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Spin-wave dynamics in permalloy/cobalt magnonic crystals in the presence of a nonmagnetic spacer
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In this paper, we theoretically study the influence of a nonmagnetic spacer between ferromagnetic dots and a
ferromagnetic matrix on the frequency dispersion of the spin-wave excitations in two-dimensional bicomponent
magnonic crystals. By means of the dynamical matrix method we investigate structures that are inhomogeneous
across the thickness represented by square arrays of cobalt or permalloy dots in a permalloy matrix. We show
that the introduction of a nonmagnetic spacer significantly modifies the total internal magnetic field, especially
at the edges of the grooves and dots. This permits the manipulation of the magnonic band structure of spin
waves localized either at the edges of the dots or in matrix material at the edges of the grooves. According to the
micromagnetic simulations two types of end modes were found. The corresponding frequencies are significantly
influenced by the end modes’ localization region. We also show that, with the use of a single ferromagnetic
material, it is possible to design a magnonic crystal preserving the properties of bicomponent magnonic crystals
and magnonic antidot lattices. Finally, the influence of the nonmagnetic spacers on the technologically relevant
parameters such as group velocity and magnonic bandwidth are discussed.
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I. INTRODUCTION

Spatial periodicity in a ferromagnetic material modifies the
spin-wave (SW) dispersion relation and results in the formation
of magnonic bands and band gaps. Magnetic materials with
periodic modulation are called magnonic crystals (MCs) [1–3].
Presently, MCs are getting particular interest due to the possi-
bility of tailoring frequency spectra of SWs at the nanoscale;
as a consequence, it is possible to understand magnetization
dynamics and (a) to design metamaterial devices [4,5], (b) to
transduce and transmit signals [6–8], (c) to realize magnonic
transistors [9], and (d) to make logic operations [10–12].

Among the possible geometries of MCs, the planar MCs
are the most often investigated. This is due to the feasibility of
fabrication of regular patterns and easy access to characterize
magnetic properties, to measure SW dispersion relation and
dynamics in time domain, and to visualize SW excita-
tions [13,14]. In standard SW transmission measurements
microwave transducers (microstripes or coplanar waveguides)
are used. They allow for effective excitation of SWs with long
wavelengths. In this limit the magnetostatic interactions are
important and propagation of SWs in nanostructures is usually
investigated in the direction perpendicular to the external
magnetic field, i.e., in the Damon-Eshbach (DE) geometry,
where even at zero wave number the relatively high group
velocity is present.

Among planar MCs, the one- and two-dimensional (2D)
MCs, i.e., with periodicity along one and two directions,
respectively, can be distinguished. The three main groups of
2D MCs are arrays of dots, antidot lattices, and bicomponent
MCs (BMCs). The first consists of regular arrays of thin
ferromagnetic dots, the second of negative arrays of the
former, i.e., arrays of holes in thin ferromagnetic film.
The last group can be regarded as a superposition of both,
i.e., the antidot lattices with holes filled with a different
ferromagnetic material. These three groups present distinct
features in the SW propagation. The collective magnetization
dynamics in an array of dots is solely due to dynamic dipole

coupling between resonant excitations of the dots; however,
its properties are also influenced by static demagnetizing
effects [15]. In the case of weak coupling (large separation
between dots with respect to their thickness and width), the
magnonic spectra consist of flat bands with frequencies related
to the eigenmode excitations of the isolated dot [16]. By
increasing the dynamic dipole coupling, e.g., by decreasing
separation between dots, collective SW excitations with finite
bandwidth and preserving properties of the magnetostatic
waves appear. The widening of the bands depends on the
dipolar coupling strength and on the stray magnetic field [17].
However, the dynamic dipole interaction is effective especially
for eigenmodes having the largest total dynamic magneti-
zation (averaged over the whole dot), viz., mainly for the
fundamental mode [18], but also for end modes or low-order
backwardlike magnetostatic modes [19]. In antidot lattices,
the low-frequency part of SW spectra is influenced by the
inhomogeneous static demagnetizing field created by the edges
of the holes. The presence of holes leads to the formation of
wells of the total magnetic field where magnetization dynamics
mainly concentrate [20,21]. Indeed, in antidot lattices end
modes localized at the edges of the holes and SWs concentrated
in channels between holes were found [22,23]. These effects
disappeared at sufficiently small lattice constants, where
the exchange interactions start to prevail over the dipole
interactions. Recently, also, the effect of magnetization pinning
on spin-wave dispersion has been theoretically studied in
permalloy (Py) antidot waveguides by introducing a surface
anisotropy at the ferromagnetic-air interface [24]. Moreover,
it has been shown that structural changes in antidot waveguides
breaking the mirror symmetry of the waveguide can close band
gaps [25].

It is also well known from the literature that the
Dzyaloshinskii-Moriya interaction induces the tilting of the
magnetic moments at the edges and leads to the formation of
a noncollinear structure [26] acting as a scattering barrier for
spin excitations [27] and partly contributes to the formation of
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end modes along the barrier. The transition from the quantized
to the propagative regime of SWs (end modes and fundamental
mode) can be controlled, e.g., by the magnetic field orientation
or by the separation between holes [28–30]. In addition to
the demagnetizing effects, also the shape and size of holes
in the antidot lattices influence the SW spectrum. This effect
dominates for exchange SWs, i.e., at high frequencies or when
the lattice constant is small [31]. In bicomponent MCs the
inhomogeneous demagnetizing field is still present; however,
its amplitude depends on the difference between the magnetic
properties of the constituent materials. Thus, its influence on
SW dynamics is weaker than in antidot lattices and valuable
for the low-frequency modes only.

Recently, a bicomponent MC composed of Co circular
dots embedded in a Py(Ni80Fe20) matrix was investigated
theoretically and experimentally [14,32–34]. The Brillouin
light scattering (BLS) measurements showed the existence
of two types of SW excitations concentrated in regions
perpendicular to the external magnetic field containing Co
dots and in Py matrix between the Co dots [32]. Theoretical
studies have confirmed that the separation of frequencies
of these SWs is due to a magnetostatic effect [33,34] and
the splitting of the magnonic band at the boundary of the
Brillouin zone (BZ) is connected to the periodicity of the
magnetic system [14]. However, the full magnonic band gap
in bicomponent MCs has not yet been investigated in detail.
Changes of dot or antidot shape, their rotation with respect to
the crystallographic axes, and imperfections in their shape or
at their edges can further modify SW spectra [35–37]. Thus,
the large variety of shapes for dots or antidots and of their
arrangements together with magnetic configurations which can
be realized in MCs [38–41] makes magnonics an inexhaustible
and intriguing topic of research. More specifically, not enough
attention has been given to the study of collective dynamics
in bicomponent MCs where a nonmagnetic spacer separates
the two magnetic materials. The aim of this paper is thus to
theoretically investigate the effect of a nonmagnetic spacer in
2D MCs on the dispersions of the relevant SWs according
to a micromagnetic approach named the dynamical matrix
method (DMM). This is done to investigate the important
spin dynamics effects due to the significant spatial variations
experienced by the total inhomogeneous magnetic field be-
cause of the nonmagnetic material at the interface between
the two ferromagnetic materials. In this respect, the dynamics
in square lattice 2D MCs with square antidots partially filled
with different magnetic materials are studied, but the obtained
results can be easily generalized to other geometries. This
is achieved by putting the nonmagnetic spacer around the
dots embedded in antidot lattices. In this study two types of
separation between dots and Py matrix are considered: (a) with
the nonmagnetic spacer located only below the dot, and (b)
with the spacer fully around the dot. It is shown that these
separations create an inhomogeneous static demagnetizing
field which allows for the formation of end modes in the
matrix (characteristic for the antidot lattices) and end modes
in the dots (characteristic for the array of dots) which were
not yet found in the previous studies [14,34]. Moreover, it is
shown that similar properties can be achieved using a single
ferromagnetic material, i.e., in single component 2D MC. This
study focuses on the important part of magnetism devoted

to SW phenomena in composite structures, which is almost
unexplored yet in the case of large-scale 2D bicomponent
nanopatterned systems. This investigation is also of interest for
technological applications in the area of magnonics, magnetic
memories, and metamaterials.

The paper is organized as follows. In the next section the
structures and the theoretical method used in the investigations
are described. Then, in Sec. III, the results of calculation of
SW spectra showing the influence of nonmagnetic spacers on
the magnonic dispersions are presented. In Sec. IV the results
obtained are discussed and the influence of the inhomogeneity
of the total magnetic field is analyzed. Then, in Sec. V, the
effect of the nonmagnetic spacer on the group velocity and
magnonic bandwidth is investigated. Finally, conclusions are
drawn in Sec. IV.

II. STRUCTURE AND METHOD

In order to study the dynamical properties of 2D
MCs connected with the nonmagnetic spacers between
ferromagnetic materials, the dispersion relations of SWs for
five systems have been calculated. The magnetic systems are
composed of Py, Co, and nonmagnetic material. All geometries
investigated here are based on square lattice and square
magnetic dots, the lattice constant being a = 400 nm. MCs
are supposed to be infinite in plane (along x and y). These five
systems are depicted in Fig. 1: (a) System 1 (S1): bicomponent
MC composed of 30-nm-thick Py film with an array of
20-nm-deep square grooves of 200 nm size. In the bottom of
the grooves there is 10 nm of nonmagnetic material and then Co
dots (20 nm thick) partially immersed into the grooves. The Co
dots are in direct contact with Py only at the lateral edges of the
dot. (b) System 2-Co (S2Co): bicomponent MC similar to S1 but
with 10-nm-width spacer around the Co dots (200 nm wide).
In S2Co, Co dots and Py matrix are separated by a nonmagnetic
spacer. (c) System 2-Py (S2Py): one-component MC with the
same geometry of S2Co but with Py dots. (d) MC composed of
square Py dots (10 nm thick and 200 nm wide) surrounded by
nonmagnetic spacer and fully immersed in the Py matrix. This
is system 3 (S3). (e) An array of squared Co dots (20 nm thick
and 200 nm wide) constitutes system 4 (S4). All parameters
used in the simulations are typical parameters for Py and Co
materials [42,43]: saturation magnetization for Py MS,Py =
750 emu/cm3 and for Co, MS,Co = 1200 emu/cm3; exchange
constants, APy = 1.3 × 10−6 erg/cm and ACo = 2.0 ×
10−6 erg/cm; gyromagnetic ratios, γPy/2π = 2.96 GHz/kOe
and γCo/2π = 3.02 GHz/kOe.

The static and dynamic properties of these magnetic sys-
tems have been investigated by means of two micromagnetic
codes: Object Oriented MicroMagnetic Framework (OOMMF)
code [42] and the DMM program [34,44]. The ground-state
magnetization was determined by using OOMMF with 2D
periodic boundary conditions; then this magnetic configuration
was used as input to DMM. The DMM with implemented
boundary conditions, a finite-difference micromagnetic ap-
proach first implemented for isolated ferromagnetic elements
and extended to MCs composed by two ferromagnetic mate-
rials [34], is applied to study the spin dynamic properties in
bicomponent systems where the two ferromagnetic materials
are separated by a nonmagnetic spacer. Since our results
do not focus on dissipation properties of collective modes,
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FIG. 1. (Color online) (a) System 1: Top view of the primitive cell and its perpendicular cross section in a bicomponent MC consisting of
Co square dots in square array partially immersed in Py. Nonmagnetic spacer (white area) of 10 nm thickness separates the bottom of Co dots
from Py. (b) System 2-Co: similar to S1 but with full separation of Co dots (200 nm wide) from Py (10 nm of nonmagnetic spacer from the
bottom and lateral sides of Co). (c) System S2-Py: one-component MC with geometry equal to S2Co but with Py dot. (d) System 3: MC created
by square array of square grooves in Py film partially filled with Py dots. Dots are separated from the matrix by 10-nm-thick nonmagnetic
spacer. (e) System 4: square array of square Co dots. Red dashed lines in the perpendicular cross sections point at the planes (z = 5 and 25 nm)
used in Figs. 2(a)–2(e) to visualize the spatial profiles of SW modes.

the dynamics is studied in the purely conservative regime;
hence no Gilbert damping energy density contribution is
included in the equations of motion. For our purposes, in
the DMM two indices are used: (1) an index k to label
micromagnetic cells, with k = 1,2, . . . ,N , where N is the
total number of micromagnetic cells in the primitive cell;
(2) an index j = Py,Co indicating the ferromagnetic material.
The number of micromagnetic cells assigned to the j th
ferromagnetic material is Nj such that NPy + NCo = N . For
each micromagnetic cell the magnetization in reduced units
takes the form mk = Mk/Ms(k) with Mk the magnetization in
the kth cell and Ms (k) the saturation magnetization depending
on the ferromagnetic material through the index k. Hence, in a
polar reference frame the magnetization can be written in the
following form:

mk = (sin θk cos φk, sin θk sin φk, cos θk), (1)

where φk (θk) is the azimuthal (polar) angle of the magnetiza-
tion; for the sake of simplicity the time dependence is omitted.
The total energy density E = Ẽ

V
—with Ẽ the energy and V

the volume of the system, respectively—depends on the polar
and azimuthal angle in each micromagnetic cell, θk and φk .
The total energy Ẽ is the magnetic Hamiltonian and the DMM

was developed to study conservative systems corresponding
to a purely precessional dynamics. In explicit form, for the
systems under study, the energy density reads

E = Eext + Eexch + Edmg, (2)

with Eext the Zeeman, Eexch the exchange, and Edmg the
demagnetizing, respectively. Specifically,

E = −MS H ·
N∑

k=1

mk +
N∑

k=1

∑

n∈{n.n.}
Aexch(k,n)

1 − mk · mn

a2
kn

+ 1

2
M2

S

∑

k l

mk ·
↔
Nml . (3)

The first term of Eq. (3) corresponds to the Zeeman
energy density, where H indicates the external magnetic field.
The second term of Eq. (3) is the exchange energy density
expressed by means of two sums: the first sum runs over
the N micromagnetic cells and is indexed by k whereas the
second sum indexed by n ranges over the nearest-neighbouring
(n.n.) micromagnetic cells of the kth micromagnetic cell that
can belong to a different ferromagnetic material. Aexch is the
exchange stiffness constant and is related to the ferromagnetic
materials through the indices k and n, respectively, while
akn denotes the distance between the centers of two adjacent
micromagnetic cells of indices k and n, respectively. When the
kth micromagnetic cell is on one of the edges (vertices) of the
proper primitive cell, the interaction with the micromagnetic
cells belonging to the correct nearest supercell (primitive cell)
must be taken into account. The last term of Eq. (3) is the

demagnetizing energy density where
↔
N is the demagnetizing

tensor and expresses the interaction among micromagnetic
cells within the primitive cell and belonging to different
primitive cells. Note that, unlike the bicomponent system
studied [34], in S2Co the intermaterial exchange contribution
is set equal to zero, because in the primitive cell the Co dot and
the Py matrix are separated. Instead, in the S1, the exchange
contribution at the interface between the two ferromagnetic
materials is set equal to Ā

Py−Co
exch = (APy + ACo)/2 because Py

matrix and Co dots are in contact. Note that in Eq. (2) the
thermal contribution related to the thermal field is not included.
Indeed, the studied dynamics is purely deterministic and not
stochastic. Actually, the equations of motion within the DMM

correspond to the deterministic Landau-Lifshitz equations and
not to the stochastic Langevin or Fokker-Planck equations [45].

The dynamic magnetization δm (r) of each collective mode
fulfills the generalized Bloch theorem depending on the Bloch
wave vector K and on the two-dimensional lattice vector of
the periodic system R. For each micromagnetic cell δm (r)
is expressed in polar coordinates depending on the angular
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deviation from the equilibrium position of the azimuthal
and polar angles δφk,δθk . In a compact form, the complex
generalized Hermitian eigenvalue problem takes the form

Av = λBv, (4)

where the eigenvalue λ = 1
ω

with ω the angular frequency of
the given collective mode which is in turn described by the
eigenvector v = (δφk,δθk). The Hermitian matrix A depends
on saturation magnetization of the two ferromagnetic materials
and on the corresponding gyromagnetic ratios. The Hessian
matrix B is expressed in terms of the second derivatives of the
energy density with respect to the azimuthal and polar angular
deviations δφk and δθk calculated at equilibrium. For further
technical details of the DMM applied to several materials see
Ref. [34].

The use of the DMM for calculating the spectrum of
collective spin-wave modes is preferred with respect to the
Fourier analysis of OOMMF because it has several computa-
tional advantages. Among them, just to mention a few, are
(a) the system under study does not need to be excited by
any magnetic field pulse; (b) the spin-wave modes frequencies
and eigenvectors of any symmetry are determined by means
a single calculation; (c) the spatial profiles of the spin-wave
modes are directly connected to the calculated eigenvectors
allowing to accurately classify each collective excitation;
(d) the spectrum is computed directly in the frequency domain;
(e) the mode degeneracy is completely taken into account;
(f) the differential scattering cross section associated to each
spin-wave mode can be computed accurately starting from the
corresponding eigenvectors. The size of the micromagnetic
cells used in the static and dynamic simulations is 5 × 5 ×
10 nm along x, y, and z, respectively.

In order to investigate the propagation properties of SWs
in MCs, the systems have been studied in the DE geometry,
i.e., with the external magnetic field (H) of magnitude fixed at
2000 Oe parallel to the y axis and the Bloch wave vector (k)
parallel to the x axis.

III. SPIN-WAVE EXCITATIONS IN MCS

In 2D antidot lattices and bicomponent MCs a full
magnonic spectrum is very rich with plenty of SW excita-
tions [33]. As an example, the differential scattering cross
section computed at the center of the BZ is displayed in
Fig. 2 for S1. It can be seen that there is a large number of
spin-wave modes resulting from the calculation. However, for
the purposes of this study focused on the dispersion behavior
in the first BZ only three modes belonging to the lowest-
frequency part of the spectrum, namely, the ones exhibiting
an appreciable differential scattering cross section, have been
selected in S1. Nevertheless, note that there are also other
collective modes in the highest-frequency part of the spectrum
having a non-negligible differential scattering cross section,
but in higher BZs. The same conclusions on the differential
scatting cross section can be drawn also for the other systems.
The dispersion relations shown in Fig. 3 are the ones measured
in a typical BLS experiment [32,46].

The dispersion relations of SWs in S1 are shown in
Fig. 3(a). We classify the collective modes by taking into
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FIG. 2. Differential scattering cross section calculated for S1 at
the center of the BZ. The arrows label the modes with the highest
scattering cross section in the center of the first BZ investigated in
this paper.

account the region inside the primitive cell where they have
the maximum amplitude. In this respect, we named them
(1) end mode of the dot (EMd) (where the subscript “d”
means dot) mainly localized at the borders of the dots,
(2) Damon-Eshbach–like mode in horizontal rows (DEHR)
where the superscript “HR” means horizontal rows, and
(3) Damon-Eshbach-like (DE) mode; they have frequencies
9.94, 12.89, and 14.06 GHz, respectively. The modes (2)
and (3) are called Damon-Eshbach–like because they exhibit
nodal planes parallel to the local static magnetization in the
higher BZs and no nodal planes in the center of the BZ
[see Fig. 4(a)]. This is in accordance to the classification of
collective modes given for binary magnonic crystals [34]. In
the center of the BZ, the DEHR, and DE are the resonance
modes called fundamental modes. The DEHR mode is localized
in the horizontal rows containing the square dots (with
amplitude concentrated mainly in Py), while the DE mode
has the maximum amplitude in Co dots and non-negligible
amplitude in the Py film. We point out that the end mode de-
tected here has been previously found only in one-component
MCs [47,48].

The appearance of the end mode and the different SW
amplitude distribution between Py and Co of DE and DEHR

modes marks the difference between the S1 and the Co/Py
bicomponent MC investigated in Refs. [14,34]. We remark that
these differences with respect to previously studied systems
are mainly due to (a) the 10-nm-thick nonmagnetic spacer
between Co dots and Py matrix placed at the bottom of the
dots, and (b) the dot shape (these effects will be discussed
in the next paragraph). Next, we study the effect of a full
separation of Co dots from Py matrix on magnonic spectra.
In Fig. 3(b), the dispersion curves for S2Co are presented.
By looking at Fig. 3(b) we can see the appearance of two
new modes, i.e., the end mode of Py film (EMf) at 11.9 GHz
(where the subscript “f” means film) localized at the border
of Py film and the backwardlike mode (BAHR) at 13.86 GHz
mainly concentrated in the horizontal rows. The BAHR mode
has nodal planes perpendicular to the local static magnetization
[see Fig. 4(b) for profiles of the modes]. The frequency of the
BAHR in S2Co is higher than the frequency of DEHR. This
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FIG. 3. (Color online) Dispersion relation in the first BZ
along the direction perpendicular to the external magnetic field.
(a) Dispersion relation of the most relevant modes in S1: end mode
of the dot (EMd), Damon-Eshbach–like mode (DE), and DE-like
mode in horizontal rows (DEHR) are shown. (b) Dispersion relation
in S2Co. The additional dispersion relation of the end mode in
Py film (EMf) and backwardlike volume SW (BAHR) are shown.
(c) Dispersion relation of the most relevant modes in S2Py.
(d) Dispersion relation in S3. (e) Dispersion relation in the array
of Co dots (S4). The black dashed lines in (b)–(d) mark dispersion
relation of DE mode in homogeneous Py film of 10 nm thickness
calculated according to Ref. [49].
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FIG. 4. (Color online) Spatial profiles (real part of the out-of-
plane component of the dynamic magnetization vector) for SWs
with large differential scattering cross section in the center of the
Brillouin zone. The spatial profiles of SW modes from the bottom
part of the Py film (in the plane z = 5 nm in left column) and in the
plane crossing dots (for z = 25 nm in right column) are shown in
3 × 3 primitive cells, i.e., on the planes marked in Fig. 1 with red
dashed lines. (a) Spatial profiles of EM, DEHR, and DE modes in S1.
(b) Spatial profiles of EMd, EMf, DEHR, BAHR, and DE modes in
S2Co. (c) Spatial profiles of EMd, EMf, DE, BAHR, and DEHR modes
in S2Py. (d) Spatial profiles of EMf, DE, EMd, BAHR, and DEHR

modes in S3. (e) Spatial profiles of EM and DE modes in S4.

might be attributed to the strong localization feature of the
BAHR in the region filled by Co dots having higher values of the
magnetic parameters. By comparing the frequency at the center
of the BZ passing from S1 to S2Co, we observe a significant
decrease of the EMd frequency from 9.94 to 5.47 GHz and a
slight increase of the DE (DEHR) frequencies from 14.06 GHz
(12.89 GHz) to 14.67 GHz (13.48 GHz). The presence of
five dispersion curves in S2Co is attributed to the fact that the
differential scattering cross section is comparable for the five
SW excitations at the BZ center.

In order to study the effect of the Py matrix on the SW
excitation in Co dots, we calculate the dispersion curves of S4
[Fig. 1(e)], the array composed of square Co dots. By inspec-
tion of Fig. 3(e) we note that the frequency of the EMd in S4
(3.5 GHz) is about 6 GHz lower than in S1 and 2.5 GHz lower
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as compared to the corresponding one in S2Co. Instead, the
frequency of the DE mode (18.4 GHz) is 4 GHz higher than the
one in S1 and 3.5 GHz higher than the one in S2Co. Therefore,
the effect of Py matrix is to lower the frequencies of the DE
mode and to raise the frequencies of the EMd. This behavior
can be understood by taking into account the variation of the
magnitude of the interdot dipolar dynamic coupling and of the
static demagnetizing field passing from an array of dots (S4) to
MCs (S1 and S2Co) composed of two ferromagnetic materials.

To study the effect of dot material and thickness in a Py
matrix, we calculate the SW spectra of 2D MCs composed of
Py dots in a Py matrix. It is important to underline that S2Py

and S3 are neither a bicomponent MC nor antidot lattices, but
these structures preserve properties of both with the use of
a single ferromagnetic material. The kind of mode found in
S2Py and S3 is similar to the one found in S2Co. In S2Py, the
EMd (8.92 GHz) is the lowest-frequency mode as in S2Co. In
S2Py the EMf (10.46 GHz) has a dispersion curve similar to
that of EMd. The DE mode has a frequency of 12.8 GHz at
the center of the BZ. The frequencies of BAHR mode (13.8
GHz) are lower than the ones of the DEHR mode (14.12 GHz).
We observe that in S2Py the frequency sequence of DE, DEHR,
and BAHR modes is different with respect to the one in S1
and S2Co [see Figs. 3(a) and 3(b)]. In particular, the DE mode
frequencies are lower than the DEHR mode ones as in the
case of 2D one-component antidot lattices [47,48] (for further
discussion see Sec. IV).

In order to understand the effect of the thickness of Py dots
we compute the dispersion curves for S3 shown in Fig. 3(d). In
S3, the EMf (8.92 GHz) is the lowest-frequency mode of the
spectrum. The EMd frequency at the center of the BZ (12.84
GHz) is larger than the one of the DE mode (12.36 GHz);
however, the corresponding dispersion curves have a similar
behavior. This frequency inversion as compared to S2Py is not
surprising because the total magnetic field experienced by the
EMd is higher with respect to the field felt by the DE. The
DEHR and BAHR have frequencies 14.68 and 14.12 GHz at
the center of the BZ, respectively. Comparing the dispersion
curves in S2Co and S3, we observe that the order of DE and
DEHR frequency modes in S3 is interchanged with respect to
the ones in S2Co. Moreover, also the frequency order of the EMf

and the EMd is interchanged with respect to the one in S2Py

and S2Co. This interchange can be attributed to the effect of the
reduction of the dot thickness that induces a lowering of the
total magnetic field in the Py film where the EMf is localized.
The intensities of the differential scattering cross section of
the DE, EMd, EMf, and BAHR modes are comparable but are
40% lower than that of DEHR.

In Fig. 4 we show the spatial profiles of the real part of the
out-of-plane component of the dynamic magnetization for the
main modes at the center of the BZ of the systems studied.
The spatial profiles are presented at planes z = 5 nm and
z = 25 nm, left and right column of each panels, respectively,
along the cross sections indicated in Fig. 1 with red dashed
lines. Looking at Fig. 4(a) we can see that the EMd is strongly
localized at the border of the Co dots and its amplitude
decreases at z = 5 nm where only Py is present with respect to
z = 25 nm. The presence of the Co dots in S1 induces a strong
DEHR amplitude decrease inside the region containing the Co
dots: indeed, for z < 10 nm the amplitude of the DEHR mode

is uniform in the whole rows, while for 20 nm < z < 30 nm
its amplitude decreases in the Co dots region. By contrast, for
the EMd the square Co dots induce an opposite behavior. The
amplitude distribution of the DE mode takes a contribution
from both Co dots and Py matrix through its whole thickness.
The DE is also the mode with largest differential scattering
cross section. Its intensity at kx = 0 is three times larger than
that of the EMd or the DEHR mode (see Fig. 2). Figure 4(b)
displays the spatial profiles of the characteristic SW modes
of S2Co. The presence of the nonmagnetic spacer around
the Co dots induces the appearance of the EMf that is
strongly localized at the border of the Py matrix close to the
nonmagnetic spacer. The amplitude of this mode is almost
uniform along the thickness, while that of the EMd decreases
by decreasing z. The DEHR, BAHR, and DE modes have
uniform amplitude in the region of the Py matrix along the
thickness. On the other hand, in the region filled by Co dots
their amplitude strongly decreases for z > 20 nm.

In Fig. 4(c) we show the spatial profiles of the collective
excitations in S2Py. The amplitude variation of the EMd, DE,
BAHR, and DEHR modes as a function of z is the same as that
in S2Co. Moreover, in S2Py the amplitude of EMf decreases
by decreasing z following a trend similar to that of the EMd.
The amplitude of SW modes of S3 are illustrated in Fig. 4(d).
Similarly to what occurs in S2Co and S2Py, the SW amplitude
of the DE mode is almost homogeneous across the thickness
of the whole structure and larger in the rows between dots. The
DEHR and BAHR modes’ amplitude is almost uniform along
z in the Py matrix but decreases for z > 20 nm in the region
filled by Py dots. In Fig. 4(e) are depicted the spatial profiles
of collective modes in S4. In this system there is only Co along
z and the amplitudes of EM and DE mode are uniform along
the thickness.

IV. TOTAL MAGNETIC FIELD ANALYSIS

In order to understand the dispersion curves of the in-
vestigated structures, we calculate the in-plane components
of the total (effective) magnetic field at different values of
z. The total static magnetic field, which is the sum of the
exchange field, the demagnetizing field, and the Zeeman field,
calculated for each micromagnetic cell by the OOMMF code,
is averaged along the x direction for different values of z

and y. The behavior of the total magnetic field is strictly
related to the orientation of the static magnetization in the
magnetic system. In Fig. 5 four regions along the thickness
are taken into account: (a) 0 nm � z � 10 nm where only Py
is present; (b) 10 nm < z � 20 nm where there are Py and a
nonmagnetic spacer; (c) 20 nm < z � 30 nm where in S1 there
are Py and Co, in S2Co there are Py, a nonmagnetic spacer, and
Co, while in S2Py and S3 there are Py and a nonmagnetic
spacer; (d) 30 nm < z � 40 nm where in S1 and S2Co there is
Co, and in S2Py there is Py. In particular, the presence of a
well or a wall in the total magnetic field (see Fig. 5) is due
to the saturation magnetization contrast present at interfaces
between two different materials. Moreover, in MCs showing
magnetization inhomogeneities across the thickness, the total
magnetic field at interfaces between two materials, present for
10 nm < z < 30 nm, influences also collective excitations in
the homogeneous part of the structure (for 0 nm < z < 10 nm).
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FIG. 5. (Color online) The y component of the total magnetic
field calculated for (a) S1, (b) S2Co, (c) S2Py, and (d) S3 along the y

axis and averaged along x, for four different values of z: z = 5 nm
(in full Py film, black dot-dashed line), z = 15 nm (crossing Py and
spacer below the dots, red dashed line), z = 25 nm (crossing Py matrix
and middle of dots, green dotted line), and z = 35 nm crossing Co
dots (only in S1 and S2Co, blue solid line). The gray vertical rectangles
mark the nonmagnetic spacers which separate the dot from the matrix.
The insets on the top show a sketch of MCs with lines along which
the total magnetic field is calculated.

The appearance of end modes in MCs is related to the
presence of a strong inhomogeneity of the total field resulting
in deep wells close to the border of the dots and the matrix.
This feature of the total magnetic field in 2D bicomponent
MCs depends on two main factors: the shape of the dot
and the contrast between the saturation magnetization of the
different materials. In particular, the magnetization saturation
contrast enhanced by the presence of the nonmagnetic spacer
leads to the formation of an inhomogeneous demagnetizing
field and, as a consequence, to strong inhomogeneities of
the total magnetic field at the border between two materials
(Co/Py, Co/nonmagnetic spacer, and Py/nonmagnetic spacer).
Therefore, the presence of a thin nonmagnetic spacer between
two ferromagnetic materials not only influences significantly
the SW spectra but can also be an end mode’s creating
factor. We underline that this important feature, namely, the
appearance of end modes, either as EMf or EMd, does not
depend on the dot shape or on the ferromagnetic material
for MCs having geometric parameters in the range of the
ones typical of the recently studied bicomponent systems.
Hence, this picture is different from the one occurring in
bicomponent systems [14,34] where a crucial rule to determine
the appearance of end modes was played by a specific
combination of the magnetization saturation contrast and the
dot shape. As an example, in a bicomponent MC composed of
circular Co (Py) dots in direct contact with a Py (Co) matrix,
the end mode is present when |	MS| = |MS,Co − MS,Py| >

250 emu/cm3, but disappears when |	MS| = 200 emu/cm3.

Instead, if the bicomponent system is composed of square
Co (Py) dots in direct contact with Py (Co) matrix, an end
mode is present when |	MS| > 200 emu/cm3. Therefore,
a thin nonmagnetic spacer between the two ferromagnetic
components of MCs not only influences significantly the SW
spectra but also is an end mode’s creating factor. We underline
that this important feature, namely, the appearance of end
modes, either as EMf or EMd, does not depend on the dot
shape or on the ferromagnetic material. In the following, we
discuss the shape of the total magnetic field in 2D bicomponent
MCs introduced by nonmagnetic spacers around dots and its
relation to the end modes. Figure 5(a) shows the total magnetic
field calculated for S1 vs y for different values of z. Two deep
wells are present inside the region of the Co dot above the
Py matrix corresponding to z > 30 nm. The two wells are
still present for 20 nm < z < 30 nm, although with decreasing
depth. The two wells disappear for z < 20 nm; however, the
walls appear in this range. For this reason the EMd is strongly
localized in the well of the total magnetic field at the border of
the Co dot for z > 20 nm and disappears in the homogeneous
part of the system where there is the Py matrix (z < 20 nm)
[see Fig. 4(a)].

In Fig. 5(b) is displayed the total magnetic field calculated
for S2Co as a function of y for different values of z. It can
be seen that the positions of the minima of the total magnetic
field depend on z. In particular, the total magnetic field has
its minimum value in the Py region for z < 20 nm, and in the
Co region for z > 20 nm. These two wells close to the border
between Py and the nonmagnetic spacer and the nonmagnetic
spacer and Co give rise to the two localized modes EMf and
EMd, respectively. Thus, the presence of these two end modes
is strictly related to the nonmagnetic material that surrounds
the Co dots responsible for the appearance of the two minima
in the total magnetic field.

Comparing the profiles of the total field at z = 15 nm and
z = 25 nm [red dashed and green dotted line in Figs. 5(a)
and 5(b)], an increase of the depth of the magnetic wells
can be noted in S2Co with respect to the one in S1. This
explains the decrease of the frequency of the EMd in S2Co

as compared to the one in S1. Moreover, the wells of the total
field corresponding to the region filled by the Py matrix close to
the nonmagnetic spacer at z = 15 nm, although less deep than
the ones in the Co dot, are deep enough to permit localization
of the EMf.

By looking at Fig. 5(a) it is also possible to understand that
the variation of the total magnetic field due to the nonmagnetic
spacer induces a change of DEHR and DE mode profiles as a
function of z. We observe that the uniform amplitude of DEHR

in the horizontal rows [see Fig. 4(a)] is due to the trend of
the total magnetic field. Indeed, by looking at Fig. 5(a) (black
dot-dashed line), we note that the total magnetic field does not
present significant inhomogeneities along the y direction at
z = 5 nm. Instead, at z = 25 nm the DEHR mode is localized
only in the Py region [see Fig. 4(a)] and its amplitude vanishes
inside the Co dot. On closer inspection of the corresponding
total magnetic field [Fig. 5(a), green dotted line] we note the
presence of a high wall at the border between Py and Co
that prevents the spreading of DEHR inside the Co dot. The
DE mode has higher frequency than DEHR and its amplitude
spreads also in Co dot for z > 20 nm. In S2Co, there is an

064416-7
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TABLE I. Group velocity vg in the BZ center and bandwidth for EMd, EMf, DE, and DEHR modes in the MCs investigated in the paper.
The two largest group velocities and bandwidths are emphasized in bold.

S1 S2Co S2Py S3 S4

vg Bandwidth vg Bandwidth vg Bandwidth vg Bandwidth vg Bandwidth
(m/s) (MHz) (m/s) (MHz) (m/s) (MHz) (m/s) (MHz) (m/s) (MHz)

EMd 64 162 48 154 0 21 48 446 40 154
DEHR 144 750 368 272 160 1378 160 668 – –
DE 256 355 522 810 256 1097 152 410 68 203
EMf – – 80 226 48 49 48 173 – –

increase of the total magnetic field inhomogeneity as compared
to S1 for each value of z, apart from z > 30 nm where there is
a small reduction [see Figs. 5(a) and 5(b)]. This results in an
increase of the frequencies of the DE and DEHR modes.

In Fig. 5(c) we plot the total magnetic field for S2Py in
order to investigate the effect of the change of the material
filling the dots. There are two minima of the total magnetic
field: The absolute minimum is located in the Py matrix for
10 nm < z < 20 nm and the other minimum is placed in the Py
dot for 30 nm < z < 40 nm. In correspondence of the above-
mentioned minima, also in S2Py there is the appearance of the
EMd and of the EMf, respectively. By looking at Figs. 5(b)–
5(d), we can note a qualitative similarity of the behavior of
the total magnetic field as a function of y in S2Co, S2Py, and
S3, respectively. In Fig. 5(d), where the Py dot thickness is 10
nm, the magnetic field well in the dot is less deep than the one
in S2Py, while in the Py matrix it has a significant minimum
(green dotted line, z = 25 nm). This explains the interchange
of the frequencies of the EMf and EMd modes found in S3
with respect to the ones in S2Co and S2Py. Detailed inspection
of the total magnetic field profiles shown in Figs. 5(b)–5(d)
allows us to notice also the relative change of the magnetic
field values among S2Co, S2Py, and S3 in the channels parallel
to the x axis containing dots [i.e., area of the DEHR mode,
for 100 nm < y < 300 nm in Fig. 5] and lying between the
dots [i.e., area of the DE mode for 0 nm < y < 90 nm and
310 nm < y < 400 nm]. In the middle part of these areas the
average value of the total magnetic field is almost constant
across the full thickness. In S2Co the values of the field are 2.06
and 1.85 kOe in the center of the areas of DE and DEHR mode,
respectively, while in S3 the respective values are 1.82 and
2.1 kOe. This behavior of the field can explain the frequency
exchange of the DE and DEHR modes between S2Co, S2Py, and
S3 in Figs. 3(b)–3(d), respectively.

V. FEATURES OF THE DISPERSION RELATION

In order to fully understand the effect of different position
and size of the nonmagnetic spacer on the propagation of
SWs, we compute the group velocity and the bandwidth for
the most relevant modes. The group velocity is important, e.g.,
in the transmission measurements with the use of coplanar
waveguide transducers, where SWs with low wave number are
usually excited [7]. A wide bandwidth is important in order
to accommodate incoming and transmitted signal; moreover,

it can be used as an indicator of the interaction strength in the
MC. The group velocity (vg) in the DE geometry has been
calculated for selected modes close to the center of the BZ, as

vg = 2π
	ν

	kx

, (5)

where 	ν is the change of the SW frequency due to the change
of the wave vector along the x axis, 	kx (in calculations we set
	kx = 0.05 π/a). The bandwidth for the selected mode has
been calculated as a change of its frequency between the BZ
center and the BZ border, 	νbw = |ν(kx = π/a) − ν(kx = 0)|.
The group velocity and the bandwidth of the investigated SW
excitations (EMd, EMf, DE, and DEHR) are calculated and
collected in Table I.

By looking at Table I we can see that for vanishing wave
vector, the DE and DEHR modes in S2Co exhibit the largest
group velocities. These larger values of vg can be attributed to
a combination of higher contrast between Co and nonmagnetic
spacer and Py and nonmagnetic spacer and to a higher Co
gyromagnetic ratio. This is an interesting result as S2Co can
be regarded as the most disruptive structure with respect to
a homogeneous thin film. The DEHR modes in S1, S2Py, and
S3 have similar group velocities, while the DE mode of S3
has a group velocity smaller than the ones of the DE modes
in S1 and S2Py. The decrease of the group velocity in S3 can
be due to the thickness reduction of the Py dots. These group
velocities can be compared to that of the DE magnetostatic
SW in homogeneous Py film of 10 nm thickness calculated
according to Eq. (5). In this special case the latter turns out to
be 880 m/s, a value larger than the ones of the systems studied
as expected. The dispersion relation of the DE magnetostatic
SW is superimposed in Figs. 3(b)–3(d) with a black dashed
line. We can see that it matches very well with the DE mode
in S2Co and the DEHR modes in S2Py and S3. This shows that
the DE and DEHR modes, in S2Co, S2Py, and S3, respectively,
propagate in a way similar to that of the DE magnetostatic SW
in homogeneous Py film and they travel mainly in the lower
part of the structure where the dots’ influence on the internal
field is smallest; nevertheless, it changes the group velocity
and bandwidth.

Comparing the group velocities of DE and DEHR modes
of S1, S2Co, S2Py, S3, and S4 with the one of the DE
magnetostatic SW mode in homogeneous Py film, it can be
noted that the presence of two different magnetic materials
and a nonmagnetic spacer reduces the speed of propagation in
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the BZ center. This is probably due to the presence of different
magnetic material and nonmagnetic spacer that induce the SW
confinement in particular regions of the primitive cell.

The DE and DEHR mode of S2Py have the largest bandwidth.
It is interesting to note that also the end modes with higher
frequency, EMf and EMd in S2Co and S3, have a bandwidth
comparable to that of the propagative DEHR and DE modes.
This means that also the localized modes can propagate in
these kinds of MCs and their properties can be exploited for
transmitting a signal.

VI. CONCLUSIONS

Detailed theoretical investigations of the spin-wave spectra
in two-dimensional bicomponent MCs with the DMM, in order
to identify the influence of a nonmagnetic spacer on the
magnonic band structure, have been performed. Square arrays
of square grooves in thin Py film filled (or partially filled) with
Co or Py square dots have been studied. The conclusions drawn
for these kinds of MCs can be generalized to other kinds of 2D
lattices and of different dot shapes in the nanometric range. The
nonmagnetic spacer breaks exchange interactions between the
magnetic materials of the matrix and the dot. However, most
importantly, this nonmagnetic spacer strongly modifies the
total magnetic field, especially also at the dot edges. Due to
these changes of the magnetic field, two types of end modes
appear in the same structure. These are the end mode localized
in the dot and that localized in the matrix. Their frequencies
strongly depend on the magnetization of the matrix and of the
dot material. Moreover, we have shown that, by employing
a single material (Py in our case), it is possible to design a
MC preserving the main properties of bicomponent MCs and
magnonic antidot lattices.

We have also shown that the introduction of a nonmagnetic
spacer and the change of the magnetic dot material allow
us to tailor in different ways the SW spectra in MCs. This
includes even the interchange of the SW frequency order.
This property can be further exploited for modeling the
magnonic band structure and magnonic band gaps towards
the properties desired for practical applications. Moreover, the
nonmagnetic spacer breaks the exchange interaction at the
border between the two ferromagnetic materials and allows
the fabrication of structures where magnetization reversal of
the dots can take place at magnetic field values different
from those causing magnetization reversal in the matrix (due
to different shape or crystalline magnetic anisotropy). Here,
there are more possibilities than in one-dimensional (1D)
reprogrammable structures [50,51], because the anisotropy
axis (and the magnetization) of the dots can be in an oblique
direction with respect to the magnetization of the matrix.

The results of this study are interesting also for the
investigation of the dynamical properties of bicomponent MCs
composed of hard and soft ferromagnetic materials, where
stray magnetic field originating from the dots (made of hard
ferromagnetic material) influences formation of the domain
pattern [52] but SW dynamics has not been investigated so far
in such structures.
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[43] G. Gubbiotti, P. Malagò, S. Fin, S. Tacchi, L. Giovannini,
D. Bisero, M. Madami, G. Carlotti, J. Ding, A. O. Adeyeye,
and R. Zivieri, Phys. Rev. B 90, 024419 (2014).

[44] M. Grimsditch, L. Giovannini, F. Montoncello, F. Nizzoli, G. K.
Leaf, and H. G. Kaper, Phys. Rev. B 70, 054409 (2004).

[45] W. F. Brown, Micromagnetics (Wiley, New York, 1963).
[46] R. Zivieri, F. Montoncello, L. Giovannini, F. Nizzoli, S. Tacchi,

M. Madami, G. Gubbiotti, G. Carlotti, and A. O. Adeyeye,
Phys. Rev. B 83, 054431 (2011).

[47] R. Zivieri, S. Tacchi, F. Montoncello, L. Giovannini, F. Nizzoli,
M. Madami, G. Gubbiotti, G. Carlotti, S. Neusser, G. Duerr,
D. Grundler, Phys. Rev. B 85, 012403 (2012).

[48] R. Zivieri, Solid State Phys. 63, 151 (2012).
[49] D. Stancil and A. Prabhakar, Spin Waves: Theory and Applica-

tions (Springer, Berlin, 2009).
[50] J. Topp, G. Duerr, K. Thurner, and D. Grundler, Pure Appl.

Chem. 83, 1989 (2011).
[51] S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, S. Goolaup,

A. O. Adeyeye, N. Singh, and M. P. Kostylev, Phys. Rev. B 82,
184408 (2010).

[52] S. Schnittger, S. Dreyer, Ch. Jooss, S. Sievers, and U. Siegner,
Appl. Phys. Lett. 90, 042506 (2007).

064416-10

http://dx.doi.org/10.1088/0022-3727/43/19/195002
http://dx.doi.org/10.1088/0022-3727/43/19/195002
http://dx.doi.org/10.1088/0022-3727/43/19/195002
http://dx.doi.org/10.1088/0022-3727/43/19/195002
http://dx.doi.org/10.1103/PhysRevB.79.054426
http://dx.doi.org/10.1103/PhysRevB.79.054426
http://dx.doi.org/10.1103/PhysRevB.79.054426
http://dx.doi.org/10.1103/PhysRevB.79.054426
http://dx.doi.org/10.1103/PhysRevB.86.184433
http://dx.doi.org/10.1103/PhysRevB.86.184433
http://dx.doi.org/10.1103/PhysRevB.86.184433
http://dx.doi.org/10.1103/PhysRevB.86.184433
http://dx.doi.org/10.1038/srep02444
http://dx.doi.org/10.1038/srep02444
http://dx.doi.org/10.1038/srep02444
http://dx.doi.org/10.1038/srep02444
http://dx.doi.org/10.1103/PhysRevB.89.224408
http://dx.doi.org/10.1103/PhysRevB.89.224408
http://dx.doi.org/10.1103/PhysRevB.89.224408
http://dx.doi.org/10.1103/PhysRevB.89.224408
http://dx.doi.org/10.1103/PhysRevB.91.024418
http://dx.doi.org/10.1103/PhysRevB.91.024418
http://dx.doi.org/10.1103/PhysRevB.91.024418
http://dx.doi.org/10.1103/PhysRevB.91.024418
http://dx.doi.org/10.1103/PhysRevB.78.054406
http://dx.doi.org/10.1103/PhysRevB.78.054406
http://dx.doi.org/10.1103/PhysRevB.78.054406
http://dx.doi.org/10.1103/PhysRevB.78.054406
http://dx.doi.org/10.1103/PhysRevB.84.094454
http://dx.doi.org/10.1103/PhysRevB.84.094454
http://dx.doi.org/10.1103/PhysRevB.84.094454
http://dx.doi.org/10.1103/PhysRevB.84.094454
http://dx.doi.org/10.1103/PhysRevB.86.014417
http://dx.doi.org/10.1103/PhysRevB.86.014417
http://dx.doi.org/10.1103/PhysRevB.86.014417
http://dx.doi.org/10.1103/PhysRevB.86.014417
http://dx.doi.org/10.1103/PhysRevB.89.014406
http://dx.doi.org/10.1103/PhysRevB.89.014406
http://dx.doi.org/10.1103/PhysRevB.89.014406
http://dx.doi.org/10.1103/PhysRevB.89.014406
http://dx.doi.org/10.1063/1.3662841
http://dx.doi.org/10.1063/1.3662841
http://dx.doi.org/10.1063/1.3662841
http://dx.doi.org/10.1063/1.3662841
http://dx.doi.org/10.1088/0022-3727/46/49/495003
http://dx.doi.org/10.1088/0022-3727/46/49/495003
http://dx.doi.org/10.1088/0022-3727/46/49/495003
http://dx.doi.org/10.1088/0022-3727/46/49/495003
http://dx.doi.org/10.1016/j.photonics.2014.04.001
http://dx.doi.org/10.1016/j.photonics.2014.04.001
http://dx.doi.org/10.1016/j.photonics.2014.04.001
http://dx.doi.org/10.1016/j.photonics.2014.04.001
http://dx.doi.org/10.1063/1.4898774
http://dx.doi.org/10.1063/1.4898774
http://dx.doi.org/10.1063/1.4898774
http://dx.doi.org/10.1063/1.4898774
http://dx.doi.org/10.1155/2012/161387
http://dx.doi.org/10.1155/2012/161387
http://dx.doi.org/10.1155/2012/161387
http://dx.doi.org/10.1155/2012/161387
http://dx.doi.org/10.1103/PhysRevB.83.094427
http://dx.doi.org/10.1103/PhysRevB.83.094427
http://dx.doi.org/10.1103/PhysRevB.83.094427
http://dx.doi.org/10.1103/PhysRevB.83.094427
http://dx.doi.org/10.1063/1.4710549
http://dx.doi.org/10.1063/1.4710549
http://dx.doi.org/10.1063/1.4710549
http://dx.doi.org/10.1063/1.4710549
http://dx.doi.org/10.1063/1.4804990
http://dx.doi.org/10.1063/1.4804990
http://dx.doi.org/10.1063/1.4804990
http://dx.doi.org/10.1063/1.4804990
http://dx.doi.org/10.1103/PhysRevB.89.104403
http://dx.doi.org/10.1103/PhysRevB.89.104403
http://dx.doi.org/10.1103/PhysRevB.89.104403
http://dx.doi.org/10.1103/PhysRevB.89.104403
http://dx.doi.org/10.1063/1.4860959
http://dx.doi.org/10.1063/1.4860959
http://dx.doi.org/10.1063/1.4860959
http://dx.doi.org/10.1063/1.4860959
http://dx.doi.org/10.1103/PhysRevB.90.024419
http://dx.doi.org/10.1103/PhysRevB.90.024419
http://dx.doi.org/10.1103/PhysRevB.90.024419
http://dx.doi.org/10.1103/PhysRevB.90.024419
http://dx.doi.org/10.1103/PhysRevB.70.054409
http://dx.doi.org/10.1103/PhysRevB.70.054409
http://dx.doi.org/10.1103/PhysRevB.70.054409
http://dx.doi.org/10.1103/PhysRevB.70.054409
http://dx.doi.org/10.1103/PhysRevB.83.054431
http://dx.doi.org/10.1103/PhysRevB.83.054431
http://dx.doi.org/10.1103/PhysRevB.83.054431
http://dx.doi.org/10.1103/PhysRevB.83.054431
http://dx.doi.org/10.1103/PhysRevB.85.012403
http://dx.doi.org/10.1103/PhysRevB.85.012403
http://dx.doi.org/10.1103/PhysRevB.85.012403
http://dx.doi.org/10.1103/PhysRevB.85.012403
http://dx.doi.org/10.1351/PAC-CON-11-03-06
http://dx.doi.org/10.1351/PAC-CON-11-03-06
http://dx.doi.org/10.1351/PAC-CON-11-03-06
http://dx.doi.org/10.1351/PAC-CON-11-03-06
http://dx.doi.org/10.1103/PhysRevB.82.184408
http://dx.doi.org/10.1103/PhysRevB.82.184408
http://dx.doi.org/10.1103/PhysRevB.82.184408
http://dx.doi.org/10.1103/PhysRevB.82.184408
http://dx.doi.org/10.1063/1.2435592
http://dx.doi.org/10.1063/1.2435592
http://dx.doi.org/10.1063/1.2435592
http://dx.doi.org/10.1063/1.2435592



