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Local spin-density-wave order inside vortex cores in multiband superconductors
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Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based
superconductors has renewed interest to this old problem. Due to competition between the two types of order,
one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external
magnetic field. The structure of a vortex in type II superconductors holds significant importance from the
theoretical and the application points of view. Here we consider the internal vortex structure in a two-band
s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent
manner within the quasiclassical Eilenberger formalism. We study the structure of the s± superconducting order
and magnetic field-induced spin-density-wave order near an isolated vortex. We examine the effect of this
spin-density-wave state inside the vortex cores on the local density of states.
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I. INTRODUCTION

The emergence of superconductivity at the onset of mag-
netism is a hallmark of many families of unconventional super-
conductors. Recently discovered iron based superconductors
(FeSCs) provided a new addition to this list. Parent compounds
for many of the FeSCs have the spin-density-wave (SDW)
order, and superconductivity (SC) appears upon doping or
under pressure [1–6]. The doping-temperature phase diagrams
describing the location of these two phases vary from material
to material. In some systems, for example in the 1111 family
RFeAsO1−xFx (R is a rare-earth element), the SDW phase
abruptly disappears once the SC phase develops. In other
systems, such as 122 compounds based on BaFe2As2, the SDW
order coexists with SC within some range of parameters.

To understand how the SDW and SC phases interact
with each other and what triggers superconductivity with
such high transition temperatures, knowledge of the precise
structure of order parameters is essential. The local electronic
structure near defects can be extracted from scanning tunneling
spectroscopy (STM) measurements and it provides vital
information about the order parameter. A defect could be either
an impurity or a topological singularity like a vortex induced
by magnetic field. Here we focus on structure of an isolated
vortex.

It is well known that the shape of the vortex and the
electronic structure close to it are very sensitive to the gap
structure [7]. Copper oxide based high-temperature super-
conductors have been subjected to extensive research for
various kinds of competing orders inside the vortex cores. The
signatures of such vortex-core orders have been reported in
Bi2Sr2CaCu2O8+δ [8], La2−δSrδCuO4 [9–15], YBa2Cu3O7−δ

[16–21], YBa2Cu4O8 [22], and Tl2Ba2CuO6+δ [23]. From
the standpoint of the theory, several different approaches
have been adopted to explain these experimental observations.
Arovas et al. [24] and Sachdev et al. [25] studied antifer-
romagnetism in the vortex cores within the phenomenologi-
cal Ginzburg-Landau free-energy functional method. Ghosal
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et al. [26] used a microscopic Bogoliubov–de Gennes (BdG)
technique to investigate this problem for the superconductors
with a d-wave symmetric order parameter. The BdG technique
was used heavily by many researchers to understand various
aspects of the competing orders inside the vortex cores
[27–30]. We also mention the work of Garkusha et al. [31]
where the Usadel equation formalism has been used to explore
the problem of antiferromagnetic vortex cores. The Usadel
equations, however, are only applicable in the dirty limit, when
the electronic mean free path is shorter than the coherence
length, hence only appropriate for s-wave superconductors.

The vortex state in FeSCs has been studied extensively by
the STM [32] and several novel features near vortex cores have
been revealed. In the first study of the vortex structure in the
optimally doped BaFe1.8Co0.2As2 by Yin et al. [33] no subgap
states have been found. This is most probably due to large
quasiparticle scattering rate in this material. On the other hand,
optimally doped Ba0.6K0.4Fe2As2 does show peak at the vortex
center, which is shifted from the Fermi level to lower energy
[34]. This shift was attributed to the quantum effect, which is
realized in the materials with moderate values of the product
of the Fermi momentum kF and the coherence length ξ0 at
temperatures lower than Tc/(kF ξ0). Alternatively, such energy
shift of the localized state which breaks the particle-hole
symmetry can be caused by magnetic field-induced order in the
vortex core. This scenario is very likely when a superconductor
is close to a SDW instability. This possibility, however, has not
been considered in Ref. [34]. Similar downshift was found in
LiFeAs by Hanaguri et al. [35], even though this material
does not have obvious proximity to magnetism. Song et al.
[36] studied the vortex state in FeSe and found enhanced C4

symmetry breaking in the vortex core which is probably related
to orbital order in this material.

These compelling features have motivated many theoretical
works. One class of theories has associated the particle-hole
asymmetric finite-energy peaks to the normal-state band
structure of the materials [37,38]. In this case the mechanism
of particle-hole symmetry breaking is due to the quantum
effect discussed in Ref. [39]. Contrary to this proposal, several
other authors have considered orbital [40], nematic [41], or
SDW order [42–44]. Hung et al. [40] have included orbital
ordering within a self-consistent BdG approach, and explained
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the enhanced C4 symmetry breaking observed in FeSe by Song
et al. in Ref. [36]. Similar results were reported by Jiang et al.
[42] and Hu et al. [43] for the SDW order also using the BdG
method.

In this paper we consider the emergence of the SDW order
in the vortex cores and its spectroscopic consequences. We use
the quasiclassical Eilenberger approach to study the problem of
the field-induced SDW order inside an isolated vortex. Both the
BdG and Eilenberger approaches have their own advantages
and complement each other. The BdG method is more mi-
croscopic. On the other hand, the Eilenberger approach relies
on few most essential physical parameters. It is numerically
less expensive and allows us to study more complex problems.
We compute distribution of the superconducting and SDW
order parameters inside the core and typical length scales for
both order parameters. We also investigate the influence of
emerging SDW order on the density of states (DOS) near the
vortex. This paper is organized in the following manner. In
Sec. II we describe the details of the model and the method.
In Sec. III we discuss the results and conclude in Sec. IV.

II. MODEL AND METHOD

A. Quasiclassical equations for a two-band superconductor
with spin-density wave

We consider a simple minimal model with two cylindrical
Fermi surfaces, which allows us to capture qualitative under-
standing of the problem. For the dispersion of the holelike
Fermi surface, we take

ξh(k) ≡ ξ1(k) = μh − k2

2mh

, (1)

and for the electronlike Fermi surface we consider following
dispersion:

ξe(k) ≡ ξ2(k − Q) = (kx − Qx)2

2me(1 − ε)
+ (ky − Qy)2

2me(1 + ε)
− μe, (2)

where (Qx,Qy) is the SDW ordering vector and μh,μe are the
energy offset for the hole and the electron band, respectively.
Figure 1 shows a schematic picture of the two Fermi surfaces.
It is useful to write these dispersions as

ξh(k) = −ξ, (3)

ξe(k + Q) = ξ + 2δ, (4)

Q

FIG. 1. (Color online) Schematic representation of the holelike
and electronlike Fermi surfaces (solid lines) centered around the
� point and M point, respectively. A shifted holelike Fermi surface
is shown with a dashed line. Filled circles are the hot spots, where
the nesting is perfect.

where δ is the energy scale, which measures the deviation from
perfect nesting. In general, δ is a function of the angle on the
Fermi surface φ and goes to zero at the hot spots (shown in
Fig. 1). For the dispersions considered here,

δ(φ) = δiso + δani cos 2φ, (5)

with

δiso = 1

2

(
mhμh

me(1 − ε2)
− μe

)
,

δani = mhμh

2me

ε

1 − ε2
,

and we treat δiso and δani as tuning parameters.
The model Hamiltonian is the same as used by several other

groups [45–47],

H = Hkin + Hsc + Hsdw, (6)

Hkin =
∑
i,k,α

ξi(k)c†i,k,αci,k,α, (7)

Hsc =
∑

i,k,α,β

[	i(ıσ
y)αβc

†
i,k,αc

†
i,−k,β + H.c.], (8)

Hsdw =
∑
k,α,β

[M∗(σ z)αβc
†
1,k,αc2,k,β + H.c.], (9)

where 	i are the SC order parameters for two bands with
i = 1,2 being the band index and M is the SDW order
parameter. We only consider singlet superconductivity. For
incommensurate SDW order M is a complex quantity. Here
we consider only the commensurate SDW order, which makes
M a real quantity. We will briefly discuss the consequences of
incommensurability in the SDW order. The indices α, β denote
the spin states, and c

†
i,k,α (ci,k,α) is the fermionic creation

(annihilation) operator for a fermion in the ith band with
spin α. We consider s± state for superconductivity with equal
gap magnitudes in two bands with a relative sign change.

The self-consistency conditions read

	i =
∑

j,k,α,β

V sc
ij (−ıσ y)αβ〈cj,−k,αcj,k,β〉, (10)

M =
∑
k,α,β

V sdw(σ z)αβ〈c†1,k,αc2,k,β〉. (11)

Here V sc and V sdw are the pairing interactions for the SC
and SDW phases, respectively, and assumed to be momentum
independent.

In the extended particle-hole basis, �† =
(c†1,k,↑,c1,−k,↓,c

†
2,k,↑,c2,−k,↓), the Hamiltonian reads

H =
∑

k

�† · Ĥ · �, (12)

Ĥ =

⎡
⎢⎢⎢⎣

ξ1 	1 M 0

	∗
1 −ξ1 0 M

M 0 ξ2 	2

0 M 	∗
2 −ξ2

⎤
⎥⎥⎥⎦. (13)
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The 4 × 4 matrix Green’s function for this mean-field Hamil-
tonian is

Ĝ = (iω1̂ − Ĥ)−1, (14)

where ω = 2πT (n + 1/2) is the fermionic Matsubara fre-
quency and 1̂ is a 4 × 4 identity matrix in the two-band
particle-hole space.

Next we derive the quasiclassical equations, which were
first obtained by Eilenberger for conventional superconductors
[48,49]. These are transportlike equations for the kinetic
energy integrated Green’s functions,

ĝ = i

π

∫
dξ γ̂ · Ĝ, (15)

where γ̂ is a 4 × 4 diagonal matrix with elements
(1,−1,−1,1). In compact matrix form the quasiclassical
equation reads[(

ω + e

ic
vF · A

)
γ̂ ,ĝ

]
+ vF · ∇ĝ

+ i[(Ĥδ + Ĥsc + Ĥsdw)γ̂ ,ĝ] = 0, (16)

where vF is the Fermi velocity and A is the vector potential.
Ĥsc, Ĥsdw are the SC and the SDW components of the
mean-field Hamiltonian in the basis spanned by �. Ĥδ is a
4 × 4 diagonal matrix with elements (0,0,2δ,−2δ) containing
information about nesting between the Fermi surfaces. Its
contribution drops out in the absence of the SDW order. This
equation agrees with one derived by Moor et al. [50]. In the
pure superconducting limit Eq. (16) reduces to the well-known
Eilenberger equation,

vF · ∇ĝ +
[(

ω + e

ic
vF · A

)
γ̂ ,ĝ

]
+ i[Ĥscγ̂ ,ĝ] = 0. (17)

Equation (16) has to be supplemented with the normalization
condition,

ĝ2 = ĝ2
bulk. (18)

In particular, ĝ2
bulk = 1̂ for a uniform superconductor without

SDW order. The self-consistency conditions for the order
parameters can be expressed in terms of the Eilenberger
functions as

	1 = iπT
∑

ω

〈
V sc

11g12 + V sc
12g34

〉
F.S., (19)

	2 = iπT
∑

ω

〈
V sc

12g12 + V sc
22g34

〉
F.S., (20)

M = iπT
∑

ω

V sdw

2
〈g13 + g24〉F.S.. (21)

Here gij are components of a 4 × 4 matrix Green’s function
[indices i,j = (1,2)/(3,4) correspond to the hole/electron
band]. 〈gij 〉F.S. means angular average over the Fermi surface
for the respective bands weighted with the density of states,
which is approximately the same for both bands for the
Fermi surfaces considered here. As for the pairing-interaction
matrix, to get the s± superconducting state we take into
account only the interband repulsive interaction and neglect
intraband terms, i.e., V sc

11 = V sc
22 = 0. For pure SC state,

Eq. (17) can be transformed to a set of Riccati equations, which
makes the numerical solution much easier [51]. However, this

FIG. 2. (Color online) Coordinate systems used to solve the
Eilenberger equations. The real space laboratory frame is shown
with solid lines, while the dashed lines represent the new coordinate
system. The filled circle is the location of the vortex core and chosen as
the origin. The open circle is the point where the solution is required.
A point in the laboratory frame r = xpx̂ + ypŷ maps to λpv̂ + μpû

in the new coordinate system.

transformation is not useful for the problem considered here.
In the following section we discuss the strategy to solve these
equations for the present case.

B. Numerical solution

The Eilenberger equations are first-order partial differential
equations. A standard tool for the solution of this type of
equation is the method of characteristics. The basic idea of this
method is to introduce the new coordinate system, in which the
partial differential equation reduces to an ordinary differential
equation. Hence, it is useful to introduce a coordinate system
spanned by the two orthogonal vectors, a unit vector along the
direction of the Fermi velocity v̂ and a unit vector û orthogonal
to v̂, see Fig. 2. The unit vectors spanning the new coordinate
system read

v̂ = cos θx̂ + sin θŷ, (22)

û = − sin θx̂ + cos θŷ. (23)

Here θ is the angle between the Fermi velocity and the x

axis in the laboratory frame. A point in the laboratory frame
r = (x,y) maps to (λ,μ) in the v̂-û frame. A point (xp,yp) at
which solution is desired transforms to (λp,μp) as

λp = xp cos θ + yp sin θ, (24)

μp = −xp sin θ + yp cos θ, (25)

where the parameter μp has the meaning of an impact
parameter. For a fixed trajectory, this impact parameter is
uniquely determined by (xp,yp) and it does not change with
change of λ. The quasiclassical equations are solved along
these classical trajectories (v̂) in the real space. Along such
trajectories quasiclassical equations reduce to a system of
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ordinary differential equations, which are much easier to
handle than solving a set of partial differential equations.
Far away from the bulk, the system is homogeneous. The
homogeneous values are used as initial values. Now on a
given trajectory, there are two possibilities. One can integrate
towards the defect (vortex in this case) from the two extreme
ends (λ = ±∞) of the trajectory. Due to the first-order nature
of the equations, the numerical solution readily converges to an
exponentially growing function. Of course these exponentially
growing solutions are unphysical. However, it is possible
to construct the physically bounded solution at any point
using the exponentially growing solution using the explosion
method. The explosion method exploits exponentially grow-
ing solutions to obtain the physical solution [52–54]. (See
Appendix for details.) For each point in the real space, one has
to solve the Eilenberger equations for all the trajectories and for
each Matsubara frequency. To obtain a physical solution, we
solve the Eilenberger equations from two opposite directions
λ = ±∞ towards the point, where the solution is desired.
As shown in the Appendix, the two exploding solutions ĝ±
diverging in the ±∞ limits, provide the physical solution ĝp

as

ĝp = ĝ−ĝ+ − ĝ+ĝ−
ĝ−ĝ+ + ĝ+ĝ−

. (26)

Once all the Eilenberger functions are computed for an initial
guess for the order parameters, an updated set of order
parameters is recalculated, and this process continues till it
converges to a solution. It is convenient to normalize all the
energy scales to Tc and all the lengths are measured in the unit
of superconducting coherence length ξ0 = vF /(2πTc). Here
vF is the average Fermi velocity of the two bands. We consider
weak ellipticity for the electronlike Fermi surface, and the
Fermi velocities of the two bands are roughly equal. All our
results are presented in these units.

III. RESULTS AND DISCUSSION

Coexistence of the SDW state and the superconductivity
is very sensitive to the underlying electronic structure. For
the two-band model we consider, the nesting function δ(φ) in
Eq. (5) can be tuned to get a coexisting phase [45–47]. Here we
are interested in a situation where there is no long-range SDW
order in the absence of the magnetic field. Figure 3 shows
the phase diagram as a function of the anisotropic nesting
parameter δani for a fixed value of δiso = 0.16(2πTs0). The
presence of the superconductivity strongly modifies the SDW
phase boundary (thin dashed line in Fig. 3). The region between
the original and SC-renormalized phase boundaries provides a
possibility of the SDW order in the regions, where the SC phase
get suppressed locally. The phase diagram shown in Fig. 3 only
includes the commensurate SDW phase. Vorontsov et al. [46]
have shown that the incommensurate SDW phase may coexist
with the SC in a larger area of the phase diagram. We consider
few representative cases with δani/2πTs0 = 0.25, 0.26, and
0.27. Here Ts0 is the SDW transition temperature for a system
with perfect nesting and with the same interaction strength.
We have set Ts0 = 2Tc0, where Tc0 is the superconducting
temperature. As we are mostly interested in low-temperature
behavior, we restrict our calculations below T = 0.8Tc.

0 0.1 0.2 0.3
0

0.5

1

1.5

δ
ani

/2πT
s0

(T
s,T

c)/
T

c0

SDW

SDW +
SC

SC

δ
iso

=0.16(2πT
s0

)

FIG. 3. (Color online) The phase diagram in the (T ,δani) plane for
the two phases at zero magnetic field. Thick black/red line indicates
transition to the SDW/SC state. The thin dashed line shows the Ts in
the absence of the SC correlations. Filled squares are considered as
representative cases in this paper.

A. Order parameter profiles

Figure 4 shows the temperature dependence of the bulk
superconducting gap and the SDW order in the core. It
is evident that the SDW order appears roughly below the
temperature one would expect from the phase diagram shown
in Fig. 3. The temperature dependence of the SDW order
parameter deviates strongly from the mean-field behavior
(∝√

1 − T/Tc). We see two different temperature regimes. At
lower temperature the SDW order grows strongly, but slightly
below the mean-field SDW transition Ts it develops a tail,
which survives even above Ts . It should be noted here that the

0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

T/T
c

(M
,Δ

1)/
T

c

 

 

δ̃ani = 0.25
δ̃ani = 0.26
δ̃ani = 0.27

FIG. 4. (Color online) The temperature dependence of the bulk
superconducting order parameter and the SDW orders at the center
of the vortex for three values of the parameter δani/2πTs0 = 0.25,
0.26, and 0.27. All the energy scales are normalized to Tc. The thin
line shows the temperature dependence of the magnitude of the SC
order in the bulk, which is almost identical for two bands. The signs
of SC order parameters are opposite for two bands. The mean-field
SDW transition temperature in the absence of superconductivity is
indicated with a filled square for each case.
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T=0.3Tc
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FIG. 5. (Color online) The spatial variation of the magnitude of
the SDW order at T = 0.3Tc for δani = 0.25(2πTs0), where Ts0 is the
SDW transition temperature for a system with perfect nesting and
with the same interaction strength. The magnitude of the SDW order
is normalized to Tc. The hot spots are located near the y axis.

phase diagram is based on the commensurate SDW phase for
the normal state electronic structure. However, the electronic
structure of the vortex core states is not the same as in the
normal state. The onset of the SDW order is mostly determined
by the core bound states. The SDW transition temperature Ts ∝
exp[−1/N0Vsdwf (δiso,δani)], where the function f (δiso,δani)
depends on nesting parameters, Vsdw is the SDW interaction,
and N0 is the density of states. As in the vortex core the density
of states is higher than the normal-state value, the SDW onset
temperature may exceed the mean-field value.

We restrict ourselves to the commensurate case only, but
for the incommensurate case the phase boundary shifts towards
slightly higher temperatures. As reported by Vorontsov et al.
in Ref. [46], an incommensurate order may exist in a larger
portion of the phase diagram. We have also performed
calculations, where we allow incommensurability in the SDW
order. With incommensurability the SDW order parameter
becomes complex and acquires a finite phase. We found
that the phase of the SDW order parameter is temperature

dependent and varies very weakly in the real space. The
incommensurate order persists above the phase boundary
shown in Fig. 3. Since we did not find anything qualitatively
different, we will focus on the commensurate case only.
Furthermore, there is no qualitative difference between the
cases considered here, except for the temperature dependence.
Therefore, we continue our discussion with δani/2πTs0 =
0.25. For this δani and δiso/2πTs0 = 0.16 the nesting hot-spot
angle φ ≈ 64.9◦ is close to the y direction which strongly
influences anisotropic properties of the vortex. Figure 5 shows
the magnetic field-induced SDW order parameter in the real
space at T = 0.3Tc. Spatial coordinates have been normalized
to the superconducting coherence length ξ0 and the SDW order
is normalized to Tc. An important feature is the oscillations
of the SDW order along the x direction which is most clearly
seen in the inset. At lower temperatures when the SC vortex is
very small, the SDW state is localized very close to the vortex
core. As the temperature grows, the vortex becomes larger
and the region with the SDW order also increases, due to a
larger region of the suppressed superconductivity. The size of
the vortex is larger in the presence of the field-induced SDW
order. This property can be seen in Fig. 6, in which we compare
a SC vortex with and without the magnetic field-induced SDW
order. The SDW order makes the vortex larger and anisotropic.
The intrinsic anisotropy of the underlying band structure is
weak. Hence the large anisotropy in the real space is mainly
due to the field-induced SDW order. Strong enhancement of
the anisotropy is reflected in the characteristic length scales
associated with the SC order along the two principal directions.
Figure 7 shows the length scales associated with the SDW
(ξ sdw

x/y ) and the SC order (ξ sc
x/y) along the x and y axis. We

define the superconducting coherence length ξsc as a distance
from the vortex core, where the order parameters reaches half
of its bulk value. Similarly, the magnitude of the SDW order
drops to half of its value at the core at a distance ξsdw from
the vortex core. As illustrated in Fig. 7, the SC length scales
along x and y directions become different in the presence of
the SDW order and this is mainly due to anisotropy in the
field-induced SDW order. Note that the SDW correlations are
stronger along the y direction which is closer to the nesting
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y/
ξ 0

 

 

T=0.3Tc
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FIG. 6. (Color online) The left panel shows the gap magnitude normalized to its bulk value at T = 0.3Tc in the presence of the SDW order
and the right panel shows the gap structure at the same temperature with no SDW order for the hole band.
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FIG. 7. (Color online) The temperature dependence of character-
istic length scale for SDW order (ξ sdw

x/y ) and the characteristic length
scale of the SC order (ξ sc

x/y) on the hole band for δani/2πTs0 = 0.25.
Subscripts denotes x and y directions in the real space. The same
characteristic length scale for a pure superconductor is plotted with a
dotted-dashed line for comparison.

hot spots. This causes stronger suppression of the SC order
and reduces the SC characteristic length along this direction.
Next, we discuss the density of states near the vortex core.

B. Density of states

All the previous calculations were done using the Matsubara
frequencies. For the DOS calculation it is necessary to
go to the real frequencies. We used the order parameter
profiles calculated in the Matsubara representation. The
analytic continuation iω → E + iη is done with an artificial
broadening η = 0.05Tc. This process also requires solution of
the Eilenberger equations for the real frequencies using the
same approach as in the calculation of the order parameters in
the previous section. The total DOS is the sum of the partial
DOSs for each band and, in terms of the Eilenberger functions,
it is given by

N (E) = Re〈[g11(E + iη) + g33(E + iη)]〉F.S.. (27)

Figure 8 presents evolutions of the density of states along the
two principal directions for two temperatures. The first row
of Fig. 8 shows DOS along the x axis, which is away from
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FIG. 8. (Color online) DOS along the x direction (first row) and along the y direction (second row) at T = 0.3Tc in (a) and (b) and at
T = 0.5Tc in (c) and (d) for δani/2πTc = 0.26.
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FIG. 9. (Color online) (a) and (b) DOS near the vortex core along the x and y directions, respectively, at T = 0.3Tc.

the hot spots and the second row shows DOS along the y axis
which is closer to the hot spots. The field-induced SDW order
enhances the violation of the C4 rotational symmetry the vortex
center. For conventional superconductors, the DOS is always
particle-hole symmetric, unless the superconductor is in the
quantum regime when kF ξ0 is not too large and T � Tc/kF ξ0

[39]. Another key feature of the classical clean-limit DOS in
the vortex core is the sharp peak at zero energy corresponding
to the localized state. The quantum effects shift this zero-
bias peak to the finite energy, but do not break the rotational
symmetry. The emergence of the SDW order leads to particle-
hole asymmetry in the DOS and also strongly violates the
C4 symmetry. The particle-hole asymmetry is bigger along x

direction because of stronger deviation from nesting in this
direction. Another important feature which is visible in Fig. 8
is suppressed spectral weight at the core indicating that the
energy of the localized state is shifted from zero to a finite
value corresponding to an opening of a minigap in the core.
This is shown more clearly in Fig. 9 in which we show the
DOS plots at several representative points. This small gap
in the DOS near the vortex core is particle-hole asymmetric,
which is a hallmark of energy gap due to the SDW order. This
gap vanishes away from the vortex core indicating presence
of a state with energy close to zero localized outside the core.
As the temperature increases and the SDW order weakens,
the apparent gap in the core disappears as shown in Figs. 8(c)
and 8(d) at T = 0.5Tc. The described features are the keys to
distinguish between the quantum effect and the field-induced
SDW order. Figure 8 also shows the DOS for two different
temperatures. The temperature dependence of the DOS is easy
to understand. As the temperature increases, the SDW order
weakens, which reduces the degree of C4 symmetry breaking
and the particle-hole asymmetry in the DOS.

IV. SUMMARY AND CONCLUSION

We study the structure of an isolated superconducting
vortex near a SDW instability inside the superconducting
dome. We show that the SDW order develops inside the vortex
below a critical temperature determined by the strength of
the SDW instability. This leads to C4 symmetry breaking

near the vortex core. If there is already C4 breaking in
underlying band structure, then it gets strongly enhanced due
to the SDW order near the vortex core. The corresponding
deformation of the vortex shape can be imaged by the STM
technique. We find that the field-induced SDW order persists
beyond the superconducting vortex region. The tunneling DOS
carries very strong signatures of this field-induced order. A
small energy gap develops inside the core and gives rise to
strong particle-hole asymmetry, which is pronounced along
the directions away from the hot spots. Our results are in
qualitative agreement with the STM data on Ba0.6K0.4Fe2As2

[34] which may indicate the presence of the vortex-core SDW
order in this material. Our findings also agree with BdG-based
works by other groups.

ACKNOWLEDGMENTS

This work was supported by the Center for Emergent
Superconductivity, an Energy Frontier Research Center funded
by the US DOE, Office of Science, under Award No. DE-
AC0298CH1088.

APPENDIX: EXPLOSION METHOD

The general structure of the Eilenberger equations is

dĝ

dλ
= [T ,ĝ], (A1)

which is a first-order ordinary differential equation. It is
straightforward to show that if ĝ is a solution of this equation
then ĝ2 is also a solution, which implies

ĝ2 = â0 + a1ĝ, (A2)

where â0 is a constant matrix and a1 is a complex number. It
can be further shown that the product of any two solutions of
the Eilenberger equations is also a solution of these equations.
This gives a very powerful relation,

ĝ2 = â0 = ĝ2
bulk, (A3)

which is very useful in obtaining the numerical solutions of
these equations. There are multiple solutions to this system
of equations. In pure superconducting state, there are three
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independent solutions. There are two divergent solutions along
with a bounded physical solution. All the unphysical solutions
decay to zero in the bulk. Let us consider two such unphysical
solutions, ĝ± ∝ e±νλ. It can be shown that the commutator of
these two unphysical solutions gives the physically bounded
solution,

X̂± = ĝ−ĝ+ ± ĝ+ĝ−, (A4)

ˆ̇X± = [T ,X̂±]. (A5)

The bounded physical solution is

ĝp = ĉpX̂−, (A6)

the constant ĉp can be determined using Eqs. (A3) and (A6)
and it reads

ĉp = 1

X̂+
. (A7)

We use these unphysical solutions ĝ+,− in the bulk and
integrate towards the vortex core starting from the bulk.
Since these solutions grow exponentially, they can be easily
computed numerically with appropriate boundary conditions.
Far away from defects, we can ignore the spatial dependence
of the order parameters. Since there is no long-range SDW
order, we have the standard Eilenberger equations for the pure
superconducting state in the bulk and in the basis we consider
here, the Eilenberger Green’s function is a block diagonal
matrix. The two bands are coupled through the self-consistency
condition. Therefore it is sufficient to illustrate the idea for one
band, for which we write down the equations explicitly,

ġ = i(	∗f + 	f †), (A8)

ḟ = −2ωf − 2i	g, (A9)

ḟ † = 2ωf † − 2i	∗g. (A10)

We first find two unphysical solutions, which can be deter-
mined easily. Let us consider

g = c1e
ζλ, (A11)

f = c2e
ζλ, (A12)

f † = c3e
ζλ. (A13)

where ζ = ±ν. Normalization condition requires

ĝ2
± = 0. (A14)

This ensures that all the unphysical solution decay to zero in
the bulk. Which gives

c2
1 + c2c3 = 0, (A15)

c1 = i
√

c2c3. (A16)

Using these conditions,

(ζ + 2ω)c2 = 2	
√

c2c3, (A17)

(ζ − 2ω)c3 = 2	∗√c2c3. (A18)

These two equations give the value of ζ = ±2
√

ω2 + |	|2/vF

and

c2 = −2i	
ζvF +2ω

c1, (A19)

c3 = −2i	∗
ζvF −2ω

c1. (A20)

Here we fix c1 = 1 and write the exploding solutions,

ĝ+ = exp

[
+2Qλ

vF

][
1 −i	p+

i	∗p− −1

]
, (A21)

ĝ− = exp

[
−2Qλ

vF

][
1 −i	p−

i	∗p+ −1

]
, (A22)

p± = 1

ω ± Q
, (A23)

Q =
√

ω2 + |	|2. (A24)

Now we can write down the physical solution,

ĝp = X̂−
X̂+

= 1√
ω2 + |	|2

[
ω −i	

i	∗ −ω

]
. (A25)

Once we get the values of these two diverging solutions in
bulk then we can use the bulk values to integrate towards the
vortex core and find the physical solution using two unphysical
solutions.
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