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Spin dynamics in the presence of competing ferromagnetic and antiferromagnetic
correlations in Yb2Ti2O7
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1Laboratoire Léon Brillouin, CEA-CNRS UMR 12, Centre de Saclay, F-91191 Gif-sur-Yvette, France
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In this work, we show that the zero-field excitation spectra in the quantum spin ice candidate pyrochlore
compound Yb2Ti2O7 is a continuum characterized by a very broad and almost flat dynamical response, which
extends up to 1–1.5 meV, coexisting or not with a quasielastic response depending on the wave vector. The spectra
do not evolve between 50 mK and 2 K, indicating that the spin dynamics is only little affected by the temperature in
both the short-range correlated and ordered regimes. Although classical spin dynamics simulations qualitatively
capture some of the experimental observations, we show that they fail to reproduce this broad continuum. In
particular, the simulations predict an energy scale twice smaller than the experimental observations. This analysis
is based on a careful determination of the exchange couplings, able to reproduce both the zero-field diffuse
scattering and the spin wave spectrum rising in the field polarized state. According to this analysis, Yb2Ti2O7

lies at the border between a ferro- and an antiferromagnetic phase. These results suggest that the unconventional
ground state of Yb2Ti2O7 is governed by strong quantum fluctuations arising from the competition between those
phases. The observed spectra may correspond to a continuum of deconfined spinons as expected in quantum spin
liquids.
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I. INTRODUCTION

Understanding, characterizing, and classifying novel states
of matter is one of the main goals of the research in solid state
physics. In particular, systems where the thermal or quantum
fluctuations are able to melt long-range order, the so-called
spin liquids, draw a lot of attention since they generally go
beyond the Néel paradigm [1].

The pyrochlore lattice, made of corner-sharing tetrahedra,
is the archetype of a three-dimensional frustrated lattice and
has proven during the last years to be a rich playground
for studying such spin liquid states [2]. Among the variety
of possible pyrochlore systems, the compound Yb2Ti2O7

has been presented as one of the possible realizations of
a quantum spin liquid ground state. More precisely, it has
been proposed as a candidate for the quantum variant of the
spin ice state observed in Ho2Ti2O7 and Dy2Ti2O7. In these
classical spin ices, the Ising-like anisotropy of the magnetic
moments along the local 〈111〉 directions, combined with an
effective ferromagnetic interaction induce a macroscopically
degenerated ground state characterized by the local ice rule
[3] (in each tetrahedron, two spins point in and two spins
point out). In Yb2Ti2O7, the Yb3+ magnetic moment shows
a weak XXZ planar anisotropy perpendicular to the local
〈111〉 directions [4–6]. However, the strongly anisotropic
interactions tensor [7–9], whose main component is
ferromagnetic, induces a local constraint analog to the ice rule.

The static and dynamical magnetic correlations in
Yb2Ti2O7 have been investigated by means of neutron
scattering experiments. Short-range correlations settle around
T0 ∼ 2 K, giving rise to rods of diffuse scattering along high
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symmetry directions [9–11]. At lower temperature, a phase
transition is observed in specific heat measurements around
0.2 K [12], but the critical temperature depends on the nature
of the samples (polycrystal or single crystal) and their quality
[11,13,14]. This transition was shown to be first order [14–17],
in both single crystals and powder samples but its nature
remains debated. Several studies (including neutron scattering
and muon spin relaxation measurements) evidence the stabi-
lization of an ordered ferromagnetic state, with a reduced static
magnetic moment [15–18], while others do not [10,14,19,20].

To understand the underlying microscopic mechanism
leading to such a nonconventional ground state, several studies
attempted to determine the exchange couplings, trying to
reproduce the experimental results. Different sets of interac-
tions were obtained, depending on the fitted quantity: diffuse
scattering [9,16] or field induced spin-wave excitations [8].
The latter parameters allow one to reproduce the specific heat
[21] and magnetization [22], and were further refined using
terahertz spectroscopy measurements [23]. These parameters
place Yb2Ti2O7 in a “splayed ferromagnetic” phase, quite far
from the “quantum spin liquid” phase of the theoretical phase
diagram [24–26].

Since the precise nature of the elementary excitations
generally depends on the ground state itself, we propose in
this article to address the unconventional magnetic properties
of Yb2Ti2O7 through a detailed study of the spin dynamics on
a single crystal in the zero-field correlated phase below 2 K,
which has been little explored up to now [11]. In Sec. II, we
first present macroscopic measurements performed on a piece
of our single crystal, which show evidence for a transition at
175 mK. By means of inelastic neutron scattering, we show
that the excitation spectrum is a continuum characterized by a
very broad and almost flat dynamical response extending up to
1–1.5 meV, and coexisting or not with a quasielastic response
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depending on the wave vector. These excitations do not depend
on the temperature below the stabilization of short-range
correlations (i.e., 2 K), and, in particular, entering the ordered
phase does not affect the spectra. Then, in Sec. III, we compare
these inelastic data with classical calculations combining
Monte Carlo and spin dynamics simulations. We show that,
although the qualitative features of the spectra are reproduced,
calculations predict an energy scale twice smaller than the
experimental observations. These calculations are based on
our determination of a reliable and robust set of exchange
couplings, able to reproduce both the spin-wave spectrum
of the field polarized phase as well as the diffuse scattering
in zero field. The obtained couplings do place Yb2Ti2O7

in a ferromagnetic phase, yet very close to the boundary
with an antiferromagnetic phase. Then, although Yb2Ti2O7

is not a canonical quantum spin liquid as initially proposed,
we propose that the proximity of competing ferromagnetic
and antiferromagnetic correlations restore strong quantum
fluctuations [26] and is at the origin of the anomalous static
and dynamical behaviors observed in our experiments.

II. EXPERIMENTAL

Our measurements were performed on a single crystal.
First, a polycrystalline sample of Yb2Ti2O7 stoichiometry
was synthesized from Yb2O3 and TiO2 starting powders by
solid state reaction. To obtain the pyrochlore phase, several
thermal treatments at 1400 ◦C with intermediate grindings
were necessary. The progress of the synthesis reaction was
followed by powder x-ray diffraction. For the last thermal
treatment, the powder was shaped as a cylinder of 5 mm
diameter and 90 mm length and the obtained rod was used
as feed rod for the single crystal synthesis. Crystal growth was
performed using the floating zone technique in a four-mirror
optical image furnace NEC SC-N15HD. The obtained crystal
was then annealed under O2 gas flow for two days.

A. Thermodynamic measurements: magnetization
and specific heat

To characterize the macroscopic properties of our Yb2Ti2O7

sample, we have performed thermodynamic measurements,
magnetization and specific heat, on a flat disk sample (mass
244 mg), cut from a single crystal used for neutron scattering
experiments. There could be inhomogeneities inside the crystal
which prevent from generalizing the results obtained from
these thermodynamic measurements to the whole neutron
scattering sample. Nevertheless, they give an insight into its
macroscopic properties. These measurements were performed
at the Institut Néel in purpose built experiments equipped
with 3He-4He dilution refrigerators. The magnetization was
measured in a SQUID magnetometer as a function of field and
temperature down to 90 mK, together with ac susceptibility
measurements [27]. The specific heat was measured by the
relaxation method down to 70 mK in several applied fields
up to 100 mT. The high sensitivity and fast response of the
thermometers used in this experimental setup as well as their
high stability allow to measure both short- and long-time heat
relaxation [28]. The magnetic field was applied in an arbitrary
direction, parallel to the plane of the disk.
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FIG. 1. (Color online) Specific heat C (red squares) and magne-
tization M/H (blue dots) vs temperature T . The specific heat is the
long time specific heat (see text) and the magnetization was measured
in a field of 3.83 mT, with a step of 10 mK every 1350 s.

The magnetization exhibits a Curie-Weiss temperature of
0.5 K, and reaches 1.65 μB /Yb at 90 mK and 3 T, which
is consistent with previous measurements [5,15,18,29,30].
The specific heat presents a broad maximum around 2.5 K
characteristic of short-range order correlations in agreement
with previous results [12]. When decreasing the temperature,
these measurements show a transition at TC = 175 mK, in both
specific heat and magnetization, which is evidenced by a peak
in the specific heat, an upturn in the magnetization (see Fig. 1),
and the onset of the out-of-phase ac susceptibility (not shown).
As previously observed [15], the magnetization shows a small
hysteresis between the cooling and warming curves below the
transition, indicative of a first-order transition. Nevertheless,
although the peak in specific heat is rather narrow, the increase
of the magnetization when decreasing the temperature below
the transition is smooth, and fails to saturate, even at 90 mK.
This result suggests that the magnetic transition expands on
a broad temperature range and that no net spontaneous ferro-
magnetic moment is stabilized in this sample down to 90 mK.

When a small field is applied (μ0H � 100 mT), the transi-
tion persists and is shifted to higher temperatures, confirming
the ferromagnetic nature of the transition (see Figure 2 for
specific heat). It is worth noting that below 1 K, the heat
relaxation is not exponential, resulting in two contributions
for the specific heat: the short-time one (characteristic time
of about 9 s) and the long-time one (characteristic time
of about 600 s). These contributions show qualitatively the
same temperature dependence in zero magnetic field, which
evidences that dynamics with different time scales exist in
the system above and below the transition. When increasing
the magnetic field, the peak in the short-time response is
suppressed more drastically than the long one (see Fig. 2).

B. Neutron scattering

The neutron scattering measurements were performed on
a large Yb2Ti2O7 single crystal grown with the floating zone
technique, as detailed above. The crystal was aligned in the
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FIG. 2. (Color online) Specific heat C vs temperature T for
several magnetic fields. Open symbols correspond to the long-time
specific heat (t ≈ 600 s) and full symbols to the short-time specific
heat (t ≈ 9 s).

(hh0) − (00�) scattering plane and cooled down to 50 mK in a
dilution fridge. Note that due to the large size of the crystal, its
poor thermal conductivity at very low temperature, and the heat
provided by the neutron beam, the true temperature of the crys-
tal might be slightly larger. Special care of the thermalization
of the sample was taken during the experiments: a waiting time
of a few hours was used between the measurements to ensure a
stable temperature inside the sample. No increase of the Bragg
peaks intensities was observed down to the lowest temperature.
Nevertheless, we know from magnetization measurements that
the spontaneous ferromagnetic moment is almost zero down
to 90 mK in our sample, so that the expected increase is
very small and would need a specific investigation out of
the scope of the present study. Polarized and unpolarized
experiments were respectively conducted on the 4F1 and 4F2
triple-axis spectrometers (LLB, France), with final neutron

wave vectors kf = 1.3 and 1.15 Å
−1

, respectively, yielding
an energy resolution of �r = 150 and 85 μeV, respectively.
A cooled beryllium filter was placed in the incident beam to
remove high-order contaminations. The polarization analysis
allows measuring the spin-spin correlation functions Sy(Q,ω)
and Sz(Q,ω) where the subscripts y and z indicate that the spin
components are perpendicular to Q within the scattering plane
and along the vertical axis, respectively. Both are measured
in the spin-flip channel, with the polarization (direction of the
incident neutron’s spin) P applied along z and y, respectively.
The flipping ratio was about FR = 42 at high temperature but
slightly decreased below T = 1 K, down to FR = 33 at T =
0.65 K. Because of technical difficulties during the polarized
neutron experiment, the lowest reachable temperature was
T � 650 mK. Note that the magnetic intensity measured in
unpolarized experiments is the usual spin-spin correlation
function S(Q,ω) = Sy(Q,ω) + Sz(Q,ω).

1. Static properties

Elastic data collected at T = 0.05 K are shown in Fig. 3,
revealing the same qualitative features as the energy integrated

FIG. 3. (Color online) (a) Elastic intensity map in the (hh�)
scattering plane at T = 0.05 K. White lines correspond to the
Brillouin zones boundaries. Black dashed lines denote the directions
probed in the inelastic neutron scattering experiments (see Sec. II B 2).
(b) Elastic intensity (full blue dots) along the (hh2 − h) direction
obtained by integrating (a) over δQ = 0.4 rlu in the perpendicular
direction. The lines with open symbols show the calculated elastic
scattering functions obtained from classical spin dynamics simula-
tions for different parameter sets J2 = −0.26, −0.29, −0.31 meV
(open gray), −0.326 meV (open blue circles), and T = 0.4 K (see
Sec. III E). (c) Spin-flip elastic intensities (full symbols) along the
(hh2 − h) direction at T = 0.9 K with polarization applied along y

(blue empty dots) and z (red squares). The blue and red lines with
open symbols correspond to calculated elastic scattering functions
Sy(Q,ω = 0) and Sz(Q,ω = 0) obtained from classical spin dynamics
simulations for J2 = −0.32 meV (see Sec. III E).

diffuse scattering described at length in prior works above
the critical temperature [9,11,16,20]. It is characterized by
a line of scattering along (hhh) accompanied by another
branch from Q = (1,1,1) to (2,2,0) ending with a large spot
at Q = (2,2,0). The presence of spectral weight around both
(1,1,1) and (2,2,0) is better evidenced in Fig. 3(b), where
the elastic intensity is plotted versus wave vector along the
(hh2 − h) direction. While these rods of diffuse scattering are
undoubtedly related to the presence of strongly anisotropic
exchange interactions [9], their origin is still unclear. First
ascribed to a dimensionality reduction of the static correlations
[11], the ground state has more recently been shown to be
fully 3D in the region of parameter space where Yb2Ti2O7 is
supposed to lie [26].

The spectral weight along the rods is particularly intense
around the (2,2,2) Brillouin zone center, as expected in
the presence of ferromagnetic correlations: in the limit of
a long-range collinear ferromagnetic order, the strongest
intensity is obtained for (2n,2n,2n) Bragg peaks, while the
(2n + 1,2n + 1,2n + 1) ones are around three times weaker
and the (2n,2n,0) peaks are extinct. A finite spectral weight
at Q = (2,2,0) is characteristic of antiferromagnetic spin
arrangements, which points out the coexistence of both ferro-
and antiferromagnetic correlations in the system.

These results reveal that the short-range correlations still
remain at very low temperature and coexist with the long-range
ferromagnetic order. This might be related to the fact that, in
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FIG. 4. (Color online) Excitation spectra along high symmetry directions (hh2), (00�), and (hh2 − h) at T = 0.05 K. The blue area stands
for the background. Dashed red and blue plain lines are the result of the fit considering a dual response consisting in quasielastic and inelastic
contributions. Each contribution is represented in red while the total is represented in blue.

our sample, the magnetization increases smoothly below the
transition temperature.

Finally, Fig. 3(c) displays data in the same direction
measured using polarized neutrons at higher temperature
(T = 0.9 K). It points out that the signal around Q = (2,2,0)
is polarized along z, while the one around (1,1,1) has similar
intensity in both the y and z channels. The present data are
thus consistent with the one obtained in Ref. [16].

2. Dynamic properties

Series of inelastic data were then collected along several
high symmetry directions (hh2), (00�), (11�), (hh2 − h), and
(hh3 − h) at the base temperature of T = 0.05 K. For all
measured wave vectors Q [see Fig. 3(a), black dots], the spectra
show above the elastic line a very broad signal extending up
to about 1–1.5 meV (see Fig. 4). Despite the rather good
energy resolution �r = 85 μeV, no well-defined collective

excitations could be observed. This is in sharp contrast with the
resolution-limited spin waves observed in the field polarized
phase of Yb2Ti2O7 [8,10].

Two qualitatively different behaviors can be observed
depending on the wave-vector position relative to the rods of
scattering. The spectra taken at Q vectors located on these rods
are dominated by quasielastic fluctuations, whereas away from
them, the signal appears inelastic. This feature is evidenced
on the raw data presented in Fig. 4, displaying directions
(hh2), (hh2 − h), and (00�) on the left, middle, and right
panels, respectively. On the left panel, while “flat-toped” at
Q = (0,0,2), the signal becomes quasielastic on approaching
the rod position at (2,2,2). The same feature is observed
for the scans taken along (hh2 − h): the line shape of the
spectra becomes quasielasticlike while going through the
rod position at Q = (1,1,1) and at (2,2,0). Finally, along
(0,0,�), i.e., away from the rods, an inelastic line shape is
observed.

064425-4



SPIN DYNAMICS IN THE PRESENCE OF COMPETING . . . PHYSICAL REVIEW B 92, 064425 (2015)

A phenomenological fit of the data can be performed
considering a dual response consisting in quasielastic and
inelastic contributions multiplied by the detailed balance factor
(see Fig. 4, plain and dashed lines). Since the experimental
resolution is one order of magnitude smaller than the observed
excitations, the fitting function was not convolved with the
experimental resolution function. The fitting procedure is as
follows. First, the width �QE � 0.3 meV of the quasielastic
response is evaluated using a Lorentzian profile at different
wave vectors along or close to the rods of scattering. �QE

is then considered as wave-vector independent. In addition, a
broad Gaussian peak is used to model the inelastic response.
The fit is able to converge only if the width of this inelastic peak
is fixed to a given value. The free parameters of the fit are thus
the intensity of both quasielastic and inelastic contributions as
well as the peak position. This modeling shows qualitatively
the different behaviors close to and away from the rods of
scattering, respectively dominated by quasielastic and inelastic
response. Note that, in such an analysis, the inelastic contribu-
tion is peaked at about 0.5 meV and seems not to disperse.

These inelastic data, and especially the flat energy depen-
dence, are for the most part consistent with earlier inelastic re-
sults obtained below �ω = 0.7 meV around two positions only,
Q ≈ (1.75,1.75,0.5) and (1.5,1.5,1.5) (see Fig. 4 in Ref. [11]).
The present results demonstrate that the on- and off-rods be-
haviors can be generalized throughout the Brillouin zone. Fur-
thermore, they show that the dynamical response extends up
to 1–1.5 meV (see Appendix A for a further detailed analysis).

3. Temperature dependence

Interestingly, the spectra recorded at higher temperature
do not show any change compared to the low-temperature
data, indicating that the spin dynamics is only little affected
by the increase of temperature up to 850 mK. This remains
valid whether Q lies close to the rods of diffuse scattering
or not [see Figs. 5(a)–5(e), respectively]. Although the lack
of temperature dependence of the “off-rod” scattering is
consistent with Ref. [11], the reported “on-rod” depletion at
energies less than 0.2 meV is not observed in our data. The
spectra remain quasielastic. As a result we cannot conclude on
a slowing down of the spin fluctuations on entering the ordered
phase. This difference may be explained by the low transition
temperature observed in our sample, as denoted in Sec. II A.

Inelastic polarized neutron measurements have also been
performed at higher temperature (T = 2 and 4.5 K) at
Q = (1,1,2). The data, shown in Fig. 6, first confirm the
magnetic nature of the inelastic signal. At T = 4.5 K, the full
polarization analysis points out that the S(Q,ω)y contribution
is a little bit more intense than the S(Q,ω)z. Surprisingly,
it also appears that S(Q,ω)z (red curve) vanishes above
�ωmax � 0.75 meV, while S(Q,ω)y (blue curve) extends up to
�1.1 meV. A depletion of the spectrum is also observed at low
energies, making the generalized susceptibility χ ′′(Q,ω) =
S(Q,ω)/(1 + n(ω)) quite narrow, with a maximum around
�ω = 0.6 meV [see Fig. 6(c)]. Interestingly, this approxi-
mately well defined excitation observed at T = 4.5 K spreads
out and becomes less defined with decreasing temperature [cf.
Fig. 6(b)]. At T = 0.05 and 2 K, χ ′′(Q,ω) is superimposed,

FIG. 5. (Color online) Excitations spectra at several wave vectors
close to [(a), (b), and (d)] or away from [(c) and (e)] the rods of diffuse
scattering, and temperature from T = 50 to 850 mK.

showing that the spectrum does not evolve anymore below 2 K
[see Fig. 6(c)].

4. A possible continuum of excitations

In summary, this study of Yb2Ti2O7 points out very uncon-
ventional spin dynamics. Starting from the high temperature,
the spin excitations spectrum broadens below T0 � 2–4 K.

FIG. 6. (Color online) (a) Spin polarized neutron intensity
S(Q,ω) taken at Q = (1,1,2) and T = 4.5 K. Red squares, blue
circles, and green triangles, respectively, denote the spin-flip con-
tribution in the z, y, and x polarization channels. The inset shows the
calculated spectra, see Sec. III E at T = 0.9 K. (b) Spin flip intensity
with polarization along x at 4.5 (red squares) and 2 K (blue circles).
(c) shows the imaginary part of the magnetic susceptibility χ ′′(Q,ω)
at Q = (1,1,2) for 4.5 (red squares), 2 (blue circles), and 0.05 K
(green triangles).
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This is largely unexpected, since, in general, the width of
inelastic spectra, related to the rate of the spin fluctuations,
tends to increase with increasing temperature. The crossover
temperature T0 between the two regimes coincides with the
specific heat bump observed around T = 2.5 K [12], below
which short-range spin-ice-like correlations establish [21]
and the rods of diffuse scattering rise [9,11,20]. At low
temperature, no well defined excitations are observed but
rather a continuum of excitations. Finally, entering the ordered
phase does not affect the spectra.

III. NUMERICAL SUPPORT

These experimental results are now confronted to numerical
calculations. First, a model of exchange interactions at play in
Yb2Ti2O7 is proposed. Based on RPA numerical simulations
[31,32], we show that a large range of parameters accounts
for the available neutron data obtained in the conventional
polarized phase induced by applying magnetic fields of 2 and
5 T. Reproducing the strong quasielastic scattering around
Q = (2,2,0) with Monte Carlo spin dynamics simulations
[33–37] allows, however, to constrain further the set of
parameters and determine an optimal set of coupling constants.
In zero field, these simulations show that Yb2Ti2O7 is a canted
ferromagnet, which yet lies very close to an antiferromagnetic
phase. Finally, RPA and classical spin dynamics calculations
are presented. Although the latter reproduce some of the
experimental features, they both fail to explain the very
large energy range of the experimental data. This points
out the role of quantum fluctuations that may be amplified
by the proximity to a competing antiferromagnetic phase, and
which are not captured using a classical approach.

A. Models and Hamiltonians

The starting point is the widely accepted Hamiltonian for
pyrochlore systems [2]:

H = HCEF + Hexc + HZ. (1)

Here, HZ = gJ

∑
i H · J i , is the Zeeman term, with H the

applied magnetic field and J i the magnetic moment at site i.
HCEF = ∑

i

∑6
k,q=1 B

q

k O
q

k,i is the crystal electric field (CEF)
Hamiltonian, with Oq

k the Stevens operators and B
q

k scalar
parameters [38]. Several estimations of the B

q

k parameters
may be found in the literature [4,5,39,40]. In the present
paper, we use the CEF parameters (B0

2 ,B0
4 ,B3

4 ,B0
6 ,B3

6 ,B6
6 ) =

(536,7752,−2942,830,671,739) K obtained in Ref. [40].
These parameters lead to a doublet CEF ground state, separated
from the first excited level by an energy gap �E � 700 K.
The magnetocrystalline anisotropy of the ground-state doublet
is XXZ-like, with an easy plane perpendicular to the local
〈111〉 directions. The gz/g⊥ � 0.504 ratio denotes a weak
in-plane anisotropy with Landé factors gz = 2.06 and g⊥ =
4.09. Hexc = ∑

ij J iK̃ij J j is a bilinear coupling Hamilto-
nian, where the interaction tensor K̃ij couples next-neighbor
magnetic moments J at sites i and j . Note that Hexc gathers
all possible physical interactions (e.g., exchange and dipolar
coupling restricted to nearest neighbors), whether they are
isotropic or not. By symmetry arguments, the ninee coupling
constants of the 3 × 3 tensor K̃ij are reduced to only four [41].

Here, we assume an exchange tensor which is diagonal in the
(a,b,c) frame linked with a R-R bond [6]:

JiK̃Jj =
∑

μ,ν=x,y,z

J
μ

i

(
Kaa

μ

ij a
ν
ij + Kbb

μ

ij b
ν
ij + Kcc

μ

ij c
ν
ij

)
J ν

j

−K4

√
2�bij .( �Ji × �Jj ).

Since the energy gap between the CEF ground state and
the first excited levels is order of magnitudes larger than the
exchange interactions and the Zeeman term, it is possible
to define effective spin-1/2 operators, denoted by Si , by
projecting the full moment Ji onto the CEF ground-state
doublet. As a result, an effective Hamiltonian can be defined
in terms of new anisotropic couplings between the Si spin
components:

Heff =
∑

ij

Si J̃ij Sj , (2)

A popular convention used in Refs. [8,24,25,41] consists in
using (J±±,J±,Jz±,Jzz) defined as

Heff =
∑

i,j

JzzSz
i S

z
j − J±(S+

i S−
j + S−

i S+
j )

+ J±±(γijS+
i S+

j + γ ∗
ijS−

i S−
j )

+ Jz±
[
Sz

i (ζijS+
j + ζ ∗

ijS−
j ) + i ↔ j

]
,

where γij ,ζij are c numbers [8,24,25]. Note that “sanserif”
notations refer to local bases. (J±±,J±,Jz±,Jzz) are related to
Ka,b,c,4 by the following relations [31]:

Jzz = λ2
z

Ka − 2Kc − 4K4

3
,

J± = −λ2
⊥

2Ka − 3Kb − Kc + 4K4

12
,

Jz± = λ⊥λz

Ka + Kc − K4

3
√

2
,

J±± = λ2
⊥

2Ka + 3Kb − Kc + 4K4

12
,

with λ⊥,z = g⊥,z

gJ
.

In the following, we will follow the alternative convention
of Refs. [8,26], using the set of effective parameters J1,2,3,4

(correspondence between the different conventions are given
in Appendix B):

J1 = 1
3 (2J±± + 4J± + 2

√
2Jz± − Jzz),

J2 = 1
3 (4J±± − 4J± + 4

√
2Jz± + Jzz),

J3 = 1
3 (−4J±± − 2J± + 2

√
2Jz± − Jzz),

J4 = 1
3 (2J±± − 2J± − 2

√
2Jz± − Jzz).

B. Overview of the phase diagram

The zero-temperature phas diagram for the nearest-
neighbor pseudospin-1/2 Hamiltonian given by Eq. (2) has
been studied in Refs. [25,26]. Owing to the XXZ nature of
the Yb3+ magnetic anisotropy, and depending on the sign and
amplitude of the exchange parameters, four different magnetic
phases are obtained in the phase diagram: a canted (or splayed)
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FIG. 7. (Color online) Sketches of the spin configurations on
one tetrahedron in the (a) ψ2, (b) ψ3, and (c) FM phases.
(d) Phase diagram calculated as a function of temperature and
of exchange coupling varying along the optimal one-dimensional
parameter space determined from the spin-wave fitting procedure.
The black line roughly indicates the range of parameters for which
the transition toward the ferromagnetic order is first order.

ferromagnetic phase (labeled FM), the antiferromagnetic
Palmer-Chalker phase, which results from the so-called �7

representation [42], and the basis states ψ2 and ψ3 of the �5

representation [43], whose combination forms the classically
continuously degenerated manifold. Figure 7 shows a sketch
of the ψ2, ψ3 and FM spin configurations on one tetrahedron.

As quoted previously, the parameters of the Hamiltonian
determined for Yb2Ti2O7 in prior studies place it in the
ferromagnetic phase. The aim of the next paragraphs is to test
the uniqueness of this set of parameters, and further explore
the consequences of the location of Yb2Ti2O7 in the phase
diagram.

C. Exchange couplings in Yb2Ti2O7

As already reported in Refs. [8,10], a polarized state sets in
when a magnetic field H > Hc

T =0.05K = 0.5 T is applied along
[11̄0]. The spin dynamics consists in spin-wave excitations
propagating in different directions of reciprocal space, as
measured by inelastic neutron scattering for H = 2 and 5 T
[8]. The data collected in these studies along directions (hhh),
(11�), (22�), (hh0), and (hh1) are shown in Fig. 8(a). Four
modes can be distinguished in the experimental spectra, one
of them being almost flat throughout the Brillouin zone into
the (hh0)-(00�) plane.

To determine the exchange couplings, we solve the general
Hamiltonian (1) in the RPA approximation [31,32], and

FIG. 8. (Color online) (a) Experimental spectra obtained in reference [8] at H = 2 T and T = 0.05 mK. [(b)–(d)] Examples of
simulations, performed in the same temperature and field conditions, giving a good agreement with the data: (b) (J1,J2,J3,J4) =
(−0.09, −0.19, −0.25,0.005), (c) (J1,J2,J3,J4) = (0.04, −0.29, −0.26,0.024), and (d) (J1,J2,J3,J4) = (−0.02, −0.34, −0.29,0.036) meV.
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perform exhaustive calculations of the spin-spin correlation
function S( Q,ω). The fitting procedure is based on the method
already used in Ref. [32]. It combines a qualitative comparison
of the neutron intensities and the calculation of a χ2 ∝∑

i(ωi,calc − ωi,exp)2/ωi,exp, which quantitatively describes the
distance between the calculated (ωi,calc) and measured (ωi,exp)
dispersions of the different branches along the (hhh), (11�),
(22�), (hh0), and (hh1) directions. The calculated mean-field
magnetic moment is checked to reproduce the experimental
one [15] at T = 0.05 K for H = 2 and 5 T. Finally, Ka,b,c,4

are transformed into J1,2,3,4.

1. Reduction of the parameter space by fitting the field-induced
conventional spin-wave excitations

In contrast with prior reports, we find that this procedure
does not lead to a unique solution. Representative spectra
are shown in Figs. 8(b)–8(d) for different relevant sets. They
all reproduce most of the experimental features, yet slight
differences, mainly in the spectral weight distribution remain.
For instance, while the spectral weight of the two higher
branches in the (11�) direction is minimum at Q = (1,1,0),
the inverse is observed in the simulations. More generally,
the spectral weight distribution of the modes is never fully
reproduced, although the agreement seems slightly better in
the intermediate parameter range [e.g., Fig. 8(c)].

The sets of parameters giving such good agreement are
reported in Fig. 9(b). We observe that there is a linear relation
between the Ji’s, so that the four-parameters space is now
reduced to a one-dimensional space. Colored areas delimit the
uncertainties. The χ2 as defined above is minimum around
J2 = −0.27 meV but remains small all along this 1D line
[see Fig. 9(b)]. It strongly increases when moving away
from the colored areas. Note also that, since both magnetic
fields stabilize the same ferromagnetic ground state, fitting
the H = 2 and 5 T data provides similar constraints in
the parameter space, resulting in the same linear relation
between coupling constants. For this reason, the parameters
obtained from the H = 2 and 5 T spectra are not distinguished
and represented together in Fig. 9. It must be emphasized
that the set of parameters reported in Ref. [8] is consistent
with our determination. It should be stressed also that a
number of parameters do not lead, in zero field, to the
expected ferromagnetic phase (labeled “FM” in Fig. 9) but
to the ψ3 antiferromagnetic ground state. The phase boundary
separating the ψ3 and the FM phases at T = 0, while exploring
the one-dimensional parameter space described above, is
depicted in Fig. 9 by a vertical dashed line and corresponds to
Ji

c = (−0.023,−0.326,−0.282,0.026) meV.

2. Rods of diffuse scattering as a further constraint on the
coupling parameters

To further constrain the dimension of parameter space, other
experimental results have to be taken into account. To this end,
S(Q,ω = 0) was calculated using a combination of Monte
Carlo and spin dynamics simulations at finite temperature,
aiming at reproducing the rods of diffuse scattering. This
numerical method is briefly described in Appendix C and more
details may be found in Refs. [33,34]. Calculations are based
on the effective Hamiltonian (2) and were performed in the

FIG. 9. (Color online) Exchange interaction sets determined
based on the field-induced spin waves at H = 2 and 5 T. The green,
red, and blue shaded areas in (b) correspond to the range of parameters
giving a good agreement with the field induced spin-wave spectra.
Exchange interactions reported in Refs. [8,23] are indicated. Those
reported in Refs [9,16] are out of the parameter range of the figure,
and are instead indicated in Fig. 15 of Appendix B. The fit goodness
defined by χ 2 is given along the 1D parameter line in (a) (see text).

short-range correlated regime at T = 0.4 K, just above the
critical temperature, for different coupling sets within the one-
dimensional parameter space determined above. Those numer-
ical simulations (see Fig. 10) show that the rods of scattering
around (2,2,2) and (2,2,0) are simultaneously observed when
approaching the FM/AFM phase boundary (in agreement with
Ref. [26]). This confirms the observation made in Sec. II B 1 of
coexisting FM and AFM short-range correlations. The cuts in
direction (hh2 − h) shown in Figs. 3(b) and 3(c) further show
that a good qualitative agreement between the experimental
data (filled circles) and the spin dynamics simulations (empty
circles) may only be achieved while lying very close to the
FM/AFM phase boundary.

Combining the different results, the best agreement is
obtained for Ji

0 = (−0.03(2),−0.32(1),−0.28(3),0.02(2))
meV [grey area in Fig. 9(b)]. The caclulated spin-wave
spectra and diffuse scattering using these parameters are
shown in Fig. 11 and compared with measured data from
Refs. [8,16]. The associated Curie-Weiss temperature is θCW =
0.53(1) K, in excellent agreement with the experimental
value θCW � 0.5 K determined in Sec. II A (see also Ref.
therein). It is worth noting that this set of values locates
Yb2Ti2O7 closer to the AFM/FM phase boundary than the
one obtained in Refs. [8,23]. It is also quite different from that
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FIG. 10. (Color online) Elastic scattering function S( Q,ω = 0)
in the (h,h,l) plane obtained from spin dynamics simulations for J2 =
−0.26, −0.29, −0.31, −0.319, −0.326, −0.345 meV at T = 0.4 K.

obtained by Thompson et al. [9] as well as that reported by
Chang et al. [16]. Actually, the latter studies yield spin-wave
spectra in strong disagreement with experiment, while our set

reconciles both the diffuse scattering and inelastic neutron
data.

D. Zero-field ground state. Order of the transition

We now examine in more detail the consequences of the
above results on the zero-field ground state. To this end,
the phase diagram within the 1D parameter space discussed
in the previous section is calculated based on Monte Carlo
simulations, for different lattice sizes up to L = 16, Nsp =
65536 (see Fig. 7). Since the critical temperatures do not
seem to evolve much with the lattice size for L > 12 (not
shown), the phase boundaries have been roughly determined
by locating the maximum of the specific heat for L = 12 [44].
For the optimal values J 0

i close to the boundary located at
J c

i , the specific heat and magnetic susceptibility show, upon
cooling, a succession of several transitions. Two second-order
transitions first occur at about T = 0.275(3) and 0.174(3) K
towards the ψ2 and ψ3 AFM states, respectively. This is
followed by an abrupt transition at Tc = 0.15(1) K towards
a FM state [sketches of the magnetic configuration are shown
in Figs. 7(a)–7(c)]. The first-order character of this second
transition is demonstrated by a finite latent energy at the
critical temperature. The latent energy decreases while getting
deeper into the FM state, such that the first-order transition
smoothly transforms into a second-order one. This behavior
while approaching the phase boundary is consistent with the
study by Yan et al. [26].

Both the reentrant behavior of the FM phase at low
temperatures and the evolution of the order of the transition on
approaching the phase boundary might result from thermal

FIG. 11. (Color online) Comparison between the measured [8] (a) and the calculated (b) spin-wave spectra at 5 and 2 T along (h,h,0)
as well as the measured [16] (c) and the calculated (d) energy integrated diffuse scattering in the (hh�) plane. The diffraction measurements
are carried out with the spin of the neutrons polarized along the z direction. In (c) and (d), SF and NSF are the spin-flip and non-spin-flip
contributions, respectively, while the “total” is the sum of both contributions. All calculations are performed for the optimal set of parameters
Ji

0 = (−0.03(2), −0.32(1), −0.28(3),0.02(2)) meV.
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FIG. 12. (Color online) S(Q,ω) along high symmetry directions: (a) neutron data (this work) taken at T = 0.05 K; (b) calculated spectra
obtained from classical spin dynamics simulations in the short-range correlated regime (T = 0.4 K); and (c) RPA spectra obtained in the FM
phase.

order by disorder: although the ferromagnetic state has a
lower internal energy for J2 > Jc

2 , the ψ2/ψ3 phases may be
favored in a small temperature range because of their strong
antiferromagnetic fluctuations; the long-range ferromagnetic
order is then stabilized at lower temperatures where thermal
fluctuations are reduced.

E. Spin dynamics simulations in zero field

We finally turn to the calculations of the classical spin
dynamics aiming at a final discussion of the experimental
results.

1. RPA approximation

S(Q,ω) was first calculated in the RPA approximation.
Spectra have been averaged over equi-populated domains.
They are presented in Fig. 12(c) for different high-symmetry
directions in reciprocal space. For comparison, experimental
data in the same directions are shown in panel (a). Calculations
have also been performed for different exchange interactions
around the FM/AFM phase boundary, along the 1D-parameter
space determined in the previous section. While the excitations
are “gapless” in the AFM phase (we did not consider order
by disorder or crystal field effects at this point, which could,
however, be at the origin of a small spin gap), an anisotropy

gap opens in the FM region because of a sizable tilt of the spins
from their easy plane [see Fig. 12(c)]. Obviously, at this level of
approximation, the model fails to reproduce the experimental
data. Actually, the calculated spectra consist in conventional
spin-wave excitations, which cannot capture the flat line shape
of the experimental spectra. A more striking discrepancy
especially affects the energy scale, which is about twice larger
experimentally than in the simulations at most wave vectors.
In the simulations, the highest spin-wave branch is observed
at �ω = 0.6 meV, a value which does not evolve much by
varying the exchange parameters. Experimentally, the spectral
weight reaches energies �ω � 1 − 1.5 meV depending on the
wave vector (see Fig. 4). Note that such a difference cannot
be explained by the experimental resolution, which is around
�E � 0.095 meV for kf = 1.15 Å and an energy transfer
�ω = 1 meV.

2. Finite-temperature spin dynamics simulations in the
short-range correlated regime

To go a step further, the classical spin dynamics was
solved numerically by taking into account nonlinear effects
associated with thermal fluctuations (see Appendix C and
Refs. [33,34] for technical details about the method). Such
spin dynamics simulations of S(Q,ω) have been performed
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FIG. 13. (Color online) Calculated S(Q,ω) obtained from clas-
sical spin dynamics simulations at different temperatures T =
0.3,0.4,0.5,0.6, and 0.9 K, and for relevant wave vectors Q = (1,1,1),
(2,2,0), (1/2,1/2,3/2), and (0,0,2). Insets show the neutron data at
the same wave vectors.

at different temperatures from T = 0.1 to 0.9 K, on the
basis of the effective Hamiltonian (2) and optimal exchange
parameters J 0

i proposed in the previous section. Intensity
maps of S(Q,ω) are shown Fig. 12(b) for T = 0.4 K
in high symmetry directions. The simulations succeed in
reproducing the overall shape of the excitation spectrum
observed experimentally: (i) in direction (hh2), the excitation
spectrum goes from quasielastic approaching Q = (2,2,2)
to flat-toped excitations at (0,0,2); (ii) the excitations are
mainly flat or weakly inelastic along direction (00�); (iii) in
direction (hh2 − h), a strong quasielastic signal overwhelms
the spectra between Q = (1,1,1) and (2,2,0). More generally,
the computed S(Q,ω) displays a quasielastic (respectively,
flat-toped/weakly inelastic) line shape close to (resp. away
from) the rods of scattering, as observed experimentally. This
is illustrated in Fig. 13, displaying the calculated scattering
function for different temperatures T = 0.3,0.4,0.5,0.6, and
0.9 K, and wave vectors Q = (1,1,1), (2,2,0), (1/2,1/2,3/2),
and (0,0,2). While the two first positions are dominated by a
strong quasielastic contribution, the latter are mostly inelastic.
The experimental data measured at the same wave vectors
are shown in the insets. Moreover, the calculated spectra
do not evolve much with temperature below T = 0.6 K.
Experimentally, this behavior is even more impressive since
the spectra do not depend on temperature between T = 0.05
and 2 K. However, despite this success, the spin dynamics
simulations fail to reproduce the large energy range, which
does not exceed �ω � 0.6 meV in the calculations, as also
observed in RPA simulations.

IV. DISCUSSION

In summary, our results show that for the optimal values of
coupling constants determined to reproduce the field induced
spin-wave spectra, classical calculations capture some of the
magnetic properties of Yb2Ti2O7. It reproduces different
experimental features, such as the nontrivial structure of
the diffuse scattering which points out coexisting FM and
AFM correlations above Tc, as well as the transition towards
a long-range ordered canted ferromagnetic state at Tc. At
lower temperature, thermal AFM fluctuations have then been
shown to affect the stability of the FM order: approaching
the boundary from the FM side, the order of the transition
smoothly goes from second to first order; sufficiently close
to the boundary, a long-ranged antiferromagnetic order may
even be favored in a significant temperature range above
Tc. This succession of phase transitions observed close to
the phase boundary could clarify the peculiar shape of the
magnetization curve as a function of temperature on a single
crystal recently reported (see Fig. 2(a) of Ref. [15]): with
decreasing temperature, it shows first a reversible bump around
T = 0.18 K, followed by the irreversible step at Tc = 0.16 K
associated with the long-range ferromagnetic order.

However, the classical approach fails to explain the strongly
reduced ordered moment observed experimentally below Tc

as well as the unconventional nature of the spin dynamics,
not only at very low temperatures, but up to T0 � 2 K. Both
features are obviously connected, since the part of the moment
which is not condensed in the static component remains, by
essence, fluctuating.

To explain this unconventional spin dynamics, the coupling
to other degrees of freedom cannot be ruled out. This
phenomena has been shown to be of utmost importance in
Tb2Ti2O7 for instance [45,46], but there is, to our knowledge,
no experimental evidence in favor of such a coupling in
Yb2Ti2O7. Moreover, the unconventional dynamics appears
around 2 K, which coincides with the apparition of short-range
correlations, which is a clue for a purely magnetic origin.

It is thus tempting to invoke quantum effects as the missing
ingredient in the proposed model. Indeed, the proximity with
the AFM magnetic states is likely a source of enhanced
quantum fluctuations. To account for the unconventional spin
dynamics, two scenarios come to mind: (i) the fractionalization
of magnons into deconfined new spin-1/2 particles and (ii) the
scattering by longitudinally polarized two-magnon excitations.

The former case is very well known in one-dimensional
systems [47]. Here, the so-called spinons, which can be
seen as domain walls, propagate freely and separate two
“Néel” configurations [48,49]. In two and three dimensions,
the situation is more complex as the interactions create an
attractive potential between spinons that binds them to form
conventional magnons [50]. The quasidegeneracy of the FM
and AFM phases in the relevant part of the phase diagram phase
for Yb2Ti2O7 could cancel these interactions and release the
spinons. In this view, the continuum would be characterized
by the absence of edge singularity at its lower threshold,
with the exception of the “on rod” Q positions, as revealed
by the quasielasticlike shape. Actually, classical examples
of continuum demonstrate that both situations are possible:
the classical De Cloizaux-Person spectrum in the case of the
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spin-1/2 Heisenberg chain, shows an edge singularity at the
lower threshold [47,51], the spectra decreasing roughly as 1/ω

(the exact exponent depends on the anisotropy [52]). However,
for “XXZ” chains, close to the Ising limit of a strong coupling
along the z axis, have a spectrum determined by gapped
solitons, with no singularity at the edges [53]. Theoretical
studies have shown that the essence of the singularity relies
on the fact that many low-lying modes add up [54]. In this
picture, recent theoretical work argues that the spontaneous
magnetization along 〈001〉 below the critical temperature
should confines the spinons by creating a string tension
between them [55]. This should result in the discretization of
the two-spinon continuum into multiple spin-wave branches,
a feature which is, however, not observed in the data, which
especially show no significant evolution below Tc.

Alternatively, since a strongly reduced ordered momentum
is the sign for significant nonlinear longitudinal excitations, the
scattering by a multimagnon continuum should be considered.
In this case, the ground state is long-range ordered, with propa-
gating magnons as the elementary (transverse) quasiparticles.
In the longitudinal channel, however, fluctuations along the
length of the ordered moment may develop [56]. Experimental
realizations are, however, quite scarce and usually give rise to
a kind of tail above the spin-wave dispersion, which is still
very well defined. For this reason, we believe that this second
scenario is less relevant.

It should be stressed finally that the measurements per-
formed at T = 4.5 K (see Fig. 6) show that the spectra tend to
become more conventional when increasing the temperature.
Further inelastic neutron scattering measurements should be
performed as a function of temperature, to look for an eventual
transition or crossover between quantum and classical regimes,
with the spin dynamics respectively governed by quantum and
thermal fluctuations.

V. CONCLUSION

In this work, we show that the short-range correlations
that develop below 2 K in Yb2Ti2O7 come along with
nonconventional excitations: no well defined spin waves are
observed in both the short-range correlated and long-range
ordered regimes; rather, excitation spectra are characterized
by a very broad and almost flat dynamical response which
extends up to 1–1.5 meV and does not evolve with temperature
below 2 K, sometimes coexisting with a quasielastic response
depending on the wave vector.

Based on a combination of Monte Carlo, classical spin
dynamics and RPA calculations, we have determined a set of
exchange couplings that allows to reproduce both the diffuse
scattering in the short-range correlated regime and the spin-
wave spectra observed in the field polarized phase. This careful
determination of the exchange tensors places Yb2Ti2O7 in the
close vicinity to a FM/AFM phase boundary. These findings
point out the possible role of quantum fluctuations arising from
these competing phases, rather than the proximity to the U(1)
quantum spin ice, to explain the unconventional properties of
this material. They are consistent with the recent theoretical
study presented in Ref. [57].

We show further that conventional RPA fails to reproduce
the experimental excitation spectra at low temperature. Spin
dynamics simulations performed in the short-range correlated
regime reproduce, however, some features of the excitation
spectra but lead to an energy bandwidth which is twice
smaller than the experimental observations. We speculate that
quantum fluctuations between FM and AFM phases govern the
spin dynamics in Yb2Ti2O7 and especially that the observed
spectra rather correspond to a continuum of deconfined spinons
as expected in quantum spin liquids, rather than simple
paramagnons.
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APPENDIX A: NEUTRON DATA ANALYSIS

To further analyze the continuum of excitations observed
in neutron experiments, the data can be modeled with the
following function:

I (ω) = C + Gr (ω) + [1 + n(ω)]
∑

i=0,...,6

Ri(ω) − Ri(−ω),

(A1)

where C is a constant background, Gr (ω) is a standard
Gaussian profile of width �r to model the incoherent elastic
scattering at ω = 0, 1 + n(ω) is the detailed balance factor,
and Ri(ω) is a series of flat spectral bands with a fixed
width of 2�r = 170 μeV, and centered at Ei=0,1,2,3,4,5,6 =
0.19,0.36,0.53,0.70,0.87,1.04, and 1.21 meV (see top of
Fig. 14 for an example):

Ri(ω) = Ai if |ω − Ei | � �r and 0 elsewhere. (A2)

The different spectra were analyzed through this model and
the relative weights Ai/

∑
j Aj are reported in Fig. 14 as

a function of Q for the high-symmetry directions. Those
weights sequence in decreasing order as Q approaches the
rods positions, close to (2,2,2), (1,1,1), (3/2,3/2,3/2), and
(2,2,0) (see the orange bars), while the weights i = 0,1,2,3
become roughly equal away from the rod. The spectra then
appear “flat-toped.” Along (00�) a weak maximum can be
detected for the i = 2 band (E = 0.53 meV).

These inelastic data, and especially the flat energy depen-
dence demonstrates that on and off rods is a general feature of
the spin dynamics throughout the Brillouin zone. Furthermore,
the measurements show that the dynamical response extends
up to 1–1.5 meV.
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FIG. 14. (Color online) (Top) Example of raw data fitted accord-
ing to the series of spectral bands Ri(ω). (Bottom) Relative weights
Ai/

∑
j Aj of the different bands for the data recorded at the base

temperature along (hh2), (00�), (11�), (hh2 − h), and (hh3 − h).
Ai is defined via the spectral function (1 + n(ω)]

∑
i=0,...,6 Ri(ω) −

Ri(−ω), where Ri(ω) is constant, equal to Ai in a given energy
range centered at Ei=0,1,2,3,4,5,6 = 0.19,0.36,0.53,0.70,0.87,1.04,
and 1.21 meV, with a fixed width of 2�r = 170 μeV.

APPENDIX B: CONNECTION BETWEEN MODELS

1. Model in terms of the full magnetic moment

The widely accepted starting point is given by the following
Hamiltonian:

H = HCEF + Hexc + HZ. (B1)

Here, HZ = gJ

∑
i H · J i is the Zeeman term, with H the

applied magnetic field and J i the magnetic moment at site i.
HCEF is the crystal electric field (CEF) Hamiltonian and Hexc =∑

ij J iK̃ij J j is a bilinear coupling Hamiltonian, where
the interaction tensor K̃ij couples next-neighbor magnetic
moments J at sites i and j . By symmetry arguments, the
nine coupling constants of the 3 × 3 tensor K̃ij are reduced
to only 4 [8]. Here, we assume an exchange tensor which is

diagonal in the (a,b,c) frame linked with a R-R bond [6]:

JiK̃Jj =
∑

μ,ν=x,y,z

J
μ

i

(
Kaa

μ

ij a
ν
ij + Kbb

μ

ij b
ν
ij + Kcc

μ

ij c
ν
ij

)
J ν

j

−K4

√
2�bij .( �Ji × �Jj ).

Alternatively, we can use K1,2,3,4 defined by the simple
relations:

K1 = Ka + Kc

2
,

K2 = Kb,

K3 = Ka − Kc

2
.

2. Model in terms of a pseudospin 1/2

Since the energy gap between the CEF ground state and
the first excited levels is order of magnitudes larger than the
exchange interactions and the Zeeman term, it is possible
to define effective spin 1/2 operators, denoted by Si , by
projecting the full moment Ji onto the CEF ground-state
doublet. The effective spin-1/2 Hamiltonian reads

Heff =
∑

ij

Si J̃ij Sj . (B2)

A popular convention consists in using (J±±,J±,Jz±,Jzz)
defined as

Heff =
∑

i,j

JzzSz
i S

z
j − J±(S+

i S−
j + S−

i S+
j )

+ J±±(γijS+
i S+

j + γ ∗
ijS−

i S−
j )

+ Jz±
[
Sz

i (ζijS+
j + ζ ∗

ijS−
j ) + i ↔ j

]
,

FIG. 15. (Color online) Correspondence between the different
exchange coupling sets. The green, red, and blue shaded areas
correspond to the range of parameters giving a good agreement with
the field induced spin-wave spectra (see Sec. III C).
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TABLE I. Optimal sets of exchange in Yb2Ti2O7.

Full magnetic Pseudospin Pseudospin
moment (K) (meV) (meV)

Ka = −0.48 J±± = 0.04 J1 = −0.03
Kb = 0.23 J± = 0.085 J2 = −0.32
Kc = −0.67 Jz± = −0.15 J3 = −0.28
K4 = 0.02 Jzz = 0.07 J4 = 0.02

where γij ,ζij are numbers defined in Refs. [8,24,25]. Note
that “sanserif” notations refer to local bases. The connection
between K̃ and J̃ is realized using the anisotropic Landé factor
g⊥,z [31]. Defining λ⊥,z = g⊥,z

gJ
,

Jzz = λ2
z

Ka − 2Kc − 4K4

3
,

J± = −λ2
⊥

2Ka − 3Kb − Kc + 4K4

12
,

Jz± = λ⊥λz

Ka + Kc − K4

3
√

2
,

J±± = λ2
⊥

2Ka + 3Kb − Kc + 4K4

12
.

Alternatively, a set of effective parameters J1,2,3,4 can be used
[8,26]:

J1 = 1
3 (2J±± + 4J± + 2

√
2Jz± − Jzz),

J2 = 1
3 (4J±± − 4J± + 4

√
2Jz± + Jzz),

J3 = 1
3 (−4J±± − 2J± + 2

√
2Jz± − Jzz),

J4 = 1
3 (2J±± − 2J± − 2

√
2Jz± − Jzz).

Figure 15 provides the different sets of parameters and
correspondence between these four conventions able to capture
the spin-wave spectra measured in the field polarized phase
of Yb2Ti2O7. The correspondence between the optimal sets,
obtained by taking into account the fit of the zero-field diffuse
scattering, is finally given in Table I.

APPENDIX C: CLASSICAL SPIN DYNAMICS
SIMULATIONS

We consider the Heisenberg model H = ∑
〈ij〉 Si J̃ij Sj ,

where the summation is limited to nearest neighbors, J̃ij is the
interaction tensor, and |Si | = 1/2 are classical pseudospins
located at the pyrochlore sites. Our interest lies in the time
evolution of the spin-pair correlations emerging in such a
model. It is convenient to probe such dynamical correlations by
calculating the dynamical scattering function S( Q,ω), which
can be done by combining Monte Carlo and spin dynamics
methods.

The classical dynamics of the pseudospins is described by
the nonlinear Bloch equations

dSi

dt
= Si ×

∑

j

J̃ij Sj , (C1)

where sites j are the nearest neighbors of i. These equations
of motions were numerically integrated using an eight-order
explicit Runge-Kutta (RK) method with an adaptive step-size
control, offering an excellent compromise between accuracy
and computation time.

The initial spin configurations used for the numerical
integration are generated at each temperature by a hybrid
Monte Carlo method using a single-spin-flip METROPOLIS

algorithm [33,34]. A thousand spin configurations are used
at each temperature to evaluate the ensemble average in
S( Q,ω) while the number of Monte Carlo steps needed for
decorrelation is adapted in such a way that the stochastic
correlation between spin configurations is lower than 0.1.
The numerical results have been obtained for different lattice
sizes ranging from L = 8 (NS = 8192) to L = 16 (NS =
65536) with periodic boundary conditions. The classical
Monte Carlo approach described above was also used to
derive thermodynamic quantities such as the specific heat and
the magnetic susceptibility, which allowed us to determine the
phase diagram presented in Fig. 7.
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