to the correlation length which accounts
for the enhancement around V0/t = 2. On the other hand, the
distributions as a function of V0/t are significantly broader for
|U |/t = 2 [cf. Fig. 19(a)] which agrees with the behavior of
ξ0 shown in Fig. 10(a).
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[9] B. Sacépe, C. Chapelier, T. Baturina, V. Vinokur, M. Baklanov,
and M. Sanquer, Nat. Commun. 1, 140 (2010).

[10] M. Mondal, A. Kamlapure, M. Chand, G. Saraswat, S. Kumar, J.
Jesudasan, L. Benfatto, V. Tripathi, and P. Raychaudhuri, Phys.
Rev. Lett. 106, 047001 (2011).

[11] M. Chand, G. Saraswat, A. Kamlapure, M. Mondal, S. Kumar,
J. Jesudasan, V. Bagwe, L. Benfatto, V. Tripathi, and
P. Raychaudhuri, Phys. Rev. B 85, 014508 (2012).

[12] A. Kamlapure, T. Das, S. Chandra Ganguli, J. B. Parmar, S.
Bhattacharyya, and P. Raychaudhuri, Sci. Rep. 3, 2979 (2013).

[13] Y. Noat, V. Cherkez, C. Brun, T. Cren, C. Carbillet, F.
Debontridder, K. Ilin, M. Siegel, A. Semenov, H.-W. Hübers,
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[29] G. Lemarié, A. Kamlapure, D. Bucheli, L. Benfatto, J.
Lorenzana, G. Seibold, S. C. Ganguli, P. Raychaudhuri, and
C. Castellani, Phys. Rev. B 87, 184509 (2013).

[30] J. Mayoh and A. M. Garcı́a-Garcı́a, arXiv:1412.0029.
[31] See e.g., N. R. Werthamer, in Superconductivity, edited by R. D.

Parks (Marcel Dekker, New York, 1969), Vol. 1, p. 321.
[32] A. Kapitulnik and G. Kotliar, Phys. Rev. Lett. 54, 473 (1985).
[33] G. Kotliar and A. Kapitulnik, Phys. Rev. B 33, 3146 (1986).
[34] F. Pistolesi and G. C. Strinati, Phys. Rev. B 53, 15168 (1996).
[35] L. Benfatto, A. Toschi, S. Caprara, and C. Castellani, Phys. Rev.

B 66, 054515 (2002).
[36] See, e.g., L. Benfatto, A. Toschi, and S. Caprara, Phys. Rev. B

69, 184510 (2004), and references therein.
[37] D. J. Scalapino, S. R. White, and S. Zhang, Phys. Rev. B 47,

7995 (1993).
[38] C. N. Yang and S. C. Zhang, Mod. Phys. Lett. B 4, 759 (1990).
[39] T. Cea, D. Bucheli, G. Seibold, L. Benfatto, J. Lorenzana, and

C. Castellani, Phys. Rev. B 89, 174506 (2014).
[40] Note that our definition for the susceptibilities differs from those

in Refs. [34,35] by a factor U/χ 0
q .

[41] T. Cea, C. Castellani, G. Seibold, and L. Benfatto,
arXiv:1503.07733.
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