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Thermal vector potential theory of magnon-driven magnetization dynamics
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Thermal vector potential formulation is applied to study the thermal dynamics of magnetic structures for
insulating ferromagnets. By separating the variables of the magnetic structure and the magnons, the equation
of motion for the structure, including spin-transfer effect because of thermal magnons, is derived for the cases
of a domain wall and a vortex. The magnon current is evaluated based on the linear response theory with the
thermal vector potential representing the temperature gradient. The velocity of a domain wall when driven by
thermal magnons exhibits a strong temperature dependence unlike the case of an electrically driven domain wall
in metals.
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I. THERMAL EFFECTS IN SPINTRONICS

The manipulation of magnetization and spin current without
an applied magnetic field is a key issue in spintronics tech-
nology. For metallic ferromagnets, electric current has been
shown to be very useful for switching the magnetization and
for driving magnetic domain walls using current-induced spin-
transfer torques proposed by Berger [1,2] and Slonczewski [3].
Moreover, metallic systems have been extensively studied for
spin current manipulation such as for direct and inverse spin
Hall effects [4,5]. In addition to metallic magnets, insulating
ferrimagnets, such as yttrium iron garnet (YIG), are also
expected to be useful spintronics materials [6] because of their
weak spin relaxation effects as represented by the small Gilbert
damping parameter, α. Although the use of electric current is
not applicable to insulators, extensive studies recently revealed
that manipulation of magnetization of YIG is possible using
several different methods, such as a temperature gradient
[7] and sound waves [8]. Thermal methods are particularly
important for realizing novel thermoelectric materials based
on magnetic materials [9,10], which are expected to be useful
for devices with low energy consumption.

Recently, thermally driven domain wall motion in a YIG
film was observed [11]. The domain wall was found to move
to the hotter side of the system with the speed of about
2 × 10−4 m/s for an applied temperature gradient of ∇T =
20 K/mm. The direction of the motion is counterintuitive
but consistent with the spin-transfer effect of spin waves
(magnons) [12,13]. In fact, magnons excited around the wall
are pushed by the temperature gradient to the colder side
and transfer spin angular momentum opposite to the local
magnetization, resulting in domain wall motion toward the
hotter side. This motion was studied from a thermodynamic
viewpoint by Wang [14] using numerical evaluation of the
entropy and free energy because of the magnons around the
wall. It was concluded that the wall motion to the hotter side
is consistent with the minimization of free energy when the
entropy because of magnons is considered. Thermal motion
of domain walls toward the colder end was observed in
metallic ferromagnets in 1986 [15]. While wall-entropy force
proportional to ∇T was suggested as a possible mechanism
[16,17], this behavior can be simply explained by the spin-
transfer torque induced by the thermally driven conduction
electrons. In 2010, Hals et al. [18] studied a thermal motion of

a domain wall in GaMnAs, including the effect of thermally
induced force calculated by scattering theory; The spin transfer
effect caused by magnons was not considered.

Domain walls under a temperature gradient were numer-
ically studied by solving the Landau-Lifshitz-Gilbert (LLG)
equation for spins in Ref. [12], in which the effect of temper-
ature was modeled as a random magnetic field satisfying the
fluctuation-dissipation theorem. The results indicated that the
behavior of the wall is essentially the same as in the electric-
current-driven case [19–21]. For instance, a sliding motion
with a constant tilting angle occurs for the case of a low driving
force or for large damping, and the tilting angle becomes
time-dependent, resulting in a screw-like motion when the
driving force exceeds a threshold value corresponding to
Walker’s breakdown field. Moreover, the LLG approach was
used to study the motion of magnetic skyrmions [22], which
turned out to move to the hotter region in the same manner
as domain walls with a velocity inversely proportional to the
Gilbert damping parameter, α. The numerical results were
explained by the Brownian motion of the skyrmions driven
by thermal random magnetic field and the spin-transfer effect
from thermal spin waves. The spin wave spin-transfer effect
contributing to the motion toward the hotter side is proportional
to ∇T/α, while the velocity because of the Brownian motion,
which pushes the skyrmions to the colder side, is proportional
to α∇T ; thus, it is negligible for small α.

The approach describing thermal effects using a random
magnetic field was also employed in Refs. [23,24]. In Ref.
[23], the force on the domain wall induced by thermal magnons
in the presence of Gilbert damping was calculated and the
effective nonadiabaticity parameter for a thermal force βT

was found to be βT ∼ d
2 α, where d is the dimension. The

temperature dependence of the exchange stiffness resulted
in another magnon-induced force (so-called entropic force)
proportional to the gradient of magnon density [24,25].
Magnon reflection by the wall was extensively studied in
Ref. [26], and the reflection was shown to exert a force
on the domain wall in the same manner as in the case of
electron reflection discussed in Ref. [27]. The reflection rate
was calculated based on the Landauer-Büttiker formula and
the temperature dependence of the force was investigated.

This study aims to present a consistent theoretical for-
malism for magnetization dynamics induced by thermally
driven magnons based on the linear response theory. The
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expression for magnon spin-transfer torque is derived in a
rigorous mathematical manner using a unitary transformation
in spin space, and the magnon current is evaluated quantum
mechanically using the linear response theory. Therefore, the
torque caused by thermal magnons is treated in the same
manner as in the case driven by an electric current [21].
We have not discussed the magnon force described in Refs.
[23,26]; however, a force because of the nonadiabaticity can be
incorporated into the present framework in a straightforward
manner.

II. LUTTINGER’S FORMULATION
OF THERMAL TRANSPORT

Theories of thermally driven magnetic systems have, to
date, been mostly phenomenological [11,17,28] or numerical
[12,22] and have lacked a microscopic viewpoint. The reason
for this is obvious: the temperature gradient appears to
be impossible to integrate into a linear response theory or
field-theoretical methods in a straightforward manner because
its effect is not described by a microscopic interaction
Hamiltonian. However, this difficulty was removed for electron
transport phenomena by Luttinger in 1964 [29]. He introduced
a fictitious scalar field called a “gravitational” potential, �,
which couples to the local energy density, E , by an interaction
Hamiltonian:

HL =
∫

d3r�E . (1)

It was argued that � satisfies ∇� = ∇T
T

and that a linear
response theory (Kubo formula) is applicable to the thermally
driven case by considering the correlation functions of the
energy current density. Multiple studies based on the “gravita-
tional” potential formalism have been conducted on electron
transport [30–37], quantum dots [38], magnon transport
[39–41], and thermal torques [42]. At the same time, it has
been observed that a naive application of the Kubo formula
may result in wrong thermal coefficients [30,31,35,42].

An alternative Landauer-like approach of connecting lo-
cally equilibrium systems at different temperatures may be
used for studies of thermal transport [43,44]. It was shown
in Ref. [43] that the obtained transport coefficients do not
display an unphysical divergence because they are only caused
by the electrons at the Fermi energy level. A quantum kinetic
equation approach was employed in Refs. [33,34] to study
electron correlation effects; however, a completely quantum
mechanical description based on the linear response theory
would be more widely applicable and highly useful.

Approaches to extract correct results based on the “gravi-
tational” potential formalism were explored in some previous
studies [30,35,42]. For thermally induced electron transport,
Smrcka and Streda performed a calculation of the thermal
Hall effect in the presence of an applied magnetic field
based on Luttinger’s method [30,31]. They rewrote Luttinger’s
interaction, �E , as −E r · ∇� using integration by parts and
performed a perturbative expansion with respect to a physical
force proportional to ∇� = ∇T/T . However, this analysis
is based on an expansion with respect to an interaction
proportional to an unbounded operator, r; thus, the results may
not always be convincing. Recent studies of thermal magnons

are based on the same approach [41]. Qin et al. reported that
a naive application of Luttinger’s approach for the thermal
Hall effect leads to a unphysical divergence at T → 0 and
that this divergence is caused by an equilibrium rotational
electron current induced when the time-reversal invariance is
broken by the magnetic field [35]. They demonstrated that the
correct nonequilibrium response is obtained if one subtracts
the equilibrium current before applying the “gravitational”
potential.

The case of a thermally induced torque in ferromagnetic
metals was studied in detail by Kohno et al. [42]. They
calculated the nonequilibrium torque on the magnetization
generated by the conduction electrons when a temperature
gradient is applied and found that unphysical divergence arises
for a straightforward application of Luttinger’s approach.
Moreover, they demonstrated that the divergence is caused by
the equilibrium torque describing the exchange interaction be-
tween the magnetization and that this equilibrium contribution
must be removed when treating the nonequilibrium torque.

III. VECTOR POTENTIAL FORMULATION

Recently, in Ref. [45], the problems associated with
Luttinger’s formalism were reported to be caused by the
“gravitational” potential coupling to the total energy density,
thus modifying the equilibrium properties in addition to
inducing the nonequilibrium response. It was shown that the
role of diamagnetic current, which is essential for removing
unphysical equilibrium (nondissipative) contribution from
transport coefficients [35,46], is not seen directly in the scalar
potential formalism. Instead of a scalar potential formalism,
a vector potential formalism to describe thermally induced
transport was developed in Refs. [45,47]. In Ref. [47], Shitade
demonstrated using the analogy of general relativity [48] that
if an invariance under time translation is locally imposed,
a vector potential arises from Luttinger’s scalar potential
and they are described by a gauge invariant theory. He
applied his model to describe the thermal Hall effect of
noninteracting electrons and showed that the results satisfy the
Wiedemann-Franz law; however, the origin of the invariance
under local time translation was not explained. In Ref. [45],
the vector potential was introduced by rewriting Luttinger’s
Hamiltonian for “gravitational” potential using the law of
energy conservation in the static (dc) limit of the temperature
gradient and was discussed in the context of the entropy
force. Because the thermal vector potential couples to the
energy current, it only generates excitations and does not alter
equilibrium contributions. Thus, the vector potential repre-
sentation enables straightforward linear response calculations
for thermal dynamics on the same footing as in the electric
field-driven case. The unphysical equilibrium contributions
are indeed automatically canceled by “diamagnetic” currents
associated with the vector potential. A possibility of vector
potential description was briefly mentioned in Ref. [49] while
discussing magnon-drag thermoelectric effects.

The vector potential form of the interaction Hamiltonian
describing the thermal effect is

HAT
≡ −

∫
d3r jE (r,t) · AT (t), (2)
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where jE is the energy current density and AT (t) is the thermal
vector potential, which satisfies

∂t AT (r,t) = ∇�(r,t) = ∇T

T
. (3)

The interaction Hamiltonian of Eq. (2) was used to describe
thermally induced longitudinal transport and the Hall effect of
noninteracting electrons [45,47].

In this study, we apply this formalism to study thermally
induced magnetization dynamics. The vector potential rep-
resentation turns out to be highly useful, enabling a clear
description of thermal torque in the same manner as that for
the electrically driven case [21].

IV. ENERGY CURRENT OF LOCALIZED SPINS

To study thermal transport using Eq. (2), the expression
for the energy current density must be derived. Following
Ref. [45], we perform the derivation quantum mechanically
using the law of energy conservation [50]:

Ė + ∇ · jE = 0. (4)

We consider a case of a ferromagnet with an easy-axis and
a hard-axis magnetic anisotropy energies. The Hamiltonian
describing the localized spin S is H ≡ ∫

d3rE , in which

E = 1

2a3
[J (∇S)2 − K(Sz)

2 + K⊥(Sy)2] (5)

is the energy density; J,K(>0), and K⊥(�0) represent the
energy of the exchange interaction, the easy-axis anisotropy,
and the hard-axis anisotropy, respectively; and a is the atomic
lattice constant. The energy current density in this case is
obtained as (see Sec. I for the derivation)

jE,i = − J

a3
∇i S · Ṡ. (6)

Thermally driven dynamics of the spin structure is calculated
below as a linear response to the interaction HAT

[Eq. (2)] with
the energy current density of Eq. (6).

V. SEPARATION OF VARIABLES

To perform the calculation of thermally driven magnetiza-
tion dynamics, we separate the collective degrees of freedom
describing a classical magnetization structure and fluctuation
(magnons or spin waves) around the structure. The directions
of the localized spins for the classical solution are represented

using polar angles θ (r,t) and φ(r,t), which are defined
by S = S(sin θ cos φ, sin θ sin φ, cos θ ) (S ≡ |S|). Then, the
magnon excitation around the structure is represented using
the Holstein-Primakov boson defined with respect to the local
quantization axis along S. The localized spin vector S is thus
represented as

S = U (r,t )̃S ≡ U (r,t)(S ẑ + δs), (7)

where ẑ is the unit vector along the z axis; U is a 3 × 3 unitary
matrix describing a rotation of a vector ẑ to the direction
S, i.e., S̃ ≡ S ẑ + δs; and δs represents the fluctuation. The
unitary matrix is chosen as follows [51]:

U =
⎛⎝cos θ cos φ − sin φ sin θ cos φ

cos θ sin φ cos φ sin θ sin φ

− sin θ 0 cos θ

⎞⎠, (8)

and the fluctuation is represented in terms of annihilation
and creation operators for the magnon (the Holstein-Primakov
boson), b and b†, as follows [52]:

δs =
⎛⎝ γ (b† + b)

iγ (b† − b)
−b†b

⎞⎠, (9)

where γ ≡
√

S
2 . We neglect the terms that are third- and higher-

order in boson operators.
The unitary transformation modifies the derivatives of spin

as (μ = t,x,y,z)

∂μS = U (∂μ + iAU,μ )̃S, (10)

where

AU,μ ≡ −iU−1∇μU (11)

is the spin gauge field represented by a 3 × 3 matrix. Explicitly,
the spin gauge field is expressed by

AU,μ = −i∇μθ

⎛⎝ 0 0 1
0 0 0

−1 0 0

⎞⎠
− i∇μφ

⎛⎝ 0 − cos θ 0
cos θ 0 sin θ

0 − sin θ 0

⎞⎠. (12)

The energy current density [Eq. (6)] is then

jE,i = − J

a3
S̃(

←
∂t −iAU ,t )(∇i + iAU ,i )̃S

= − J

a3

(
S2[(∇iθ )θ̇ + sin2 θ (∇iφ)φ̇]

(
1 − 1

S
b†b

)
+ S[ḃ†(∇ib) + (∇ib

†)ḃ]

+ S{−i cos θ [φ̇(b†
↔∇b) + (∇iφ)(b†

↔
∂t b)] + 2 cos2 θ (∇iφ)φ̇b†b}

+ Sγ {−i cos θ [θ̇ (∇iφ) + (∇iθ )φ̇](b† − b) + (θ̇ + i sin θφ̇)(∇ib
†) + (θ̇ − i sin θφ̇)(∇ib)

+ (∇iθ + i sin θ∇iφ)(ḃ†) + (∇iθ − i sin θ∇iφ)(ḃ)}
)

. (13)
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The first term,

j
(s)
E,i ≡ − J

a3
S2[(∇iθ )θ̇ + sin2 θ (∇iφ)φ̇]

(
1 − 1

S
b†b

)
, (14)

is the energy current carried by the magnetization structure,
and

j
(m)
E,i ≡ −JS

a3
[ḃ†(∇ib) + (∇ib

†)ḃ] (15)

is the contribution of the magnons. The temperature gradient
appears to act on the magnetization structure as well as on
the spin waves; however, we must be careful because Eq. (14)
may contain a steady-state contribution that does not contribute
to the thermally excited response (see Sec. VII). The mixed
contributions in Eq. (13), in which the energy current is carried
by both the spin texture and the magnon, turn out to be second
order in the temperature gradient and are therefore neglected.
Similarly, the last contributions linear in the magnon operators
are neglected. Thus, it is sufficient to consider the two energy
currents given by Eqs. (14) and (15) in the following analysis
of the linear response regime. Neglected interactions lead to
nonadiabatic corrections such as the force because of magnon
reflection.

VI. MAGNON SPIN-TRANSFER EFFECT

Using Eq. (10), the exchange interaction is written as
follows:

J

2

∫
d3r

a3
(∇S)2 = J

2

∫
d3r

a3
(∇ S̃)2 + H st

J , (16)

where

H st
J ≡ −i

J

2

∫
d3r

a3
S̃
†
(AU · ↔∇)̃S

= 4JS

∫
d3r As · j (0)

m (17)

represents the interaction between the spin structure and
the magnons (superscript st denotes spin transfer), and the
contributions that are second order in AU are neglected. Here,

As ≡ 1
2 cos θ∇φ (18)

is the adiabatic component of the spin gauge field [21], and

j (0)
m ≡ − i

2a3
(b†

↔∇b) (19)

is the magnon current density without the vector potential
contribution (“paramagnetic” magnon current density). As
seen in Eq. (17), the magnon current couples to the adiabatic
spin gauge field in a manner similar to the electric current in
metals in the adiabatic regime [21,27]. Therefore, the magnon
current induces the spin-transfer torque with the transferred
angular momentum per area and per unit time of 4JSjm

[instead of �

e
Pj in the case of electric current (P is the spin

polarization of the current and e is the electron charge)].
Another contribution to the interaction between the mag-

netization structure and the magnons is the one arising from
HAT

[Eq.(2)]. Using Eq. (13), the spin-transfer terms in HAT

are

H st
AT

≡ i
J

a3
AT,i

∫
d3r[(∂t S̃)AU ,i S̃ + (∇i S̃)AU ,t S̃]. (20)

Considering only the contributions that are second order in the
magnon operators, Eq. (20) becomes

H st
AT

= 4JS

∫
d3r As · j (d)

m , (21)

where

j (d)
m ≡ − i

2a3
AT (b†

↔
∂t b) (22)

is the “diamagnetic” magnon current. Thus, the total magnon
spin-transfer effect is described by

HST = 4JS

∫
d3r As · jm, (23)

where jm ≡ j (0)
m + j (d)

m .

VII. DOMAIN WALL

Let us describe a domain wall based on the Hamiltonian
Eq. (5). We consider a thin wire so that the magnetization
structure is treated as one-dimensional, i.e., changing only in
the wire direction, which we choose as the z axis. The classical
solution of the equation of motion is as follows:

cos θ = tanh
z − X(t)

λ
, sin θ = 1

cosh z−X(t)
λ

, (24)

and ∇zφ(t) = 0, where λ ≡
√

J
K

is the thickness of the domain
wall. Then, we have

∇z S = −S

λ
eθ , (25)

where eθ ≡ (cos θ cos φ, cos θ sin φ,− sin θ ).
We first demonstrate that the energy current of the wall

given by Eq. (14) is an equilibrium contribution, which should
not be considered. Let us first see what happens if Eq. (14) is
naively applied. Neglecting the corrections of the order of S−1

by magnons, Eq. (14) for domain wall is

j
(s)
E,i = δi,z

JS2

λ2a3
Ẋ

1

cosh2 z−X(t)
λ

. (26)

Then, the coupling between the domain wall and temperature
gradient described by Eq. (2) becomes

HAT
= 2AJS2

a3λ

∇zT

T

∫ t

0
dt ′Ẋ(t ′) = Nw

JS2

λ2

∇zT

T
X, (27)

where Nw ≡ 2λA/a3 is the number of spins in the wall (A is
the cross sectional area of the system). One may be tempted
to conclude that the thermal force on the wall is

FT ≡ −δHAT

δX
= −Nw

JS2

2�λ2

∇zT

T
, (28)

but the increase of this force at lower temperatures when ∇T

is fixed is unphysical [53]. The problem arises from the energy
current density of Eq. (26), which indicates that the energy
current increases proportionally to the wall speed Ẋ. However,
this energy current is a steady-state current, which does not
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contribute to the entropy change because the energy carried
by the domain wall is not converted to heat unless the wall is
annihilated. Therefore, to consider the standard experimental
situation in which the wall is semimacroscopic and is not
annihilated, the steady-state contribution must be subtracted
from Eq. (26), resulting in a vanishing energy current for
the wall. This treatment is consistent with the argument in
Ref. [14]. The direct thermal force is physical if we consider
an ensemble of domain walls that are allowed to be created
and annihilated (see Sec. VIII).

Therefore, the thermal effect for a domain wall is caused
only from the magnon interaction H st

J [Eq. (17)]. Because
δAs ,i

δφ
= 1

2 sin θ∇iθ , the force and torque induced by the
magnon interaction are given by

Fm ≡ −δH st
J

δX
= 0,

τm ≡ δH st
J

δφ
= −2JS

λ
jm,z

∫
d3r

1

cosh2 z
λ

= −2NwJSa3

λ
jm,z.

(29)

In Eq. (29), the force from the magnon disappears because here
we consider a static one-dimensional domain wall neglecting
wall-magnon interactions in Eq. (13) so that the magnons are
in the perfect adiabatic limit [54]; i.e., magnon modes are
orthogonal to the collective modes of a static one-dimensional
domain wall [21]. The force from the magnons may arise
when the wall is dynamic [55] or higher-dimensional and
in the presence of either the dipolar interaction [56] or
Gilbert damping [23]. Here, using a dimensionless parameter
βT , we phenomenologically introduce the thermal force as
Fβ ≡ −βT

NwS

λ2 kBa2∇zT . (The coefficient βT was shown to be
βT ∝ α in Refs. [23,24] and βT ∝ |r|2 (|r|2 is the magnon
reflection rate) in Ref. [26].) Including this force and the
thermal magnon effects, the equation of motion for the wall is
then

φ̇ + α
Ẋ

λ
= −βT

kBa2

�λ
∇zT ,

Ẋ − αλφ̇ = K⊥λS

2�
sin 2φ + λ

�NwS
τm (30)

= K⊥λS

2�
sin 2φ − 2Ja3

�
jm,z.

Note that the magnitude of the magnon current is evaluated
in Sec. IX using linear response theory with respect to HAT

.

VIII. VORTEX

Let us next consider the case of a single vortex that appears
in a two-dimensional submicron size disk. The Hamiltonian
describing the vortex is given by

H =
∫

d2r

a2

[
J

2
(∇S)2 − K

2
(Sz)

2

]
, (31)

and the vortex structure with a vortex number of unity is
approximately represented as follows [57]:

Sv(r) = S

[
cos

(
ϕ + π

2
c

)
ex + sin

(
ϕ + π

2
c

)
ey

]
, (32)

where tan ϕ = y

x
and c is an integer representing chirality.

Using the collective coordinates X(t) and Y (t) to represent
the center of the vortex in two dimensions, the spin structure
is S(r,t) = Sv[r − X(t)], where X(t) ≡ [X(t),Y (t)]. We first
consider the case where the vortex cannot be annihilated, as
is for the domain wall case; here, all thermal effects then are
caused by the magnons. For a uniform magnon current, the
spin-transfer torque because of magnons [Eq. (17)] is written
as follows:

H st
J = 2J

S2

∫
d2r S · [(

j (2d)
m · ∇)

S × δS
]
, (33)

where δS is the change of S when the origin of X is
shifted by an amount δX = (δX,δY ). (This representation
is convenient for focusing on the physical contribution in
topological quantities for spin [58].) The magnon current
density j (2d)

m is the two-dimensional one ( j (2d)
m = jmLz where

Lz is the thickness of the system). Therefore, the force because
of spin transfer is

Fst,i ≡ −δH st
J

δXi

= −2J

S2

∫
d2r S · [∇i S × ∇j S]j (2d)

m,j . (34)

This force is characterized by the topological number density
of the vortex,

G = �

S2

∫
d2r

a2
S · [∇x S × ∇y S] = 2π�S

a2
, (35)

as

Fst = 2Ja2

�
G × j (2d)

m , (36)

where G ≡ G ẑ. The equation of motion of a vortex is then
[51,57]

−G × Ẋ + αD Ẋ = Fst, (37)

where D � �S
a2

∫
d2r sin2 θ (∇φ)2 is a form factor for damping.

The equation is written as

Ẋ + 2Ja2

�
j (2d)

m = −αD

G2
G × Ẋ . (38)

Thus, the velocity is

Ẋ = − 1

1 + (
αD
G

)2

(
1 + iσy

αD

G

)
2Ja2

�
j (2d)

m , (39)

where σy is the y component of the Pauli matrix. Then,
we consider the case of a temperature gradient along the x

direction. Because the magnon current is along ∇T , the vortex
velocity is (

Ẋ

Ẏ

)
= 1

1 + (
αD
G

)2

2Ja2

�
j (2d)

m

(−1
αD
G

)
. (40)

A direct force term proportional to ∇xT appears in a
previous numerical simulation study of the Fokker-Planck
equation performed for a skyrmion [22]. (A single skyrmion
and a vortex are described by the same equation called the
Thiele equation [51] and thus exhibit a response similar to
applied forces.) Such a direct force arises in our formalism by
considering annihilation of vortices by considering the energy
current Eq. (14) as physical current contributing to the entropy
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production. The energy current density in this case becomes
jE = γv Ẋ (γv is a temperature-dependent coefficient), and the
direct thermal force becomes

FT = −δHAT

δX
= γv

T
∇T . (41)

Because the annihilation of vortices requires a finite excitation
energy, γv vanishes quickly at T = 0; therefore, the force will
vanish at T = 0. It would be interesting to experimentally
study whether the direct thermal force does or does not exist.

IX. LINEAR RESPONSE THEORY
OF MAGNON CURRENT

We calculate the magnon current induced by the temper-
ature gradient within the linear response theory using the
nonequilibrium Green’s function. (Standard Kubo formula
calculation is also applicable.) The interaction HAT

in the
Fourier representation of the magnon operators [b(r,t) =√

a3

V

∫
dω
2π

∑
qe

i(q·r−ωt)bq,ω] is given by

HAT
= −2JS

∫
dω

2π

∫
d�

2π

1

V

∑
q

ei�tqiω

×AT,i(−�)b†
q,ω+ �

2
bq,ω− �

2
, (42)

where � is an infinitesimal external angular frequency and V

is the system volume. The “paramagnetic” and “diamagnetic”
magnon currents described by Eqs. (19) and (22), respectively,
are

j
(0)
m,i = i

∫
dω

2π

∫
d�

2π

1

V

∑
q

ei�tqiG
<

q,ω− �
2 ,q,ω+ �

2
,

j
(d)
m,i = −i

∫
dω

2π

∫
d�

2π

1

V

∑
q

ei�tωAT,i(−�)G<

q,ω− �
2 ,q,ω+ �

2
,

(43)

where G<
q,ω,q ′,ω′ ≡ −i〈b†q ′ω′bqω〉 is the lesser component of

the nonequilibrium Green’s function of magnons [59]. The
“paramagnetic” contribution is calculated at the linear order in
HAT

as

j
(0)
m,i = −i

2JS

V

∫
dω

2π

∫
d�

2π

∑
q

qiqjω
[
gq,ω− �

2
gq,ω+ �

2

]<
,

(44)

where gqω denotes the free nonequilibrium Green’s function.
The lesser Green’s function is written in terms of retarded and
advanced Green’s functions as follows [60]:[
gq,ω− �

2
gq,ω+ �

2

]<

=
[
n

(
ω + �

2

)
− n

(
ω − �

2

)]
gr

q,ω− �
2
ga

q,ω+ �
2

− n

(
ω + �

2

)
gr

q,ω− �
2
gr

q,ω+ �
2

+ n

(
ω − �

2

)
ga

q,ω− �
2
ga

q,ω+ �
2

� n(ω)
[(

ga
q,ω

)2 − (
gr

q,ω

)2] − �

2
n′(ω)

(
ga

q,ω − gr
q,ω

)2
, (45)

where n(ω) ≡ [eβω − 1]−1 is the Bose distribution function,
n′(ω) ≡ dn

dω
, β ≡ 1/(kBT ) (kB is the Boltzmann constant), and

we have neglected contribution of the order of �2. The retarded
and advanced Green’s functions are

gr
qω = 1

ω − ωq + iαω
, (46)

and ga
qω = (gr

qω)∗, where ωq is the angular frequency of the
magnon with a wave vector q and the effect of Gilbert damping
is included as an imaginary part. Thus, the “paramagnetic”
magnon current is

j
(0)
m,i = JS

∫
dω

2π

∫
d�

2π

1

V

∑
q

qiqj (i�)

×AT,j (−�)ωn′(ω)
(
ga

qω − gr
qω

)2

+ i

∫
dω

2π

∫
d�

2π

1

V

∑
q

AT,i(−�)ωn(ω)
(
ga

qω − gr
qω

)
,

(47)

where we used 2JSqj (ga
qω)2 = ∂qj

ga
qω. Similarly, the “dia-

magnetic” magnon current is calculated as follows:

j (d)
m = −i

∫
dω

2π

∫
d�

2π

1

V

∑
q

AT,i(−�)ωn(ω)
(
ga

qω − gr
qω

)
.

(48)

We see that the “diamagnetic” current cancels an equilibrium
contribution of the “paramagnetic” current, resulting in (as-
suming rotational symmetry and using

∫
d�
2π

(−i�)AT,i(−�) =
ȦT = ∇T

T
)

jm,i = −κ∇iT , (49)

where the coefficient κ is

κ = JS

3�

1

T

∫
dω

2π

1

V

∑
q

q2ωn′(ω)
(
gr

qω − ga
qω

)2

= −4JS

3�
α2 1

T

1

V

∑
q

q2
∫

dω

2π
n′(ω)

ω3

[(ω − ωq)2 + (αω)2]2
.

(50)

To evaluate the summation over q, we consider the case
of uniaxial anisotropy (K⊥ � K) for simplicity. Then, the
magnon energy is �ωq = JSq2 + �sw, where �sw = KS is
the gap of spin wave. The summation over q is performed in
three dimensions, and by defining ε ≡ JSq2 + �sw, we obtain

1

V

∑
q

q2 1

[(ω − ωq)2 + (αω)2]2

= 1

4π2(JS)5/2

∫ ∞

�sw

dε(ε − �sw)3/2 1

[(ε − ω)2 + (αω)2]2

= 1

2π (JS)5/2α3
θ (ω − �sw)

(ω − �sw)3/2

ω3
, (51)

where θ (x) is the step function and we used an approximation
(using α � 1)

1

[(ε − ω)2 + (αω)2]2
� 2π

(αω)3
δ(ε − ω). (52)
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Thus, the result is

κ = − 1

3π2(JS)3/2

1

αT

∫ ∞

�sw

dω(ω − �sw)3/2 dn(ω)

dω

= 1

2π2(JS)3/2

1

α
kB(kBT )1/2F (β�sw), (53)

where

F (β�sw) ≡
∫ ∞

β�sw

dx
(x − β�sw)1/2

ex − 1
. (54)

At high temperatures, β�sw � 1, F = 2.315. Note that the
thermal transport coefficients are proportional to the damping
time constant, α−1, in the same manner as in the electric
transport coefficients in metals are proportional to the elastic
lifetime, τ . The obtained result, κ ∝ √

T /α, agrees with the
semiclassical calculation in the supplementary information of
Ref. [11].

X. DOMAIN WALL SOLUTION

Using the result for the magnon current given by Eqs. (49)
and (53), the equation of motion for a domain wall [Eq. (30)]
is expressed as follows:

φ̇ + α
Ẋ

λ
= βT

uT

λ
, (55)

Ẋ − αλφ̇ = vc sin 2φ − PT uT , (56)

where

vc ≡ K⊥λS

2�
, (57)

and

uT ≡ −kBa2

�
∇zT (58)

represents the scale of the velocity induced by the temperature
gradient (with positive direction chosen as the direction from
the high- to the low-temperature region). The spin-polarization
coefficient in the thermal magnon spin-transfer depends on the
temperature according to

PT ≡ 2Jκ

kBa2
= F

π2
√

S

1

α

√
kBT

a2

JS2
, (59)

where F = 2.315 considering the high temperature (β�sw �
1). Note that there is a minus sign in the magnon spin-transfer

term (proportional to PT ) in Eq. (30), indicating that the
magnon spin-transfer pushes the wall to the hotter end of the
system as has been noted previously [12,13]. Equation (59)
indicates a clear distinction between the magnon spin-transfer
effect and the electron spin-transfer effect in metals, namely,
the spin-transfer efficiency parameter, PT , grows at small
damping (α); however, this parameter is independent of α

in the case of electron spin-transfer effect.
The equation of motion [Eq. (30)] has the same form as in

the current-driven case in metals. As was shown in Ref. [20],
the wall shows distinctly different behaviors at small and large
values of uT compared to the crossover velocity (Walker’s
breakdown velocity), defined as

uc ≡ − vc

PT + βT

α

, (60)

which depends on the temperature and α. At a small driving
velocity, |uT | � |uc|, the tilting angle of the wall, φ, reaches
the terminal angle determined by

sin 2φ =
(

PT + βT

α

)
uT

vc
, (61)

and the terminal velocity of the wall is a constant,

vw = βT

α
uT . (62)

In this case, the wall moves from the high- to low-temperature
region because of the pressure on the wall. Above the crossover
velocity, |uT | > |uc|, the angle φ becomes time-dependent and
the average wall velocity is

vw = βT

α
uT − vc

1 + α2

√(
PT + βT

α

)2(
uT

vc

)2

− 1. (63)

For uT � |uc|, vw = 1
1+α2 (−PT + αβT )uT . If PT − αβT > 0,

the direction of domain wall motion changes around uT ∼
O(|uc|): at small ∇T , the motion is toward the colder end,
while the opposite in the case in the region of large ∇T

dominated by magnon spin-transfer effect. At uT � |uc|, the
wall velocity is vw/∇T = − kBa2

�
(PT − αβT ).

The domain wall velocity as a function of uT /vc is plotted in
Fig. 1 for different temperatures and βT . When there is no force
(βT = 0), there is a threshold value of vc

PT
for uT for thermal

motion to set in, and the motion toward the hotter region occurs
above the threshold. The wall speed increases as function of
the temperature because the effective spin polarization, PT ,
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FIG. 1. (Color online) (a)–(c) The domain wall velocity [Eq. (63)] in the unit of vc as a function of uT /vc for different temperatures and
for βT = 0,0.005 and 0.02 at α = 0.0075. Negative vw is toward the direction of the hotter side. a = 12 Å, S = 14, JS2

a2kB
= 4.2 × 102 K are

used. The case of α = 0.02 with βT = 0.005 is plotted in panel (d). Effects of extrinsic pinning are not considered. At high temperature, it is
seen that the magnon spin-transfer effect is enhanced for small α.

064405-7



GEN TATARA PHYSICAL REVIEW B 92, 064405 (2015)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5

(a)

uT/vc

vw/vc

α=0.0075

T=300K,βT =0.005
T=300K,βT =0
T=100K,βT =0.005
T=100K,βT =0

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2
uT/vc

(b)

vw/vc

α=0.0075

T=300K,βT =0.005
T=300K,βT =0
T=100K,βT =0.005
T=100K,βT =0

FIG. 2. (Color online) The domain wall velocity for βT = 0 and
β = 0.005 at T = 100 K and 300 K at α = 0.0075 for (a) small and
(b) large uT /vc. We see that dependence of the domain wall velocity
on βT is weak.

increases at high temperatures rather significantly (∝√
T ). If

βT is positive as was reported in Ref. [24], wall motion toward
the colder regime occurs at small uT (<|uc|), and the magnon
spin-transfer regime appears at |uT | � |uc|. For large α, the
wall speed is smaller [Fig. 1(d)].

In YIG, α = 0.0075, a = 12 Å, and the magnetization is
M = 1.4 × 105 A/m. If we convert the magnetization to
the average magnitude of spin using M = 2μB

a3 S, we find
that the effective spin S is equal to 14. The exchange
stiffness is A = 4.7 × 10−12 J/m, which corresponds to JS2

a2 =
Aa = 5.8 × 10−21 J ( JS2

a2kB
= 4.2 × 102 K). Therefore, for the

three-dimensional case, we obtain PT = 0.40 × √
T (K). (At

T = 300 K, PT = 6.7 and the crossover velocity is uc =
−vc × 0.15.) The absolute value of the wall speed depends on
the hard-axis anisotropy energy K⊥ (vc ∝ K⊥). The easy-axis
anisotropy energy of YIG is KS2a3 = 1.2 × 10−24 J, and the
hard-axis energy is much lesser than the easy-axis energy.
Let us select K⊥/K = 10−3, i.e., vc = 2.4 × 10−2 m/s.
We consider the case of βT = 0 first. Here, |uc| = 0.36 ×
10−2 m/s at T = 300 K. In this case, a temperature gradient
∇T = 20 K/mm in Ref. [11] corresponds to uT = 3.8 ×
10−3 m/s (uT /vc = 0.16) and is close to the threshold (uT �
|uc|); the wall speed is then obtained from Figs. 1(a) and
2(a) as vw = −0.37vc = −0.89 × 10−2 m/s. In the case of
βT = 0.005, uT /vc = 0.16 leads to vw = −0.50vc = −1.2 ×
10−2 m/s [Figs. 1(b) and 2(a)], and we see that the order
of magnitude of the speed does not depend strongly on βT

[Fig. 2(a)]. Interestingly, the wall velocity changes sign as the
temperature is lowered if βT is a positive constant. In fact,
when we set uT /vc = 0.16 for βT = 0.005, the wall velocity
is negative at T = 300 K, while it is positive at T = 100 K as
seen in Fig. 2(a). The sign change occurs around T = 190 K,
where uc(T ) ∼ uT .

If hard-axis anisotropy is weaker, K⊥/K = 10−4,vw =
−11vc = −2.6 × 10−2 m/s at T = 300 K and vw = −6vc =
−1.4 × 10−2 m/s at T = 100 K for uT = 3.8 × 10−3 m/s for
both βT = 0 and 0.005 [Fig. 2(b)].

In the experiment on YIG at room temperature in Ref. [11],
the wall moved to the hotter region at the speed of 1.8 ×
10−4 m/s for ∇T = 22 K/mm. This is slower by two orders
of magnitude than our theoretical estimate, and we suspect
that the small value is caused by extrinsic pinning. In fact,
the experiment was performed under a rather strong field of
B = 6 × 10−3 T (60 Oe), which adds a large additional force
term gμBB

�
= 1 × 109 s−1 to the right-hand side of Eq. (55).

This force is expected to have been necessary to compensate
for the extrinsic pinning effects, and this fact and the observed
avalanche behavior of the walls suggest a strong influence of
extrinsic pinning in their sample.

In the experiment performed in metals in Ref. [15], the
applied ∇T was of the order of 100 K/mm. The motion was
observed in the presence of an ac magnetic field to remove the
extrinsic pinning effects and a wall velocity of 2 mm/s toward
the colder end was obtained. The direction of the motion can be
explained by the spin-transfer effect of the thermally induced
conduction electron flow.

XI. CONCLUSION

To summarize, we applied a thermal vector potential theory
developed in Ref. [45] to describe magnetization dynamics in
a ferromagnetic insulator driven by a temperature gradient.
We evaluated the magnon current induced by the temperature
gradient within the linear response theory and found that it is
proportional to the inverse of the Gilbert damping parameter.
Thus, the effect of the magnon current is dominant in weak
damping systems as was argued in Ref. [22]. The magnon
current was demonstrated to exert a spin-transfer torque on a
domain wall, and this effect tends to drive the structure toward
the hotter side. The case of a vortex (or a skyrmion) was also
discussed.
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APPENDIX: ENERGY CURRENT DENSITY
OF LOCALIZED SPIN

Here, we derive the expression for the energy current
density of the localized spin by quantum mechanically evalu-
ating the time-derivative of the energy density. We consider a
Hamiltonian with exchange interaction and easy- and hard-axis
anisotropy energies [Eq. (5)]. We perform the calculation on
a discretized lattice, because this allows a straightforward
estimation of the commutators, and then take the continuum
limit. The energy densities at site i are

EJ
i ≡ − J

2a5

∑
αβ

∑
σ=±

Sα
i Sα

i+σβ,

(A1)

EK
i ≡ − K

2a3

(
Sz

i

)2
, EK⊥

i ≡ K⊥
2a3

(
S

y

i

)2
,

where α, β runs over x, y, and z, and σ denotes the positive and
negative directions. The corresponding terms of the discretized
Hamiltonian are

HJ ≡ a3
∑

i

EJ
i , HK ≡ a3

∑
i

EK
i , HK⊥ ≡ a3

∑
i

EK⊥
i .

(A2)
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We first study the exchange interaction contribution by evaluating [EJ
i ,HJ ];[

EJ
i ,HJ

] = J 2

4a7

∑
j

∑
αα′ββ ′

∑
σσ ′

[
Sα

i Sα
i+σβ,Sα′

j Sα′
j+σ ′β ′

]
. (A3)

Using [Sα
i ,S

β

j ] = iδij εαβγ S
γ

i and

[AB,CD] = A[B,C]D + [A,C]BD + CA[B,D] + C[A,D]B, (A4)

we observe that∑
j

[
Sα

i Sα
i+σβ,Sα′

j Sα′
j+σ ′β ′

] = i
∑

δ

εαα′δ
(
Sα

i Sδ
i+σβSα′

i+σβ+σ ′β ′ + Sδ
i S

α
i+σβSα′

i+σ ′β ′ + Sα′
i+σβ−σ ′β ′S

α
i Sδ

i+σβ + Sα′
i−σ ′β ′S

δ
i S

α
i+σβ

)
= i

∑
δ

εαα′δ

[
−2Sα

i Sα′
i+σβ

(
Sδ

i+σβ+σ ′β ′ − Sδ
i+σ ′β ′

) +
∑

ε

εαα′ε
(
δσβ,σ ′β ′Sε

i S
δ
i+σβ − δσβ,−σ ′β ′Sδ

i S
ε
i+σβ

)]
,

(A5)

where the fact that spins on different sites commute with each other was used. The contributions from the last two terms vanish
after summation over σ and σ ′, and we obtain[

EJ
i ,HJ

] = −i
J 2

2a7

∑
αα′ββ ′δ

∑
σ,σ ′=±

εαα′δS
α
i Sα′

i+σβ

(
Sδ

i+σβ+σ ′β ′ − Sδ
i+σ ′β ′

)
. (A6)

The commutators including the exchange interaction and easy-axis anisotropy energy are[
EJ

i ,HK

] + [
EK

i ,HJ

] = −i
JK

4a5

∑
αα′β

∑
σ=±

εαα′z
[
Sα

i Sα′
i+σβSz

i+σβ + Sz
i+σβSα

i Sα′
i+σβ − Sα

i+σβSα′
i Sz

i − Sz
i S

α
i+σβSα′

i

]
. (A7)

The hard-axis anisotropy contribution has the same form but with the index z replaced by y.
Let us consider the continuum limit. Contribution from the exchange interaction is (μ = x, y, z)[

EJ
i ,HJ

] = i
J 2

2a3

∑
αα′βδ

∑
σ=±

εαα′δ(σ∇βSα)Sα′
σ∇β(∇2Sδ) = −i�∇ · jJJ

E , (A8)

where

jJJ
E,μ ≡ J 2

�a3
{∇μS · [(∇2 S) × S]} (A9)

is the energy current from the exchange interaction. Similarly,[
EJ

i ,HK

] + [
EK

i ,HJ

] = −i�∇ · jJK
E ,

[
EJ

i ,HK⊥
] + [

EK⊥
i ,HJ

] = −i�∇ · jJK⊥
E , (A10)

where

jJK
E,μ ≡ JK

4�a3
[(S × ∇μS − ∇μS × S)zSz + Sz(S × ∇μS − ∇μS × S)z],

(A11)

jJK⊥
E,μ ≡ −JK⊥

4�a3
[(S × ∇μS − ∇μS × S)ySy + Sy(S × ∇μS − ∇μS × S)y].

In the classical case, where ordering does not matter, we
obtain

jJK
E,μ = JK

�a3
(S × ∇μS)zSz = −γ

J

a3
∇μS · (BK × S),

jJK⊥
E,μ = −γ

J

a3
∇μS · (BK⊥ × S), (A12)

where γ is the gyromagnetic ratio, and

�γ BK ≡ −KSz ẑ,
(A13)

�γ BK⊥ ≡ K⊥Sy ŷ

are the effective magnetic fields for the easy and hard-axis
anisotropy energies, respectively ( ŷ and ẑ are the unit vectors
along y and z axis, respectively). There is no contribution to
the energy current from the commutators of the anisotropy
energies because local quantities commute with each other.
Therefore, the total energy current associated with the Hamil-
tonian Eq. (5) is

jE,μ ≡ jJJ
E,μ + jJK

E,μ + jJK⊥
E,μ

= −γ
J

a3
∇μS · (BH × S), (A14)
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where

�γ BH ≡ δH

δS
= −J∇2 S − KSz ẑ + K⊥Sy ŷ (A15)

is the total effective magnetic field for the Hamiltonian H . The
equation of motion for S is

Ṡ = γ BH × S, (A16)

and thus we finally obtain the energy current density as

jE,μ = − J

a3
∇μS · Ṡ. (A17)

This form is identical to the form obtained from a general
definition in terms of the Lagrangian L,T0i ≡ (∂t S) δL

δ∂i S . It
also agrees with the form proposed in Ref. [28] based on a
symmetry argument, although the spin relaxation was believed
there to be essential for the emergence of the form of Eq. (A17).
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