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Skyrmion dynamics in chiral ferromagnets
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We study the dynamics of skyrmions in Dzyaloshinskii-Moriya materials with easy-axis anisotropy. An
important link between topology and dynamics is established through the construction of unambiguous
conservation laws obtained earlier in connection with magnetic bubbles and vortices. In particular, we study the
motion of a topological skyrmion with skyrmion number Q = 1 and a nontopological skyrmionium with Q = 0
under the influence of an applied field gradient. The Q = 1 skyrmion undergoes Hall motion perpendicular to
the direction of the field gradient with a drift velocity proportional to the gradient. In contrast, the nontopological
Q = 0 skyrmionium is accelerated in the direction of the field gradient, thus exhibiting ordinary Newtonian
motion. When the applied field is switched off the Q = 1 skyrmion is spontaneously pinned around a fixed
guiding center, whereas the Q = 0 skyrmionium moves with constant velocity v. We give a systematic calculation
of a skyrmionium traveling with any constant velocity v that is smaller than a critical velocity vc.
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I. INTRODUCTION

Magnetization structures in the form of topological solitons
have come to the center of research interest following the
fabrication of various ferromagnetic materials. Magnetic
bubbles were intensively studied in the 1960s and 1970s
for technological applications [1], and theoretically predicted
magnetic vortices were experimentally observed as ground
states in mesoscopic magnetic elements in the 1990s [2,3].
Stable topological solitons had been predicted also in the
presence of the Dzyaloshinskii-Moriya (DM) interaction [4,5].
They were observed in recent years as isolated structures [6,7]
or forming lattices [8–10].

The dynamics of topological magnetic solitons, such as
bubbles and vortices, has been long recognized to display
peculiar features [11]. They are deflected in a direction almost
perpendicular to an applied magnetic field gradient [1] and
their dynamics is seen to be similar to the Hall motion
of a charged particle in the presence of a magnetic field.
A theoretical description links the dynamics of topological
solitons with their nonzero topological number, by example of
magnetic bubbles [12,13].

The opportunity now arises to study peculiar soliton
dynamics for the case of skyrmions in DM materials. These
materials are well suited for such studies for two main reasons.
The DM interaction introduces an intrinsic length scale which
defines the size of the skyrmion; therefore the skyrmion
is expected to be robust and remain rigid under external
probes. In the presence of easy-axis anisotropy we have a
topological skyrmion with skyrmion number Q = 1 as well
as nontopological Q = 0 solitons (2π vortices) [14,15], thus
allowing us to explore theoretical predictions for dramatically
different dynamical behaviors.

Skyrmions could be the stable and robust entities that
are needed for the technology of recording and transferring
information, currently mainly obtained in magnetic media
using domain walls. Current-induced motion is under intensive
study and it is a promising technique for the manipulation of
magnetic information [16–21]. The different dynamical behav-
iors which will be described in this paper can help skyrmions

emerge as particularly attractive entities for applications in the
area of transfer of magnetic information.

Section II gives a description of the model, Sec. III discusses
static Q = 1 and Q = 0 solutions, Sec. IV contains a review
of the theory and gives the main results of the dynamics of
skyrmions, and Sec. V contains our concluding remarks.

II. THE MODEL

We assume a thin film with easy-axis anisotropy perpen-
dicular to the xy plane of the film and with a DM energy
term [5]. If M = M(x,y) is the magnetization vector the
energy functional reads

W = A

M2
s

∫
∂μ M · ∂μ M dxdy + K

M2
s

∫ (
M2

1 + M2
2

)
dxdy

+ D

M2
s

∫
[(M1∂2−M2∂1)M3−(∂2M1 − ∂1M2)M3]dxdy,

(1)

where Ms is the saturation magnetization, A is the exchange
constant, K the anisotropy constant, and D the DM con-
stant. Spatial derivatives in Eq. (1) are denoted by ∂μ with
μ = 1,2 and ∂1 = ∂x,∂2 = ∂y . We have not included the energy
of the demagnetizing field in Eq. (1) because it does not affect
skyrmion configurations in a qualitatively significant way [22];
it introduces a dependence of the skyrmion size on the film
thickness [23]. Note that W in Eq. (1) is actually the energy
per unit length along the easy axis perpendicular to the film.

We define the normalized magnetization m = M/Ms , so
that m2 = 1. We further use �D = 2A/|D| as the unit of length;
hence the energy measured in units of 2A is given by (see
also [24])

W =1

2

∫
∂μm · ∂μm dxdy + κ

2

∫ (
m2

1 + m2
2

)
dxdy

+ λ

∫
[(m1∂2 − m2∂1)m3 − (∂2m1 − ∂1m2)m3]dxdy,

(2)
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where

λ = D

|D| = ±1 (3)

will be referred to as the chirality and

κ ≡ K

K0
, K0 = D2

4A
, (4)

is the rationalized (dimensionless) anisotropy constant. Unless
otherwise stated, we choose chirality λ = 1 in all of our
numerical calculations, while κ is taken to be positive (easy-
axis anisotropy).

The conservative Landau-Lifshitz (LL) equation associated
with the energy (2) is

∂m
∂t

= −m × f ,

f ≡ −δW

δm
= �m + κm3 ê3

− 2λ [∂2m3 ê1 − ∂1m3 ê2 + (∂1m2 − ∂2m1) ê3]. (5)

The time variable t is measured in units of τ0 = 2AMs/(γD2),
where γ is the gyromagnetic ratio.

We recall at this point that magnetic configurations are
characterized by the skyrmion number defined as

Q = 1

4π

∫
q dxdy, q = 1

2
εμνm · (∂νm × ∂μm), (6)

where q is called the topological density. The skyrmion
number Q is integer-valued (Q = 0,±1,±2, . . .) for all
magnetic configurations such that m = (0,0,±1) at spatial
infinity. For definiteness we assume m = (0,0,1) in all our
calculations.

We also construct a tensor σμν defined from

∂νσμν = − f · ∂μm = δW

δm
· ∂μm. (7)

A formal calculation gives the tensor components

σ11 = 1

2
(∂1m · ∂1m − ∂2m · ∂2m) + κ

2

(
m2

1 + m2
2

)
+ λ(m1∂2m3 − m3∂2m1),

σ12 = −∂1m · ∂2m + λ(m3∂1m1 − m1∂1m3),

σ21 = −∂1m · ∂2m + λ(m2∂2m3 − m3∂2m2),

σ22 = 1

2
(∂2m · ∂2m − ∂1m · ∂1m) + κ

2

(
m2

1 + m2
2

)
+ λ(m3∂1m2 − m2∂1m3). (8)

The topological density q together with the tensor σμν provide
important theoretical tools for the analysis of both static and
dynamical properties of the Landau-Lifshitz equation [12,13].

III. STATIC SKYRMIONS

The uniform (ferromagnetic) states m = (0,0 ± 1) are the
simplest static solutions of the LL equation (5) with total
energy W = 0. For large rationalized anisotropy κ the uniform
state is the ground state of the system. However, for sufficiently
low anisotropy a spiral state with energy W < 0 becomes the

ground state [5]. The transition happens at the critical value

κc = π2

4
≈ 2.4674. (9)

The period of the spiral increases for increasing anisotropy
and goes to infinity at the critical value κc.

In order to find nontrivial static solutions which satisfy the
equation m × f = 0 we may employ a relaxation algorithm
based on

∂m
∂t

= −m × (m × f ), (10)

typically implemented on a 300 × 300 lattice with uniform
spacing �x = �y = 0.1 and Neumann boundary conditions.
The numerical lattice is large enough so that it can be assumed
that an infinite film is simulated in all presented calculations.
An initial spin configuration will evolve under Eq. (10) in such
a way that its energy decreases monotonically and eventually
converges to a static solution of Eq. (5).

We now focus on axially symmetric skyrmion configura-
tions. These are conveniently described in terms of the standard
spherical parametrization for the magnetization given by

m1 = sin � cos �, m2 = sin � sin �, m3 = cos � (11)

using the ansatz

� = θ (ρ), � = φ + π/2, (12)

where (ρ,φ) are polar coordinates. Stationary solutions of
the energy functional (1) then satisfy the ordinary differential
equation [14,24]

d2θ

dρ2
+ 1

ρ

dθ

dρ
−

(
κ + 1

ρ2

)
cos θ sin θ + 2λ

ρ
sin2 θ = 0,

(13)
while the skyrmion number defined from Eq. (6) reduces to

Q = 1

2

∫ ∞

0

dm3

dρ
dρ = 1

2
[m3(∞) − m3(0)], (14)

where m3 = cos θ = m3(ρ) is the third component of
magnetization. Thus, if Eq. (14) is solved with boundary
conditions θ (ρ = 0) = π and θ (ρ → ∞) = 0, it leads to a
static skyrmion with Q = 1.

Boundary-value problems of the above nature are typically
solved by some sort of a shooting method [14]. Here we employ
a more general (actually simpler) method based on the fully
dissipative algorithm (10) which does not a priori assume
axial symmetry. Instead, we may initialize Eq. (10) with an
essentially arbitrary spin configuration with Q = 1 which then
converges to a static Q = 1 skyrmion that is a local minimum
of the energy functional (2). The result is shown in Fig. 1 for
anisotropy κ = 3 and its axial symmetry is evident. Also note
that the chirality of the skyrmion (counterclockwise rotation
in Fig. 1) is fixed by the sign of the DM constant (λ = 1). If we
choose λ = −1 then the profile m3 = m3(ρ) of the skyrmion
remains unchanged but its chirality is reversed. To be sure, the
skyrmion number is Q = 1 for either choice of chirality.

Figure 2 shows the skyrmion profiles for three values of
the anisotropy constant κ . As κ approaches κc from above,
the radius of the skyrmion diverges to infinity. There is no
evidence for the existence of skyrmions when κ < κc.
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FIG. 1. The static axially symmetric (Q = 1) skyrmion repre-
sented through the projection (m1,m2) of the magnetization vector on
the plane for anisotropy κ = 3.

Other axially symmetric static skyrmions can be found if
we assume multiple rotations of the magnetization as we move
radially from the skyrmion center. These were first identified
in Ref. [14] solving Eq. (13) with boundary conditions
θ (ρ = 0) = kπ,θ (ρ → ∞) = 0, with k = 1,2,3, . . ., where
k = 1 is the fundamental (Q = 1) skyrmion already discussed,
k = 2 leads to a Q = 0 configuration, in view of Eq. (14), and
so on.

In order to apply our relaxation algorithm for k = 2, we
first construct a suitable ansatz to be used as initial condition in
Eq. (10). We recall the axially symmetric Q = 1 configuration
constructed above, which we now denote by n = (n1,n2,n3).
We then apply the transformation [25]

m1 = 2n3n1, m2 = 2n3n2, m3 = 2n2
3 − 1. (15)

FIG. 2. The profiles m3 = cos θ = m3(ρ) of skyrmions (Q = 1)
for three values of the anisotropy parameter κ = 2.6,2.8,3.0.

FIG. 3. The static axially symmetric skyrmionium (Q = 0)
represented through the projection (m1,m2) of the magnetization
vector on the plane for anisotropy κ = 3.

The resulting configuration m remains axially symmetric
but its skyrmion number is Q = 0. This follows from the
fact that m3(ρ = 0) = 1 = m3(ρ → ∞). The magnetization
rotates to m3 = −1 at some intermediate radius. We apply
algorithm (10) inserting configuration (15) as initial condition.
The algorithm converges to an axially symmetric configuration
with Q = 0, shown in Fig. 3, for κ = 3. Such a configuration
may be called a skyrmionium [26] because it consists internally
of a skyrmion and an antiskyrmion. A comparison between the
skyrmion and the skyrmionium is given through their profiles
m3(ρ) plotted in Fig. 4 for the same anisotropy parameter
κ = 3.

FIG. 4. The profiles m3 = cos θ = m3(ρ) of a skyrmion (Q = 1)
and a skyrmionium (Q = 0) for anisotropy κ = 3.
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The existence of a static chiral skyrmion has been rigorously
established within a related model only for Q = 1 [27]. We
have searched numerically for static solutions of Eq. (5) with
Q = −1 or 2, which lack axial symmetry, but our relaxation
algorithm (10) did not converge to any such static solutions.
We will continue this study focusing on the axially symmetric
configurations shown in Figs. 1 and 3.

For static solutions such as those discussed in the present
section the tensor of Eq. (8) satisfies ∂λσμλ = 0. This yields
xν∂λσμλ = 0, while integration of both sides over the entire
plane and an elementary application of the divergence theorem
leads to [28] ∫

σμν dxdy = 0, (16)

where the indices μ and ν take the values 1 or 2 in any
combination and thus lead to four independent virial relations
that must be satisfied by any static solution. A special
combination of these relations yields the result∫

(σ11 + σ22) dxdy = 0 ⇒ 2Wa + WDM = 0, (17)

which was obtained through a scaling argument in Ref. [29] in
analogy to Derrick-Hobart relations [30,31]. Here, Wa is the
positive anisotropy energy while WDM is the Dzyaloshinskii-
Moriya energy that may be positive or negative and thus does
not exclude nontrivial static solutions. Another special case of
Eq. (16) gives∫

(σ12 − σ21)dxdy = 0

⇒
∫

[m3(∇ · m) − (m · ∇)m3]dxdy = 0, (18)

where ∇ = ê1∂1 + ê2∂2, and it is entirely due to the anisotropic
DM interaction.

IV. SKYRMION DYNAMICS

We now study the dynamics associated with the two
static solutions calculated in Sec. III, namely, the topological
(Q = 1) skyrmion and the nontopological (Q = 0) skyrmion-
ium. We shall find that significant differences arise in the two
cases, as anticipated by an important link between topology
and dynamics established in our early work [12,13] through
the construction of unambiguous conservation laws.

The main result is established rigorously by examining
the time evolution of the topological density q of Eq. (6).
A straightforward application of the LL equation (5) leads to

q̇ = −εμν∂μ( f · ∂νm) = εμν ∂μ∂λσνλ, (19)

where the overdot denotes time derivative and σνλ is the tensor
defined in Eq. (8). An immediate consequence of Eq. (19) is
that the integrated topological density, the skyrmion number
Q of Eq. (6), is conserved, as expected. Furthermore, the
appearance of the double spatial derivative on the right-hand
side of Eq. (19) suggests that some of the low moments of the
topological density are also conserved. The lowest nontrivial
moments are given by

Iμ =
∫

xμq dxdy, μ = 1,2, (20)

and their conservation (İμ = 0) is demonstrated by a simple
application of Eq. (19) and the divergence theorem. In order
to reveal the physical content of moments (20) we note that
under a rigid translation of spatial coordinates by a constant
vector (xμ → xμ + cμ) the moments transform as

Iμ → Iμ + 4πQcμ, (21)

which indicate an important difference between topological
(Q �= 0) and nontopological (Q = 0) magnetic solitons. The
two cases are studied in turn in Secs. IV A and IV B.

In order to probe skyrmion dynamics we consider the
effect of an applied magnetic field h = h(x,y,t) which may
be a nontrivial function of both spatial and time variables.
The question is then to predict the behavior of the magnetic
configuration after the field is turned on. The Landau-Lifshitz
equation (5) is then modified by the simple replacement
f → f + h. In particular, relation (19) becomes

q̇ = εμν ∂μ∂λσνλ − εμν∂μ(h · ∂νm). (22)

As a result the skyrmion number Q is still conserved, as
expected, but the moments Iμ are no longer conserved and
satisfy

İμ = εμν

∫
h · ∂νm dxdy. (23)

Yet studying the degree to which the conservation is violated
will give important information on the motion of skyrmions in
the presence of the applied field.

The rationalized field h is related to the physical field H by

h = H
H0

, H0 = D2

2Aμ0Ms

, (24)

and we may also write H0 = Ms(�ex/�D)2 where
�ex = √

2A/(μ0M2
s ) is the exchange length, the most com-

monly used length scale in micromagnetics.

A. Hall motion of Q = 1 skyrmion

In view of Eq. (21) the physical interpretation of moments
Iμ in Eq. (20) depends crucially on the skyrmion number Q.
For Q �= 0, the normalized moments

Rμ = Iμ

4πQ
= 1

4πQ

∫
xμq dxdy (25)

provide a measure of position. The 2D vector R = (Rx,Ry)
will be referred to as the guiding center of the magnetic
configuration in question and is conserved in the absence of a
magnetic field gradient. Thus, a magnetic soliton with Q �= 0
cannot move freely and is spontaneously pinned within the
ferromagnetic medium. However, motion is possible in the
presence of an applied magnetic field gradient.

We consider an initially static skyrmion such as the Q = 1
skyrmion shown in Fig. 1, and apply an applied magnetic field
with a gradient in the x direction:

h = (0,0,h), h = g xe−x2/a2
, (26)

where g is the strength of the gradient and a is a constant.
The field gradient is almost uniform for x < a and it fades
out for x > a. A pure gradient (h = gx) may be achieved in
the formal limit a → ∞. However, such a limit should be
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FIG. 5. Contour plots for m3 for a skyrmion under the field gradient (26) with g = −0.1, a = 10. Left: The static Q = 1 skyrmion of Fig. 1
is placed at the origin at initial time t = 0. Right: The skyrmion at simulation time t = 30. It moves along the y axis perpendicular to the field
gradient. The contour levels plotted are m3 = 0.9,0.6,0.3,0.0 (solid lines) and m3 = −0.3, − 0.6, − 0.9 (dashed lines).

taken with caution because the field would then reach high
values at large x and might destroy the uniform ground state
m = (0,0,1) in the presence of dissipation.

The velocity of the skyrmion guiding center is obtained by
inserting Eq. (26) in Eq. (23) and applying a partial integration

Ṙx = 0, Ṙy = − 1

4πQ

∫
∂xh (1 − m3)dxdy. (27)

The guiding center drifts along the y axis, thus in a direction
perpendicular to the applied field gradient. For a pure gradient
h = gx, applying Eq. (27) we find the simple formula

Ṙx = 0, Ṙy = − gμ

4πQ
, (28)

where μ = ∫
(1 − m3)dxdy is the total magnetization. For the

static Q = 1 skyrmion of Fig. 1 the numerical calculation
gives μ = 15.1; thus the expected velocity is Ṙy = −1.20g.
The above prediction is rigorously correct during the initial
stages of the process, but deviations from a constant velocity
are possible at later stages because the moment μ is not by
itself conserved.

The preceding results are verified by a direct numerical
simulation. We apply a field gradient (26) with g = −0.1 and
a = 10 and solve the initial value problem with the initial
condition provided by a static Q = 1 skyrmion (with κ = 3)
placed at the origin (0,0). The skyrmion moves coherently
in the y direction, that is, perpendicular to the field gradient.
Figure 5 shows the skyrmion at time t = 0 and at t = 30 when
it has drifted approximately �y = 4 units along the y axis.
The guiding center, shown in Fig. 6 (solid black line), moves
along the y axis with an almost constant velocity. Its initial
(t < 4) velocity is Ṙy = 0.12 in excellent agreement with the
prediction obtained from Eq. (28). At later times the guiding
center velocity increases to Ṙy = 0.13 while a corresponding
increase in the moment μ is observed.

One could heuristically invent more quantities to describe
the skyrmion position, whose usefulness depends on their
connection to actual measurements. A plausible measure of
position is given by the moments of the third component of

the magnetization:

X =
∫

x(1 − m3)dxdy∫
(1 − m3)dxdy

, Y =
∫

y(1 − m3)dxdy∫
(1 − m3)dxdy

. (29)

Figure 6 also shows the trajectory (X,Y ) obtained through the
numerical simulation. The position (X,Y ) closely follows the
guiding center, but is also decorated by Larmor oscillations.
The picture is strongly reminiscent of the cycloidal Hall motion
of an electric charge that moves under the influence of an
electric field and a magnetic field perpendicular to the plane
of the motion (see Ref. [32], p. 57).

FIG. 6. (Color online) Left: The trajectory of a Q = 1 skyrmion
under the influence of the field gradient (26) with g = −0.1, a = 10.
The guiding center propagates along the y axis, thus in a direction
perpendicular to the applied field gradient (straight black line). The
trajectory for the (X,Y ) of Eq. (29) is the cycloid shown by a solid
red line. After the applied field is suddenly switched off the guiding
center ceases to move further and the skyrmion trajectory organizes
itself in a rotational cyclotron-type motion around the fixed guiding
center. Right: A magnification of the latest stages of the process is
shown.
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The preceding analogy with Hall motion is further substan-
tiated by suddenly switching off the applied magnetic field
gradient after the skyrmion has moved a distance, say, �y = 4
along the y axis. The guiding center then ceases to move
further, while the skyrmion organizes itself in a cyclotron-type
rotational motion around the pinned guiding center (see Fig. 6).

B. Newtonian motion of Q = 0 skyrmionium

According to Eq. (21) the moments Iμ are invariant under
rigid translations for a Q = 0 skyrmion. Therefore, unlike the
case of the previous subsection for Q �= 0, the conservation
laws for Iμ do not exclude the possibility of free translational
motion when Q = 0. Furthermore, the linear momentum is
defined via the conserved Iμ as [12,13]

Pμ = εμνIν, μ,ν = 1 or 2. (30)

The invariance of linear momentum under rigid translations
is in accordance to the properties of ordinary momentum of a
point particle in Newtonian dynamics.

Newtonian dynamics allows for a steady state with constant
velocity when no forces are applied. We thus look for steady
states propagating rigidly with constant velocity v = (v1,v2),
i.e., m = m(x − vt ; v) satisfying ṁ = −vλ∂λm and thus

vλ∂λm = m × f . (31)

Now, take the cross product of both sides with m, then the dot
product with ∂νm, to obtain

ενλvλq = ∂λσνλ, (32)

where q is the topological density defined in Eq. (6) and
σνλ the tensor defined from Eq. (8). Equation (32) provides
the basis for the derivation of a series of interesting virial
relations generalizing the virial theorems (16) satisfied by
static solutions.

An immediate consequence of Eq. (32) is obtained by
integrating both sides over the entire xy plane:

ενλvλQ = 0, (33)

where Q is the skyrmion number of the magnetic soliton
in question. Therefore, we conclude that topological soli-
tons (Q �= 0) cannot be found in rigid translational motion
(vλ = 0). This elementary result is in agreement with a similar
conclusion reached for (Q = 1) skyrmions on the basis of the
conservation of the guiding center R in the absence of an
applied field gradient.

On the other hand, Eq. (33) does not exclude a rigidly
moving nontopological soliton (Q = 0) because it is then
trivially satisfied for any velocity vλ. In this case, Eq. (32)
can be further iterated by multiplying both sides with xμ and
then integrating over the entire xy plane to obtain the virial
relations [28]

(vλPλ)δμν − Pμvν =
∫

σμν dxdy, (34)

where Pμ is the linear momentum defined in Eq. (30) while
indices μ and ν take the values 1 or 2 in any combination
and thus lead to four independent virial relations. These must
be satisfied by any nontopological (Q = 0) magnetic soliton
moving rigidly with constant velocity v = (v1,v2).

Actual solutions of Eq. (31) are obtained numerically by a
generalization of the relaxation algorithm (10) used for the
calculation of static solutions in Sec. III. For definiteness
we assume rigid motion along the x axis (v1 = v,v2 = 0).
Equation (10) is then generalized according to

∂m
∂t

= −m ×
(

m × f − v
∂m
∂x

)
, v = u − P, (35)

where the velocity v is determined self-consistently in terms
of an arbitrary input parameter u and the momentum integral
P = Px = I2 calculated from Eq. (30) for each time step.
It should be noted that the momentum is not conserved by
the dissipative dynamics (35); hence the “velocity” v evolves
together with the spin configuration until they both reach
definite terminal values that are a local minimum of the
Lyapunov functional F = W + 1

2 (u − P )2. In view of the
constraint m2 = 1, which is compatible with Eq. (35), the
terminal state will satisfy the differential equation

v
∂m
∂x

= m × f (36)

and thus describes a magnetic soliton that moves rigidly along
the x axis with constant velocity v which depends on the input
parameter u and may be varied accordingly.

The algorithm is initiated with the static skyrmionium
of Fig. 3 and a nonzero value for the input parameter u.
The algorithm converges to a steady-state configuration with
velocity in the range

0 � v < vc, vc ≈ 0.102. (37)

Figure 7 shows the static together with a propagating skyrmio-
nium via contour plots for the magnetization component m3.
Note that a skyrmionium with v �= 0 is no longer axially
symmetric.

A further representation of the skyrmionium is given via the
topological density in Fig. 8. The negative lump of topological
density q moves off the center of the configuration for
v > 0. This gives manifestly a nonzero value P > 0 for the x

component of the linear momentum (30). For larger velocities
the large axis of the elliptically shaped contours increases
and apparently diverges to infinity for v → vc. We were able
to numerically calculate the propagating configurations up to
v ≈ 0.102.

The energy W of a propagating skyrmionium can be
calculated from Eq. (2) and its linear momentum P = (P,0) is
given by Eq. (30). Figure 9 shows that both W and P increase
with velocity v. For the static skyrmionium the energy W has a
nonzero value while P = 0. Both quantities diverge to infinity
as v → vc. We could verify numerically that the group velocity
relation

dW

dP
= v (38)

holds to a very good accuracy (∼1%).
It is particularly interesting that P is linear for values of the

velocity v � 0.06, and this motivates the definition of a mass
m for the skyrmionium from the Galilean relation

P = mv (39)
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FIG. 7. Contour plot for m3 for the static skyrmionium (left) and the propagating skyrmionium with velocity v = 0.07 (right). The contour
levels plotted with solid lines are m3 = 0.9,0.6,0.3,0.0 and with dashed lines m3 = −0.3, − 0.6, − 0.9.

FIG. 8. Contour plot for the topological density q of the static skyrmionium (left) and the propagating skyrmionium with velocity v = 0.07
(right). The contour levels plotted are chosen arbitrarily. Solid lines mean q > 0 and dashed lines q < 0.

FIG. 9. Left: Solid lines show the energy W of Eq. (2) and linear momentum P of Eq. (30) for a steady-state propagating skyrmionium as a
function of its velocity v. The open circles show results from a direct simulation discussed in the text. Right: The energy W versus momentum P

for a steady-state propagating skyrmionium. The curve is parabolic for low momenta in accordance with Eq. (41) but linear for large momenta
in agreement with Eq. (42).
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FIG. 10. Linear momentum P as a function of time for a
simulation where a field gradient (26) with g = −0.001, a = 10 is
applied to an initially static skyrmionium. The field is applied for
0 � t � 100, and is then suddenly switched off.

with the value m = 117 extracted from the numerical data.
Interestingly, the energy at low velocity is given by

W = W0 + 1
2mv2 (40)

with the same effective mass m, in agreement with the
group velocity relation (38) which may also be written as
dW/dv = v dP/dv. The corresponding energy-momentum
relation reads

W = W0 + P 2

2m
(41)

at low momenta. Figure 9 shows the numerically calculated
energy-momentum relation and confirms the parabolic rela-
tion (41) at low momenta. In the opposite limit v → vc the

energy-momentum relation is linear

W ≈ vcP (42)

which is also consistent with the group velocity relation (38).
Similar results have been recently obtained for a Q = 0
precessing magnetic droplet in a model without DM inter-
action [33].

In order to study the dynamics in the presence of an applied
field we use Eq. (30) for the definition of the linear momentum
and Eq. (23) applied for a field gradient (26). We obtain

Ṗx = −
∫

∂xh(1 − m3)dxdy, Ṗy = 0, (43)

which is the analog of Newton’s law for the case of a
nontopological (Q = 0) skyrmion. Under the field gradient the
skyrmionium acquires a linear momentum along the gradient
direction (x axis) according to Eq. (43) and confirms the
Newtonian character of its dynamics. For a pure gradient
h = gx we have

Ṗx = −gμ, Ṗy = 0, (44)

where μ = ∫
(1 − m3)dxdy is now the total magnetization of

the skyrmionium. For the static skyrmionium of Fig. 3 we have
μ = 73 and thus Ṗx = −73g.

Finally, we have conducted a series of numerical simula-
tions solving the initial value problem for the conservative
Landau-Lifshitz equation (5) using as initial condition the
static skyrmionium for κ = 3. We apply a field gradient (26)
with g = −0.001, a = 10, and find that the Q = 0 skyrmio-
nium indeed propagates along the direction of the gradient
(x axis) in sharp contrast to the Q = 1 skyrmion propagation
along the y axis shown in Fig. 6.

The field gradient is applied for the time interval
0 � t < 100 and is then switched off. Figure 10 shows the
linear momentum as a function of time for the simulation.
The increase is linear while the field is applied, in accordance
with the prediction of Eq. (43) or (44). From the numerical
data we obtain Ṗx = 0.065 which remains almost constant
throughout the simulation. This is in excellent agreement with
the prediction obtained from Eq. (43) (deviation less that 1%).

FIG. 11. Contour plots for m3 for a skyrmionium under the field gradient (26) with g = −0.001, a = 10. Left: The static Q = 0 skyrmionium
of Fig. 3 is placed at the origin at initial time t = 0. Right: The skyrmionium at simulation time t = 160. It propagates along the x axis in the
direction of the field gradient. The contour levels plotted are m3 = 0.9,0.6,0.3,0.0 (solid lines) and m3 = −0.3, − 0.6, − 0.9 (dashed lines).
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The prediction of the simplified Eq. (44) is Ṙx = 0.073 and
shows a deviation from the simulation result due to the
approximation of h with a pure gradient.

Figure 11 shows a contour plot for the magnetic configu-
ration at the initial time t = 0 and at t = 160. We observe
throughout the simulation that the configuration moves in
a rather coherent way. It has evolved from the initial static
skyrmionium [shown in Figs. 3 and 7 (left)] to a propagating
one very similar to the those we calculated earlier in this
subsection [shown in Fig. 7 (right) for v = 0.07].

At time t = 100 we suddenly switch off the applied field
and observe a free motion of the skyrmionium. Its momentum
remains constant and nonzero as shown in Fig. 10 for t > 100.
The skyrmionium propagates at a constant velocity confirm-
ing the Newtonian character of its dynamics. We switch
off the field for various times and measure the energy, linear
momentum, and velocity of the freely moving skyrmionium.
The results are shown by open circles which have been
superimposed on the plots for the energy vs velocity and
linear momentum vs velocity for steady states in Fig. 9.
They almost coincide with the data calculated for steady-state
configurations.

V. CONCLUSIONS

We have given a theoretical description of the dynamics
of topological and nontopological magnetic solitons in the
presence of the Dzyaloshinskii-Moriya interaction. When a
field gradient is applied the Q = 1 skyrmion undergoes Hall
motion perpendicular to the direction of the field gradient
with a drift velocity proportional to the gradient, according
to Eq. (27). When the applied field is switched off the
guiding center ceases to move while the skyrmion undergoes
cyclotron motion around its pinned guiding center. In contrast,
the Q = 0 skyrmionium is accelerated in the direction of
the gradient, with acceleration proportional to the applied
field [see Eq. (43)]. When the applied field is switched off
the skyrmionium continues traveling with constant veloc-
ity v in accordance with Newtonian dynamics of ordinary
particles.

The dramatically different dynamical behavior between
topological (Q �= 0) and nontopological (Q = 0) solitons had
been theoretically anticipated [11–13] but a full demonstration
had not been given due to the lack of a system where
both kinds of solitons could be conveniently studied. The
DM materials support robust topological and nontopological
magnetic solitons and thus appear to be particularly suitable
for dynamical studies. The dynamics can be induced by
external fields, as in the present paper, or by magnon-skyrmion
interactions [34,35].

The simulations presented show coherent propagation of
solitons. However, significant distortions of the magnetic
configurations set in for larger field gradient. For the simulation
of the Q = 0 skyrmionium we had to use a gradient as large
as |g| = 0.1 in order to observe significant distortions.

We have also given a calculation of skyrmionium in steady-
state propagation with velocities up to a maximum critical
velocity: v < vc. The energy-momentum relation resembles
that of a nonrelativistic particle for low momenta [see Eq. (41)]
but becomes relativistic-like (linear) for large momenta [see
Eq. (42)].

The picture derived in this paper with theoretical tools
together with straightforward numerical calculations is similar
to the observed dynamics of magnetic bubbles [1]. Topological
bubbles (Q �= 0) are notorious for their skew deflection in the
presence of an applied magnetic field gradient. The deflection
is in a direction almost perpendicular to the field gradient,
in general agreement to the 90◦ deflection of the Q = 1
skyrmion calculated in the present paper. The deviation from
the 90◦ deflection is due to the presence of dissipation in
bubble materials and should also be anticipated for DM
skyrmions. Magnetic bubbles, stabilized by the magnetostatic
interaction, are easily deformable under external probes while
the long-range nature of the interaction makes numerical
simulations more complicated. In contrast, chiral skyrmions
are stabilized by the local DM interaction; thus they are
robust and relatively easy to calculate numerically. The relation
between chiral skyrmions and bubbles have been discussed in
Refs. [23,36,37], where the differences in the energetics, in
stability, and of their cores were stressed.
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H. J. M. Swagten, M. Kläui, and S. Eisebitt, Nat. Phys. 11, 225
(2015).
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