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Thermodynamic observables of Mn12-acetate calculated for the full spin Hamiltonian
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Thirty-five years after its synthesis, magnetic observables are calculated for the molecular nanomagnet Mn12-
acetate using a spin Hamiltonian that contains all spins. Starting from a very advanced density functional
theory parametrization [V. V. Mazurenko et al., Phys. Rev. B 89, 214422 (2014)], we evaluate magnetization
and specific heat for this anisotropic system of 12 manganese ions with a staggering Hilbert space dimension of
100 000 000 using the finite-temperature Lanczos method. We compare the results with those obtained from other
parametrizations. Our investigations demonstrate that it is now possible to assess the quality of parametrizations
of effective spin Hamiltonians for rather large magnetic molecules.
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I. INTRODUCTION

Density functional theory (DFT) has greatly advanced over
the past years and is nowadays able to predict the parameters of
spin Hamiltonians with which the low-temperature physics of
correlated magnetic materials can be described (compare, e.g.,
Refs. [1–15]). Along this line, the complex spin Hamiltonian
of one of the most exciting magnetic molecules, Mn12-acetate,
was recently predicted [16]. These calculations consider
almost all terms that are bilinear in spin operators, such as
the Heisenberg exchange interaction, the anisotropic antisym-
metric exchange interaction, and single-ion anisotropy tensors.
The new calculations outperform earlier attempts [17,18] and
provide rich electronic insight. But despite all the success,
DFT is not capable of evaluating magnetic observables, which
is the reason for the detour via spin Hamiltonians. Alternative
approaches to obtain parametrizations of spin Hamiltonians
are given by fits to magnetic observables [19] or by assuming
values known from similar but smaller systems.

The magnetism of anisotropic molecular spin systems is
fascinating due to interesting phenomena such as bistability
and quantum tunneling of the magnetization [20]. Bistability
in connection with a small tunneling rate leads to a magnetic
hysteresis of molecular origin in these systems. That is why
such molecules are termed single molecule magnets (SMMs);
Mn12-acetate is the most prominent SMM [21–27]. But
although Mn12-acetate contains only four Mn(IV) ions with
s = 3/2 and eight Mn(III) ions with s = 2, it constitutes a
massive challenge for theoretical calculations in terms of spin
Hamiltonians, since the underlying Hilbert space of dimension
100 000 000 is orders of magnitude too big for an exact and
complete matrix diagonalization [28]. But, owing to the fact
that the zero-field split ground-state multiplet is energetically
separated from higher-lying levels, a description using only
the S = 10 ground-state manifold is sufficient to explain
observables at low temperature—this approach was used in the
past. Thermodynamic functions which involve higher-lying
levels, for instance, observables at higher temperatures, of
course cannot be evaluated in such an approximation.

Fortunately, in past years, progress has been made on
DFT as well as in terms of powerful approximations for
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spin-Hamiltonian calculations. For not too big systems with
Hilbert spaces with dimensions of up to 1010, Krylov space
methods such as the finite-temperature Lanczos method
(FTLM) have proven to provide astonishingly accurate approx-
imations of magnetic observables [29–41]. While FTLM has
been mostly used for Heisenberg spin systems, very recently
the method was advanced to anisotropic spin systems [42].

In this paper we therefore employ the most recent FTLM in
order to study the thermodynamic functions of Mn12-acetate,
starting from parametrizations provided by DFT or other
methods. We evaluate both the magnetization as well as the
specific heat as functions of temperature and field and compare
the various parametrizations of the spin Hamiltonian.

The paper is organized as follows. In Sec. II the employed
Hamiltonian as well as the basics of the finite-temperature
Lanczos method are introduced. Sections III–V discuss the
effective magnetic moment, the magnetization, and the specific
heat, respectively. The paper closes with a summary and
outlook.

II. FTLM FOR ANISOTROPIC SPIN SYSTEMS

For Mn12-acetate, which is a highly anisotropic spin system,
the complete Hamiltonian of the spin system is given by the
exchange term, the single-ion anisotropy, and the Zeeman
term, i.e.,

H∼ =
∑

i<j

�s
∼i · Jij · �s

∼j +
∑

i

�s
∼i · Di · �s

∼i

+μBB
∑

i

gi s∼
z
i . (1)

Jij is a 3 × 3 matrix for each interacting pair of spins at sites
i and j which contains the isotropic Heisenberg exchange
parameters, together with the anisotropic symmetric and
antisymmetric terms. In the sign convention of (1), a positive
Heisenberg exchange corresponds to an antiferromagnetic
interaction and a negative one to a ferromagnetic interaction.
Di denotes the single-ion anisotropy tensor at site i, which in
its eigensystem �e 1

i ,�e 2
i ,�e 3

i can be decomposed as

Di = Di �e 3
i ⊗ �e 3

i + Ei

{�e 1
i ⊗ �e 1

i − �e 2
i ⊗ �e 2

i

}
. (2)

The terms gi could in general be 3 × 3 matrices, too, but for
the sake of simplicity it is assumed that the gi are numbers
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and, moreover, that gi = 2 for all ions. This assumption is
justified for the Mn(IV) and Mn(III) ions in Mn12-acetate, since
the g factors of both ions are estimated to be very close to 2
[19,43–46]. Hamiltonian (1) has proven to be appropriate on
very general grounds for many 3d magnetic ions with a not
too strong spin-orbit interaction (strong exchange limit). For
these cases, and in particular for Mn(IV) and Mn(III), it contains
the dominant terms [20,47,48]. Sometimes higher-order spin
operators such as, for instance, biquadratic terms are needed,
for instance, in the case of some nickel compounds [47,49–56].

The finite-temperature Lanczos method (FTLM) approxi-
mates the partition function in two ways [29,30],

Z(T ,B) ≈ dim(H)

R

R∑

ν=1

NL∑

n=1

e−βε
(ν)
n |〈n(ν)|ν〉|2. (3)

The sum over a complete set of vectors is replaced by a much
smaller sum over R random vectors |ν〉. The exponential
of the Hamiltonian is then approximated by its spectral
representation in a Krylov space spanned by the NL Lanczos
vectors starting from the respective random vector |ν〉. |n(ν)〉
is the nth eigenvector of H∼ in this Krylov space. It turns out

that very good accuracy can already be achieved for parameters
R ≈ 10 and NL ≈ 100, especially in cases when the low-lying
energy spectrum is dense [40,42].

III. EFFECTIVE MAGNETIC MOMENT AS A FUNCTION
OF TEMPERATURE

Mn12-acetate contains four Mn(IV) ions with s = 3/2 and
eight Mn(III) ions with s = 2. Following Ref. [16], the ions
and the exchange pathways are depicted in Fig. 1. Mn(IV) ions
(1–4) are shown as red circles, and Mn(III) ions (5–12) as blue
ones. An S4 symmetry of the molecule is assumed [57].

Since the discovery of the pronounced SMM properties of
Mn12-acetate, several groups developed parametrizations of
the full spin Hamiltonian. These data sets, of which the most
prominent ones are given in Table I, contain parametrizations
of Heisenberg models and were put forward following various
scientific reasonings. Earlier attempts assigned values of
exchange interactions in analogy to smaller compounds with
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FIG. 1. (Color online) Schematic structure of Mn12; same label-
ing as in Ref. [16]. Mn(IV) ions (1–4) are shown as red circles, and
Mn(III) ions (5–12) as blue ones. An S4 symmetry is assumed.

TABLE I. Intramolecular isotropic exchange interaction param-
eters (in meV) as suggested by various authors (compare Ref. [16]).
The spin labels are explained in Fig. 1.

No. Bond (i-j ) 1–6 1–11 1–9 6–9 7–9 1–4 1–3

1 Jij [16] 4.6 1.0 1.7 −0.45 −0.37 −1.55 −0.5
2 Jij [18] 4.8 1.37 1.37 −0.5 −0.5 −1.6 −0.7
3 Jij [19] 5.8 5.3 5.3 0.5 0.5 0.7 0.7
4 Jij [58] 7.4 1.72 1.72 0 0 −1.98 0
5 Jij [59] 10.25 10.17 10.17 1.98 1.98 −0.69 −0.69

similar chemical bridges between the manganese ions. Later
investigations combined, for instance, high-temperature series
expansion with the evaluation of low-lying excitations seen
in inelastic neutron scattering (INS) experiments [19]. A
necessary condition that has to be met by all parametrizations
is that the ground state has a total spin of S = 10. The DFT
parametrization of Ref. [16] is also compatible with INS
experiments. Using an ordinary Lanczos procedure, the low-
lying levels have been evaluated and presented in Ref. [16].

Figure 2 shows the effective magnetic moment at a small
external field of B = 0.1 T as a function of temperature. Data
of Sessoli [27] and Murrie [60] are given by symbols. For

FIG. 2. (Color online) Effective magnetic moment of Mn12-
acetate at B = 0.1 T. Data of Sessoli [27] and Murrie [60] are
given by symbols. Observables employing the Heisenberg part of
parametrizations only are displayed by curves. The parametrizations
correspond to those given in Table I from top to bottom.
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FIG. 3. (Color online) Effective magnetic moment of Mn12-
acetate at B = 0.1 T; same as Fig. 2. The dashed curve shows the
result of a calculation employing the full Hamiltonian of Ref. [16].
The powder average is performed over a regular grid of 20 directions
on the unit sphere [65].

the theory curves only the Heisenberg part of the respective
parametrizations is used. Since the Heisenberg model is SU(2)
symmetric, a FTLM version employing total S

∼
z symmetry

was used with R = 100 and NL = 120 in this case [40]. One
realizes that the gross structure of the magnetic moment (which
is proportional to

√
χT ) is achieved by all parametrizations,

especially at lower temperatures of T � 50 K. A finer inspec-
tion shows that the maximum is at a too low temperature for
all parametrizations, so that the experimental low-temperature
data points are not met. For higher temperatures towards room
temperature one notices that only one parametrization [19]
(blue curve) closely follows the experimental data towards
the paramagnetic limit. This is not astonishing since this
parametrization was fitted to the high-temperature tail using
a high-temperature series expansion. Since high-temperature
series expansions allow rather accurate estimates of exchange
parameters that are not altered by (small) anisotropic terms
[61–64], one can consider the exchange parameters of Ref. [19]
as good guidance. We thus conjecture that the somewhat too
large effective magnetic moment of the DFT parametrizations
[16,18] at room temperature are related to the fact that these
parametrizations contain ferromagnetic interactions, whereas
a fit to the high-temperature behavior [19] leads only to
antiferromagnetic interactions (compare Table I). In addition,
the antiferromagnetic interactions 1–11 and 1–9 are much
stronger in Ref. [19].

Using the recently developed FTLM for anisotropic systems
[42] we could calculate the effective magnetic moment starting
from the DFT parametrization of Ref. [16]. Besides the
Heisenberg terms of Table I, this parametrization contains
anisotropic Dzyaloshinskii-Moriya interactions as well as full
3 × 3 anisotropy tensors for each manganese ion. It turns out
that the additional terms improve the low-temperature data
(compare Fig. 3). The maximum shifts towards the experi-
mental position and the data points for smaller temperatures
are much better approximated. But since the anisotropic terms
are irrelevant for temperatures above 60 K, this does not cure
the failure of the parametrization proposed in Ref. [16] for high

temperatures, which is related to the exchange interactions that
are more antiferromagnetic than estimated in Ref. [16].

IV. MAGNETIZATION AS A FUNCTION
OF APPLIED FIELD

Low-temperature magnetization usually provides strong
fingerprints of the underlying spin Hamiltonian, for instance,
in the case of magnetization steps due to ground-state level
crossings. For Mn12-acetate the magnetization shows even
richer characteristics, since below the blocking temperature
a magnetic hysteresis is observed [23]. This exciting physical
property turns out to constitute a problem when compared
to theoretical equilibrium magnetization. Due to the long
relaxation times, approximately 2800 h at T = 2 K [20], the
experimental values do not necessarily reflect equilibrium
values. On the other hand, the theoretical evaluation of
nonequilibrium observables for a full spin model of Mn12-
acetate is totally out of reach.

Figure 4 provides two experimental data sets as well as
various theoretical curves. The data set of Glaser [66] was
taken on a powder sample, whereas the data set of Sessoli [27]
was taken on a single crystal with a field in the direction of the
tetragonal axis of the S4 symmetric molecule. Both data sets
coincide up to B ≈ 2.5 T, and then the magnetization along
the tetragonal axis jumps, whereas the powder signal smoothly
increases with field. Already at this point it becomes clear
that the measurements cannot reflect equilibrium properties,
because the magnetization along the tetragonal axis, which is
the easy axis of this strongly anisotropic molecule [67], cannot
be the same as the powder-averaged magnetization.

Interestingly, all theory curves that rest on Heisenberg
model calculations agree with each other perfectly, which is
due to the fact that all produce a S = 10 ground state that is
largely separated from excited levels. They also agree with the
experimental magnetization up to a field of B ≈ 1 T. Between
1 and 2.7 T the experimental data points stay below the
theoretical curves. Above B ≈ 2.7 T, theory and magnetization
along the tetragonal axis meet again. The calculation for the
full spin model of Mn12-acetate as given in Ref. [16] yields a
rather unexpected result: The powder-averaged magnetization

FIG. 4. (Color online) Magnetization of Mn12-acetate at T =
2 K. Color code of curves as above. The dashed curve is evaluated
for two field values per 1 T field interval only.
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FIG. 5. (Color online) Magnetization of Mn12-acetate at T =
2 K. The dashed curves are evaluated for two field values per
1 T field interval only. Direction t = (0.0, −0.356 82,0.934 17),
direction p = (−0.356 82,0.934 17,0.0).

stays well below all other theory curves (expected since it
is anisotropic), but also stays well below both experimental
curves (unexpected at least compared to the experimental
powder data).

In the following we compare our results with the mea-
surements of Ref. [27] along two different directions, along
the tetragonal axis and perpendicular to that, i.e., somewhere
in the xy plane. Figure 5 presents three theory curves: one
for the powder average and two along special directions.
Direction t = (0.0, −0.356 82,0.934 17) points roughly along
the tetragonal axis (inclination of about 20◦) and direction
p = (−0.356 82,0.934 17,0.0) lies in the xy plane. Both
theoretical curves show systematically larger magnetization
values than the experiment. This could be for two reasons:
Either the experimental curves are not in equilibrium, which is
possible at T = 2 K where the relaxation time of Mn12-acetate
is long, or the parametrization of Ref. [16] is still not yet
optimal, i.e., the D tensors could be too weak, for instance. In
the DFT computation [16] the single-ion anisotropies of Mn(III)

are of the order of 0.4 K, whereas in many other compounds
values in the range of 1–4 K are observed [44–46,68–70].

Nevertheless, the positive message is that we can now
calculate such curves and compare with experimental data.
The theoretical costs, by the way, are still enormous—for the
investigations shown in this paper, about 2 Mio. CPU hours on
a supercomputer had to be used, since the FTLM procedure
has to be completed twice for every field value and direction.
Therefore, only a few field values have been used for the
theoretical magnetization curves.

Finally, we would like to present the high-field mag-
netization curves. As can be seen in Fig. 6, the various
parametrizations lead to distinctive differences at high fields.
The high-field magnetization could be and has been measured
in megagauss experiments [71]. Interestingly, the magnetiza-
tion data given in Ref. [71] show pronounced features, likely
related to magnetization steps, between 180 and 400 T, which
could be compatible with the parametrization of Ref. [19]
(blue curve in Fig. 6). As realized already by the authors,
this parametrization produces a sequence of level crossings

FIG. 6. (Color online) High-field magnetization of Mn12-acetate
at T = 2 K.

between the S = 10 ground manifold and the fully polarized
state exactly in this field range.

V. HEAT CAPACITY

Another observable that was measured very early in
the history of Mn12-acetate is the heat capacity [25,72,73].
Figure 7 shows the experimental data of Ref. [25] for B = 0
(top) and B = 0.3 T (bottom). One notices that the heat

FIG. 7. (Color online) Specific heat of Mn12-acetate at B = 0
(top) and B = 0.3 T (bottom). Data taken from Ref. [25]. Color code
of curves as above. For B = 0.3 T the calculation for the anisotropic
spin model was averaged over 20 directions.
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capacity is rather large and grows steadily with temperature.
This is due to a massive contribution from lattice vibrations
(phonons) which grows as T 3. Therefore, the heat capacity data
of magnetic molecules are usually overwhelmed by phonon
contributions above T = 5 K.

This fact becomes obvious when comparing the theoretical
heat capacity data in Fig. 7 for the Heisenberg parametrizations
at B = 0. At low temperatures the theoretical values are two or
more orders of magnitude smaller than the experimental ones,
but for the calculation using the full anisotropic Hamiltonian
[16], one notices that the low-temperature values agree very
nicely. We think that this is due to a more smeared-out density
of states at low energies in the anisotropic model, whereas for
Heisenberg systems these levels belong to highly degenerate
multiplets which lead to a different, i.e., much smaller, heat
capacity.

Interestingly, a magnetic field of B = 0.3 T has a similar
effect. It smears out the density of states due to Zeeman
splitting. Therefore, even for the plain Heisenberg models,
the low-temperature heat capacity increases, but still does
not agree with the experimental data. For the anisotropic spin
Hamiltonian [16] the low-temperature heat capacity does not
change much and still agrees nicely with the experimental
data. We conjecture that although the energy levels are
moved around by the magnetic field, the overall structure
of the density of states remains very similar. Summarizing,
the specific heat is well reproduced by the anisotropic spin
Hamiltonian of Ref. [16] for low temperatures around 1 K.

VI. SUMMARY AND OUTLOOK

Thirty-five years after its synthesis and 22 years after the
first measurements [22] of Mn12-acetate, the finite-temperature
Lanczos method puts us in a position to evaluate thermody-
namic functions of really large magnetic molecules. It thus
complements DFT and other calculations of spin-Hamiltonian
parameters for such big systems insofar in that one no longer

needs to stop halfway to an understanding of thermodynamic
observables.

In addition, one can now assess the quality of parametriza-
tions for bigger spin systems. In the present case of Ref. [16], it
turns out that although the range of addressed terms of the spin
Hamiltonian is quite impressive, the agreement with magnetic
observables is not yet optimal. We are of course aware of
the fact that the mapping from an electronic Hamiltonian (in
its DFT approximate treatment) to a spin Hamiltonian is a
nontrivial task which is further complicated in cases where
one encounters competing interactions, i.e., frustration. Such
calculations are, for instance, much easier for even membered
spin rings of Fe(III) ions, where neither frustration nor spin-orbit
interactions play a role [74,75]. We are confident that the
further development of DFT-based methods will be successful
and that calculations such as the one presented here are helpful
since they provide the necessary feedback.

In addition, this is a good example to teach us that
one can get certain observables correctly modeled, such as
the low-lying levels in Ref. [16] and the low-temperature
magnetic moment, and still miss other observables, simply
due to the large numbers of parameters which often are
not independent of each other [76]. Since FTLM calculates
equilibrium quantities only, the next major necessary step
is now to develop tools for an evaluation of nonequilibrium
properties of such big quantum spin systems.
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A. Stammler, R. Fröhlich, E. Bill, and J. Schnack, Exchange
interactions and zero-field splittings in C3-symmetric MnIII

6 FeIII:
Using molecular recognition for the construction of a series
of high spin complexes based on the triplesalen ligand, Inorg.
Chem. 48, 607 (2009).

[45] T. Glaser, M. Heidemeier, H. Theil, A. Stammler, H. Bögge, and
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